Eulerian modeling and simulation of moderately dense spray flows: application to Solid Rocket Motors

F. Doisneau*

ONERA, EM2C, École Centrale Paris, CNRS

May, 26th 2015

Co-workers: M. Massot, F. Laurent, J. Dupays, A. Sibra, A. Vié

*now at Sandia National Laboratories, Livermore
Overview

1. SRM two-phase flows
 - Two-phase flow applications
 - Two-way coupling
 - Polydispersity
 - Emerging issues

2. Disperse two-phase modeling
 - Kinetic modeling
 - Eulerian Multi-Fluid method
 - Numerical highlight

3. Low inertia droplets
 - Results for low inertia droplets
 - Description of size
 - Coalescence
 - Two-way coupling
 - Applicative computations

4. Moderate inertia droplets
 - Results for moderate inertia droplets
 - The Anisotropic Gaussian Model
 - AG Transport
 - Homo-coalescence
Overview

1. SRM two-phase flows
 - Two-phase flow applications
 - Two-way coupling
 - Polydispersity
 - Emerging issues

2. Disperse two-phase modeling
 - Kinetic modeling
 - Eulerian Multi-Fluid method
 - Numerical highlight

3. Low inertia droplets
 - Results for low inertia droplets
 - Description of size
 - Coalescence
 - Two-way coupling
 - Applicative computations

4. Moderate inertia droplets
 - Results for moderate inertia droplets
 - The Anisotropic Gaussian Model
 - AG Transport
 - Homo-coalescence
Two-phase flow applications

Solid Rocket Motors (SRM)

Solid Rocket Motors (SRM) : anaerobic propellers for rockets and missiles

- high thrust
- cheap
- storable

- less efficient
- subject to thrust oscillations
- difficult to throttle
Two-phase flow applications

Physics of a SRM

Star-shaped grain of a LP10 sub-scale test motor

Internal flow is complex

- Turbulent: transition and up to $Re = 10^6$
- Compressible: up to $Ma = 3$
- Reactive
- Coupled to the structure: obstacles, casing
- **Two-phase**

ONERA

Vorticity in a P230 [Doisneau et al., 2013a, CRM]
Origin and impact of the condense phase

Propellant is aluminized to increase specific impulse

- combustion \Rightarrow liquid Al$_2$O$_3$
- polydisperse droplets (below 200 μm)
- mass concentration 35% \Rightarrow strong interaction with flow

Condense phase impact

- I_{sp} losses (nozzle)
- role on oscillations (chamber)
- slag, erosion, signature

[Doisneau et al., 2011, EUCASS]
Liquid Rocket Engines (LRE)

- Plate of coaxial injectors
 Vulcain 2 (SAFRAN)

Subcritical regime
- Atomization of liquid oxygen (LOx)
- Combustion of dense LOx spray with gaseous fuel
- Combustion and acoustics

Transient heat release rate
- In a coaxial GCH4/LOx inj. [Doisneau, 2013b]
Two-phase flow applications

Atmospheric engines

- Gasoline Direct Injection (GDI)
- Diesel injection
- Gas Turbine (GT)

Injection modeling focuses
- atomization of liquid fuel
- combustion of dense fuel spray with hot compressed air + EGR
- auto-ignition, cycle-to-cycle variability

High pressure jet (subcritical)
[Skeen et al., 2015]

Initial Conditions
Pressure: 60 bar
Temperature: 900K
Composition: (by volume) 0.00% O2, 89.71% N2, 6.52% CO2, 3.77% H2O

Injection Conditions
Peak Velocity: 600 m/s
Peak Re_{\text{d}}: 117,000
Density: 650 kg/m³
Temperature: 363 K
Astrophysics

Planet formation in stellar nebula: Proto-planetary disc (photo: ALMA)

PPD simulation under shearing sheet approximation [Simon et al. 2013]

Chondrules

PPDs: a two-phase problem

- Gas continuum $\lambda = 1 \text{ m} \ll \eta_K = 1000 \text{ m}$
- Polydisperse loading of dust from μm to km
- Agglomeration and gravitational capture \Rightarrow planet formation
Two-way coupling

What two-way coupling?

