
Using GPG to Encrypt Your Data
Category: File Transfers

Summary: Use GPG with the cipher AES256, without the --armour option, and with
compression to encrypt your files during inter-host transfers.

GPG

Encryption helps protect your files during inter-host file transfers (for example, when using
scp, bbftp, or ftp). We recommend GPG (Gnu Privacy Guard), an Open Source
OpenPGP-compatible encryption system.

GPG has been installed on Pleiades, Columbia, and Lou at /usr/bin/gpg. If you do not
have GPG installed on the system(s) that you would like to use for transferring files, please
check out the GPG web site.

Choosing What Cipher to Use

We recommend using the cipher AES256, which uses a 256-bit Advanced Encryption
Standard (AES) key to encrypt the data. Information on AES can be found at the National
Institute of Standards and Technology's Computer Security Resource Center. 

You can set your cipher in the following ways:

Add the following line to your ~/.gnupg/gpg.conf

cipher-algo AES256

• 

Or add --cipher-algo AES256 in the command line to override the default
cipher, CAST5. 

• 

Examples

For any of the following simple examples, you can add --cipher-algo AES256 to
override the default cipher, CAST5, if you choose to not add the cipher-algo AES256 to
your personal gpg.conf file.

Creating an Encrypted File

Using GPG to Encrypt Your Data 1

http://www.gnupg.org
http://csrc.nist.gov/CryptoToolkit/tkencryption.html


Both commands below are identical. They encrypt the file test.out and produce the
encrypted version in test.gpg.

% gpg --output test.gpg --symmetric test.out

% gpg -o test.gpg -c test.out

You will be prompted for a passphrase, which will be used later to decrypt the file.

Decrypting a File

The following command decrypts the file test.gpg and produces the file test.out.

% gpg --output test.out -d test.gpg
You will be prompted for the passphrase that you used to encrypt the file. If you don't use
the --output option, output of the command goes to STDOUT. If you don't use any flags,
it will decrypt to a file without the .gpg suffix. That is:

% gpg test.gpg
results in the decrypted data in a file named "test".

Passphrase Selection

Your passphrase should have sufficient information entropy. We suggest that you include
five words of 5-10 letters in size, chosen at random, with spaces, special characters, and/or
numbers embedded into words.

You need to be able to recall the passphrase that was used to encrypt the file.

Factors that Affect Encrypt/Decrypt Speed on NAS Filesystems

We do not recommend using the --armour option for encrypting files that will be
transferred to/from NAS systems. This option is mainly to send binary data through email,
not via scp, bbftp, ftp, etc. The file size tends to be about 33% bigger than without this
option, and encrypting the data takes about 10-15% longer.

The level of compression used when encrypting/decrypting affects the time required to
complete the operation. There are three options for the compression algorithm: none, zip,
and zlib.

--compress-algo none or --compress-algo 0• 
--compress-algo zip or --compress-algo 1• 
--compress-algo zlib or --compress-algo 2• 

Category: File Transfers 2



For example:

% gpg --output test.gpg --compress-algo zlib --symmetric test.out
If your data is not compressible, --compress-algo 0 (aka none) gives you about a 50%
performance increase compared to --compress-algo 1 or --compress-algo 2.

If your data is highly compressible, choosing zlib or zip will not only give you a 20-50%
speed increase, but it also reduces the file size by up to 20x. For example, a 517 MB highly
compressible file was compressed to 30 MB on Columbia.

zlib is not compatible with PGP 6.x, but neither is the cipher algorithm AES256. zlib is
about 10% faster than zip on Columbia and compresses about 10% better than zip.

Random Benchmark Data

We tested the encryption/decryption speed of three different files (1 MB, 150 MB, 517 MB)
on Columbia. The file used for the 1 MB test was an rpm file, presumably already
compressed, since the resultant file sizes for the none/zip/zlib were within 1% of each
other. The 150 MB file was an ISO, also assumed to be a compressed binary file for the
same reasons. The 517 MB file is a text file. These runs were performed on a CXFS
filesystem when many other users' jobs were running. The performance reported here is for
reference only, and not the best or worst performance you can expect.

Using AES256 as the Cipher Algorithm

1 MB File 150 MB File 517 MB File

with --armour ~5.5 secs to
encrypt ~40 secs to encrypt

without --armour ~4 secs to
encrypt ~35 secs to encrypt

without --armour,
zlib compression

~33 secs to encrypt;
~28 secs to decrypt
to file

~33 secs, resultant file size
~30 MB; ~34 secs to
decrypt to file

without --armour, zip
compression

~36 secs to encrypt;
~31 secs to decrypt
to file

~38 secs, resultant file size
~33 MB; ~34 secs to
decrypt to file

without --armour, no
compression

~19 secs to encrypt;
~25 secs to decrypt
to file

~49 secs, resultant file size
~517 MB; ~75 secs to
decrypt to file

Category: File Transfers 3



Article ID: 242
Last updated: 21 Nov, 2012
Data Storage & Transfer -> File Transfers -> Using GPG to Encrypt Your Data
http://www.nas.nasa.gov/hecc/support/kb/entry/242/?ajax=1

Category: File Transfers 4

http://www.nas.nasa.gov/hecc/support/kb/entry/242/?ajax=1

	242.html