Flow regimes depend on the disperse phase

- Volume fraction: α_l
- Mass fraction: Y_l
- Inertia: St

\Rightarrow Classifications

[O'Rourke, 1981, Elghobashi and Abou-Arab, 1983]

Case of the P230 SRM

Volume fractions α_p of alumina droplets in P230 with coalescence [Doisneau et al., 2013a, CRM]

In SRMs where $\rho_l/\rho_g \sim 10^3$ \Rightarrow Moderately dense

- $Y_l > 1\% \Rightarrow$ Two-way coupling through drag, heating, and evaporation
- $\alpha_l > 0.01\% \Rightarrow$ weak retrocoupling through volume occupancy
Polydispersity: size as a key parameter

Polydispersity

Relaxation

\[u = u_g \]

\[\tau^u(r) \sim r^2 \]

Coalescence

Brownian

hetero-PTC

all types of PTC

Smallest droplet Stokes time \(\tau^u(r_1) \)

1 \(\mu s \)

Acoustic CFL time

10 \(\mu s \)

Convective CFL time (nozzle)

30 \(\mu s \)

Big droplet Stokes time \(\tau^u(r_2) \)

10,000 \(\mu s \)

First acoustic mode

50,000 \(\mu s \)

Eddy revolution time

50,000 \(\mu s \)

Convective CFL time (injection)

90,000 \(\mu s \)

Typical computation time

1,000,000 \(\mu s \)

Polydispersity

Miscellaneous time scales

Various physical regimes:

- **Stokes number** \(St = \frac{\tau_p}{\tau_g} \)
- **Knudsen number** \(Kn = \frac{\tau_C}{\tau_g} \)
Polydispersity: size as a key parameter

Relaxation

\[u = u_g \]

\[\tau^u(r) \sim r^2 \]

Coalescence

Brownian

hetero-PTC

all types of PTC

<table>
<thead>
<tr>
<th>Time Scale</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smallest droplet Stokes time</td>
<td>(\tau^u(r_1))</td>
</tr>
<tr>
<td>Acoustic CFL time</td>
<td>10 (\mu)s</td>
</tr>
<tr>
<td>Convective CFL time (nozzle)</td>
<td>30 (\mu)s</td>
</tr>
<tr>
<td>Big droplet Stokes time</td>
<td>(\tau^u(r_2) = 10,000 \mu)s</td>
</tr>
<tr>
<td>First acoustic mode</td>
<td>50,000 (\mu)s</td>
</tr>
<tr>
<td>Eddy revolution time</td>
<td>50,000 (\mu)s</td>
</tr>
<tr>
<td>Convective CFL time (injection)</td>
<td>90,000 (\mu)s</td>
</tr>
<tr>
<td>Typical computation time</td>
<td>1,000,000 (\mu)s</td>
</tr>
</tbody>
</table>

Polydispersity

Miscellaneous time scales

Various physical regimes:

- **Stokes number**
 \[\text{St} = \frac{\tau_p}{\tau_g} \]

- **Knudsen number**
 \[\text{Kn} = \frac{\tau_c}{\tau_g} \]

Flow times

\[\tau_{\text{chamber}} / \tau_{\text{nozzle}} \]
Low inertia droplets \(\text{St} < \text{St}_c \)

Low inertia droplet velocities and temperatures

- **fully correlated** at a given size
- relaxation at \(\tau \sim r^2 \): wide **time scale spectrum**

[Vié et al., 2013b]

Crossings at **different** sizes

Hetero-PTC
Low inertia droplets $\text{St} < \text{St}_c$

- Low inertia droplet velocities and temperatures:
 - **fully correlated** at a given size
 - relaxation at $\tau \sim r^2$: wide **time scale spectrum**

 [Vié et al., 2013b]

- Crossings at different sizes:
 - **Hetero-PTC**

Low inertia droplet modeling issues:
- stiffness
- hetero-coalescence
Moderate inertia droplets \(\text{St} \sim \text{St}_c \)

Homo-crossings

Taylor-Green vortices at two different times for \(\text{St} = 7.5\text{St}_c \)
(Lagrangian simulations starting from a uniform concentration).

Hypercompressibility

- accumulations which participate to the physics/singularities
- vacuum
- gradients

Crossings at same size

Homo-PTC
Moderate inertia droplets $St \sim St_c$

Homo-crossings

Taylor-Green vortices at two different times for $St = 7.5St_c$ (Lagrangian simulations starting from a uniform concentration).

Hypercompressibility

- **accumulations** which participate to the physics/singularities
- **vacuum**
- gradients

Moderate inertia droplet modeling issues

- hypercompressibility
- homo-coalescence
Coalescence induced couplings

Crossings + high volume fraction \Rightarrow **collisions**

Collision efficiency modeling [D’Herbigny and Villedieu, 2001]

Colliding droplet regimes: reflexion, coalescence, and stretching [Qian and Law, 1997]
Coalescence induced couplings

Crossings + high volume fraction \Rightarrow **collisions**

Collision efficiency modeling [D’Herbigny and Villedieu, 2001]

Colliding droplet regimes: reflexion, **coalescence**, and stretching [Qian and Law, 1997]

Size-Size coupling
- Collision rates
- Size distribution prediction

Size-velocity coupling
- Collision rates
- Induced polydispersity
Emerging issues

Two-way coupling of inertial particles

Losses occur in the nozzle

Weakly-colliding inertial moderately dense jets [Doisneau et al., 2013a, CRM]

PTC and strong coupling ⇒ emerging physical issue!
Two-way coupling of inertial particles

Losses occur in the nozzle

Weakly-colliding inertial moderately dense jets [Doisneau et al., 2013a, CRM]

PTC and strong coupling ⇒ emerging physical issue!

Nozzle efficiency modeling

Inertial particle modeling
 +
Size-Velocity coupling
 +
Two-way coupling
Overview

1. SRM two-phase flows
 - Two-phase flow applications
 - Two-way coupling
 - Polydispersity
 - Emerging issues

2. Disperse two-phase modeling
 - Kinetic modeling
 - Eulerian Multi-Fluid method
 - Numerical highlight

3. Low inertia droplets
 - Results for low inertia droplets
 - Description of size
 - Coalescence
 - Two-way coupling
 - Applicative computations

4. Moderate inertia droplets
 - Results for moderate inertia droplets
 - The Anisotropic Gaussian Model
 - AG Transport
 - Homo-coalescence
Kinetic modeling for the disperse phase

Point particles with velocity \mathbf{c}, temperature θ, surface S

Number density function \textbf{NDF} : describes the disperse phase

$$dN = f(t, \mathbf{x}, \mathbf{c}, S, \theta) d\mathbf{x} d\mathbf{c} dS d\theta$$

\textbf{NDF} satisfies a Boltzmann-like PDE [Williams, 1958]

$$\partial_t f + \partial_x \cdot (\mathbf{c} f) + \partial_c \cdot (\mathbf{F} f) + \partial_\theta (\mathbf{H} f) + \partial_S (\mathbf{R} f) = \mathcal{B} + \mathcal{C}$$

Closures : all the physical modeling job

- Drag force \mathbf{F}
- Heat transfer \mathbf{H}
- Mass transfer \mathbf{R}
- Secondary break-up \mathcal{B}
- Collisions/coalescence \mathcal{C}
Kinetic coalescence

Inertial droplet coalescence:

\[\mathcal{C}^+ = \frac{1}{2} \int_{c^*} \int_{v^* \in [0, v]} f(t, x, c^\circ, v^\circ) f(t, x, c^*, v^*) \mathcal{K}_{\text{coal}} d v^* d c^* \]

\[\mathcal{C}^- = \int_{c^*} \int_{v^*} f(t, x, c, v) f(t, x, c^*, v^*) \mathcal{K}_{\text{coal}} d v^* d c^* \]

Balistic coalescence kernel modeling

\[\mathcal{K}_{\text{coal}} = \pi (r^{\circ} + r^*)^2 \| \mathbf{u} - \mathbf{u}^* \| \mathcal{E}(......) \]

Efficiency \(\mathcal{E} \) models

- coalescence efficiency [Brazier-Smith et al., 1972, Ashgriz and Poo, 1990]
Inertial droplet coalescence:

\[
\begin{align*}
\mathcal{C}^+ &= \frac{1}{2} \int \int_{v^* \in [0,v]} f(t,x,c^\delta,v^\delta) f(t,x,c^*,v^*) \mathcal{K}_{\text{coal}} d v^* d c^* \\
\mathcal{C}^- &= \int \int f(t,x,c,v) f(t,x,c^*,v^*) \mathcal{K}_{\text{coal}} d v^* d c^*
\end{align*}
\]

Balistic coalescence kernel modeling:

\[
\mathcal{K}_{\text{coal}} = \pi (r^\delta + r^*)^2 ||\mathbf{u} - \mathbf{u}^*|| \mathcal{E}(......)
\]

Efficiency \(\mathcal{E}\) models:

- coalescence efficiency [Brazier-Smith et al., 1972, Ashgriz and Poo, 1990]
Approaches for polydisperse NDFs

- **Direct** (finite volumes) intractable
- **Lagrangian** (NDF samples) convergence, parallelization
- **Eulerian** (fields) several approaches

Eulerian approaches: convergence, two-way coupling and parallelization

- Sampling (one system per droplet size) no coalescence
- DQMOM [Fox et al., 2008] multivariate
- Kinetic-based moment methods [Kah et al., 2010, Vié et al., 2013b] algebra

Multi-Fluid = continuous description of size
Multi-Fluid assumptions [Laurent and Massot, 2001]

Semi-kinetic level

Correlation of velocity and temperature to size:

\[f(t, x, c, s, \theta) \approx n(t, x, s) \delta(c - \bar{u}(t, x, s)) \delta(\theta - T(t, x, s)) \]

Multi-Fluid level

Size discretization in sections \([s_{k-1}, s_k]\) ⇒ Reconstructions

- Velocity
 \[\bar{u}(t, x, s) \approx u_k(t, x) \]
- Temperature
 \[T(t, x, s) \approx T_k(t, x) \]
- One size moment
 \[n(t, x, s) \approx m_k(t, x) \kappa_k(s) \]

...higher order requires modeling AND numerics! [Kah et al., 2010, Vié et al., 2013b]
Multi-Fluid assumptions [Laurent and Massot, 2001]

Semi-kinetic level

Correlation of velocity and temperature to size:

\[f(t, x, c, s, \theta) \approx n(t, x, s) \delta(c - \bar{u}(t, x, s))\delta(\theta - T(t, x, s)) \]

Multi-Fluid level

Size discretization in sections \([s_{k-1}, s_{k}]\) ⇒ Reconstructions

- Velocity
 \[\bar{u}(t, x, s) \approx u_k(t, x) \]
- Temperature
 \[T(t, x, s) \approx T_k(t, x) \]
- One size moment
 \[n(t, x, s) \approx m_k(t, x)\kappa_k(s) \]

...higher order requires modeling AND numerics! [Kah et al., 2010, Vié et al., 2013b]

Pros

- Flexible on polydispersity
- Captures dynamics for \(St \leq St_c\)
- Two-way coupling to Eulerian gas solver
- Parallelization
Multi-Fluid assumptions [Laurent and Massot, 2001]

Semi-kinetic level

Correlation of velocity and temperature to size:

\[f(t, x, c, s, \theta) \approx n(t, x, s) \delta(c - \bar{u}(t, x, s)) \delta(\theta - T(t, x, s)) \]

Multi-Fluid level

Size discretization in sections \([s_{k-1}, s_k] \Rightarrow \text{Reconstructions}\)

- Velocity \(\bar{u}(t, x, s) \approx u_k(t, x)\)
- Temperature \(T(t, x, s) \approx T_k(t, x)\)
- One size moment \(n(t, x, s) \approx m_k(t, x) \kappa_k(s)\)

...higher order requires modeling AND numerics! [Kah et al., 2010, Vié et al., 2013b]

Pros

- Flexible on polydispersity
- Captures dynamics for \(St \leq St_c\)
- Two-way coupling to Eulerian gas solver
- Parallelization

Cons

- Hypercompressibility and transport scheme
- Complex algebra
- Fails for homo-PTC
Resulting two-phase model

Superimposed fluids
- Sets of moment fields
- Coupled through source terms

A moment method
- Conserve some moments U
- Reconstruction f_U to compute sources Ω
- Realizability: $U \in M$

\[
\frac{dU}{dt} = \Omega \left(\int \Phi \cdot f_U \right)
\]
Eulerian Multi-Fluid method

Resulting two-phase model

Superimposed fluids

- Sets of moment fields
- Coupled through source terms

A moment method

- Conserve some moments U
- Reconstruction f_U to compute sources Ω
- Realizability: $U \in M$

\[
\frac{dU}{dt} = \Omega \left(\int \Phi \cdot f_U \right)
\]

Example: Drag term

\[
\frac{dm_k u_k}{dt} = \int_{S_{k-1}}^{S_k} F(u_k, u_g, S) \kappa(S) dS
\]
Transport in physical space

Hypercompressibility (gradients, singularities and vacuum)
- **accuracy issues** (structures participate to the physics)
- **stability issues** (high order near discontinuities, undershoots)

Structured grids (research codes)

- Kinetic schemes
 - pressureless: 2nd order Bouchut/dimensional splitting
 [de Chaisemartin, 2009]
 - weak pressure: open topic

Unstructured grids (industrial codes)

- Finite volume 2nd order MUSCL strategy:
 dedicated implementation [Le Touze et al., 2012]
- Cell-vertex with high order scheme/artificial viscosity:
 dedicated stabilization method [Martinez, 2009]
Overview

1. SRM two-phase flows
 - Two-phase flow applications
 - Two-way coupling
 - Polydispersity
 - Emerging issues

2. Disperse two-phase modeling
 - Kinetic modeling
 - Eulerian Multi-Fluid method
 - Numerical highlight

3. Low inertia droplets
 - Results for low inertia droplets
 - Description of size
 - Coalescence
 - Two-way coupling
 - Applicative computations

4. Moderate inertia droplets
 - Results for moderate inertia droplets
 - The Anisotropic Gaussian Model
 - AG Transport
 - Homo-coalescence
Results for low inertia droplets
1) Size reconstruction

Description of size

Surface NDF

- Lognormal size NDF
- OSM

Type of reconstruction ⇔ integration method
1) Size reconstruction

Two-Size moment Multi-Fluid approaches

- **Exp-TSM method in CEDRE** [Dufour et al., 2003]
1) Size reconstruction

Two-Size moment Multi-Fluid approaches

- **Exp-TSM** method in CEDRE [Dufour et al., 2003]
- **Aff-TSM** method introduced by [Laurent, 2013]
1) Size reconstruction

Two-Size moment Multi-Fluid approaches

- **Exp-TSM** method in CEDRE [Dufour et al., 2003]
- **Aff-TSM** method introduced by [Laurent, 2013]

- **Two-Size Moment** methods are efficient to capture polydispersity
- Type of reconstruction ↔ integration method
2) Coalescence sources

Coalescence terms: quadratic sums of 2D elementary integrals

\[
\begin{align*}
2C^n_k &= \sum_{i=1}^k \sum_{j=1}^{i-1} Q^n_{ijk} \\
2C^m_k &= \sum_{i=1}^k \sum_{j=1}^{i-1} (Q^*_{ijk} + Q^\circ_{ijk}) \\
2C^u_k &= \sum_{i=1}^k \sum_{j=1}^{i-1} (u_i Q^*_{ijk} + u_j Q^\circ_{ijk}) \\
2C^n_k &= \sum_{i=1}^{N} \sum_{j=1}^{N} Q^n_{kji} \\
2C^m_k &= \sum_{i=1}^{N} \sum_{j=1}^{N} (Q^*_{kji} + Q^\circ_{kji}) \\
2C^u_k &= u_k \cdot 2C^m_k
\end{align*}
\]

Elementary integrals

\[
\left(\begin{array}{c} Q^n_{ijk} \\ Q^*_{ijk} \\ Q^\circ_{ijk} \end{array} \right) (t, x) = \int_{ij(k)} \left(\begin{array}{c} \frac{1}{6\sqrt{\pi}} S^{3/2} \\ \frac{\rho_l}{6\sqrt{\pi}} S^{3/2} \\ \frac{\rho_l}{6\sqrt{\pi}} S^{3/2} \end{array} \right)
\]

Relative error of integrals for Exp-TSM with (NC5) 13 sections, sizes in radius (µm); + quadrature nodes.
2) Coalescence sources: Quadratures

Two approaches tested for efficient integration [Doisneau et al., 2013b, JCP]

- (NCn): Polynomial quadratures (Newton-Cotes) but also Gauss-Legendre
- (Adn): Adaptive quadrature based on the exponential kernel

Comparison of quadrature error of Exp-TSM

<table>
<thead>
<tr>
<th>β steepness</th>
<th>Relative error (logscale)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-100</td>
<td>-35</td>
</tr>
<tr>
<td>-50</td>
<td>-30</td>
</tr>
<tr>
<td>0</td>
<td>-25</td>
</tr>
<tr>
<td>50</td>
<td>-20</td>
</tr>
<tr>
<td>100</td>
<td>-15</td>
</tr>
<tr>
<td>150</td>
<td>-10</td>
</tr>
<tr>
<td>200</td>
<td>-5</td>
</tr>
<tr>
<td>250</td>
<td>0</td>
</tr>
<tr>
<td>300</td>
<td>5</td>
</tr>
<tr>
<td>350</td>
<td>10</td>
</tr>
<tr>
<td>400</td>
<td>15</td>
</tr>
<tr>
<td>450</td>
<td>20</td>
</tr>
<tr>
<td>500</td>
<td>25</td>
</tr>
<tr>
<td>550</td>
<td>30</td>
</tr>
<tr>
<td>600</td>
<td>35</td>
</tr>
</tbody>
</table>

Test integral $I(β)$ with $S_1 = 1$, $S_2 = 2$ and $S^* = 0.75$

Convergence on a size-velocity coupling case

One size (Empty) and two size moment (Solid)

Excellent with low number of sections

Results

Exp-TSM: Adaptive quadrature accurate with 2×2 points!
Aff-TSM: Polynomial quadrature allows more points
2) Coalescence sources: Validation

New phase space strategy

Exp-TSM (exponential reconstruction)

- **Adaptive quadrature** for elementary integrals
- Validation versus Lagrangian
- Convergence study
- **Conception** of a dedicated test case
- Validation versus analytical
- Validation versus experiment
- **Implementation** in CEDRE
- Validation versus Lagrangian SRM

Affine reconstruction [Laurent et al., 2015]

- **Accurate quadrature** for elementary integrals
- Convergence study
- **Implementation** in CEDRE
2) Coalescence sources: Validation

New phase space strategy

Exp-TSM (exponential reconstruction)
- **adaptive quadrature** for elementary integrals
- validation versus Lagrangian
- convergence study
- **conception** of a dedicated test case
- validation versus analytical
- validation versus experiment
- **implementation** in CEDRE
- **validation** versus Lagrangian SRM

Affine reconstruction [Laurent et al., 2015]
- **accurate quadrature** for elementary integrals
- convergence study
- **implementation** in CEDRE

Achievements: accuracy and efficiency
- for complex source terms
- for stiff cases (e.g. bimodal)
3) Strategy for two-way coupling

ACS: Acoustic/Convection Splitting [Doisneau et al., 2014, JPP]

Operator splitting [Strang, 1968, Descombes and Massot, 2004]
- to allow optimal time steps (reaction-diffusion-convection systems [Duarte, 2011])
- to capture strong gas-liquid coupling

The Two-way coupling System

\[
\begin{align*}
\partial_t \rho g + \partial_x (\rho g u_g) &= 0 \\
\partial_t (\rho g u_g) + \partial_x (\rho g u_g \otimes u_g + p I) &= - \sum_{k=1}^{N_{\text{sec}}} m_k F_k \\
\partial_t (\rho g c_g T_g) + \partial_x (\rho g c_g T_g u_g) &= - \sum_{k=1}^{N_{\text{sec}}} m_k H_k - \sum_{k=1}^{N_{\text{sec}}} m_k F_k (u_g - u_k) \\
\partial_t n_k + \partial_x (n_k u_k) &= 2 C_k^{n+} - 2 C_k^{n-} \\
\partial_t m_k + \partial_x (m_k u_k) &= 2 C_k^{m+} - 2 C_k^{m-} \\
\partial_t (m_k u_k) + \partial_x (m_k u_k \otimes u_k) &= m_k F_k + 2 C_k^{u+} - 2 C_k^{u-} \\
\partial_t (m_k h_k) + \partial_x (m_k h_k u_k) &= m_k H_k + 2 C_k^{u+} - 2 C_k^{u-}
\end{align*}
\]

\[k = 1, N_{\text{sec}}\]
Two-way coupling

3) Strategy for two-way coupling

ACS: Acoustic/Convection Splitting [Doisneau et al., 2014, JPP]

Operator splitting [Strang, 1968, Descombes and Massot, 2004]
- to allow optimal time steps (reaction-diffusion-convection systems [Duarte, 2011])
- to capture strong gas-liquid coupling

The T_g operator

\[
\begin{align*}
\partial_t \rho_g + \partial_x (\rho_g u_g) \\
\partial_t (\rho_g u_g) + \partial_x (\rho_g u_g \otimes u_g + p I) &= 0 \\
\partial_t (\rho_g c_g T_g) + \partial_x (\rho_g c_g T_g u_g) &= 0
\end{align*}
\]
3) Strategy for two-way coupling

ACS: Acoustic/Convection Splitting [Doisneau et al., 2014, JPP]

Operator splitting [Strang, 1968, Descombes and Massot, 2004]
- to allow optimal time steps (reaction-diffusion-convection systems [Duarte, 2011])
- to capture strong gas-liquid coupling

The \mathcal{T}_k operators

\[
\begin{align*}
\partial_t n_k + \partial_x \cdot (n_k u_k) &= 0 \\
\partial_t m_k + \partial_x \cdot (m_k u_k) &= 0 \\
\partial_t (m_k u_k) + \partial_x \cdot (m_k u_k \otimes u_k) &= 0 \\
\partial_t (m_k h_k) + \partial_x \cdot (m_k h_k u_k) &= 0
\end{align*}
\]

$k = 1, N_{sec}$

Gas transport
Relax.
Liq. transport
Sources
3) Strategy for two-way coupling

ACS: Acoustic/Convection Splitting [Doisneau et al., 2014, JPP]

Operator splitting [Strang, 1968, Descombes and Massot, 2004]
- to allow optimal time steps (reaction-diffusion-convection systems [Duarte, 2011])
- to capture strong gas-liquid coupling

The \(R \) operator

\[
\begin{align*}
\partial_t \rho_g & = 0 \\
\partial_t (\rho_g u_g) & = - \sum_{k=1}^{N_{\text{sec}}} m_k F_k \\
\partial_t (\rho_g c_g T_g) & = - \sum_{k=1}^{N_{\text{sec}}} m_k H_k - \sum_{k=1}^{N_{\text{sec}}} m_k F_k (u_g - u_k) \\
\partial_t n_k & = 0 \\
\partial_t m_k & = 0 \\
\partial_t (m_k u_k) & = m_k F_k \\
\partial_t (m_k h_k) & = m_k H_k
\end{align*}
\]

\(k = 1, N_{\text{sec}} \)
3) Strategy for two-way coupling

ACS : Acoustic/Convection Splitting [Doisneau et al., 2014, JPP]

Operator splitting [Strang, 1968, Descombes and Massot, 2004]

- to allow optimal time steps (reaction-diffusion-convection systems [Duarte, 2011])
- to capture strong gas-liquid coupling

\[
\begin{align*}
\partial_t n_k &= 2C_{k}^{n+} - 2C_{k}^{n-} \\
\partial_t m_k &= 2C_{k}^{m+} - 2C_{k}^{m-} \\
\partial_t (m_k u_k) &= 2C_{k}^{u+} - 2C_{k}^{u-} \\
\partial_t (m_k h_k) &= 2C_{k}^{u+} - 2C_{k}^{u-}
\end{align*}
\]

The \mathcal{C} operator

\[\tau_{\text{coal min}}\]

\[k = 1, N_{\text{sec}}\]
3) Strategy for two-way coupling

ACS : Acoustic/Convection Splitting [Doisneau et al., 2014, JPP]

Operator splitting [Strang, 1968, Descombes and Massot, 2004]
- to allow optimal time steps (reaction-diffusion-convection systems [Duarte, 2011])
- to capture strong gas-liquid coupling

\[
\begin{align*}
\partial_t \rho g + \partial_x (\rho g u_g) &= 0 \\
\partial_t (\rho g u_g) + \partial_x (\rho g u_g \otimes u_g + p l) &= - \sum_{k=1}^{N_{sec}} m_k F_k \\
\partial_t (\rho g c_g T_g) + \partial_x (\rho g c_g T_g u_g) &= - \sum_{k=1}^{N_{sec}} m_k H_k - \sum_{k=1}^{N_{sec}} m_k F_k (u_g - u_k) \\
\partial_t n_k + \partial_x (n_k u_k) &= \frac{2}{C_k^{m+}} - \frac{2}{C_k^{n-}} \\
\partial_t m_k + \partial_x (m_k u_k) &= \frac{2}{C_k^{m+}} - \frac{2}{C_k^{m-}} \\
\partial_t (m_k u_k) + \partial_x (m_k u_k \otimes u_k) &= m_k F_k + \frac{2}{C_k^{u+}} - \frac{2}{C_k^{u-}} \\
\partial_t (m_k h_k) + \partial_x (m_k h_k u_k) &= m_k H_k + \frac{2}{C_k^{u+}} - \frac{2}{C_k^{u-}} \\
\end{align*}
\]

\(k = 1, N_{sec} \)
3) Strategy for two-way coupling

ACS : Acoustic/Convection Splitting [Doisneau et al., 2014, JPP]

Operator splitting [Strang, 1968, Descombes and Massot, 2004]
- to allow optimal time steps (reaction-diffusion-convection systems [Duarte, 2011])
- to capture strong gas-liquid coupling

Time stepping of a **splitting** method:

\[
U(t + \Delta t_a) = R T_g R \left(\sum_k I_k \right) C U(t)
\]
3) Strategy for two-way coupling

ACS: Acoustic/Convection Splitting [Doisneau et al., 2014, JPP]

Operator splitting [Strang, 1968, Descombes and Massot, 2004]
- to allow optimal time steps (reaction-diffusion-convection systems [Duarte, 2011])
- to capture strong gas-liquid coupling

Time stepping of a *splitting* method:

\[
U(t + \Delta t_a) = R \mathcal{T}_g R \left(\sum_k \mathcal{T}_k \right) C U(t)
\]

Capturing dissipation of acoustics

\[
\Delta t_a = \max\{K_p \tau_{\min}; K_g \tau_g\} \quad K_p, K_g \lesssim 1
\]
Overall strategy for low inertia droplets

Two-way coupling

\[f(S) \]

Gas sources

\[S_{k-1} \quad S_k \]

MF needs
- Two-way coupling: time integration
- Polydispersity: reconstruction
- Sources: quadratures and integration

Navier-Stokes

\[
\begin{align*}
N_{\text{sec}} & \quad \text{systems} \\
\partial_t m_k + \partial_x (m_k u_k) &= 0 \\
\partial_t (m_k u_k) + \partial_x (m_k u_k \otimes u_k) &= m_k F_k \\
\partial_t (m_k h_k) + \partial_x (m_k h_k u_k) &= m_k H_k
\end{align*}
\]
Overall strategy for low inertia droplets

\[f(S) \]

\[\begin{align*}
N_{\text{sec}} \text{ systems} &= \\
\partial_t m_k + \partial_x (m_k u_k) &= 0 \\
\partial_t (m_k u_k) + \partial_x (m_k u_k \otimes u_k) &= m_k F_k \\
\partial_t (m_k h_k) + \partial_x (m_k h_k u_k) &= m_k H_k
\end{align*} \]

\[\Rightarrow \] Navier-Stokes with sources

Improvements

1. **Acoustic-convection splitting** [Doisneau et al., 2014, JPP]
3. **Coalescence terms** [Doisneau et al., 2013b, JCP]
4. **Break-up terms** [Dufour et al., 2003][Doisneau, 2013a, PhD]
Two-way coupling

Overall strategy for low inertia droplets

\[f(S) \]

\[S_{k-1} \quad S_k \]

\[\begin{align*}
\partial_t n_k + \partial_x (n_k u_k) &= 0 \\
\partial_t m_k + \partial_x (m_k u_k) &= 0 \\
\partial_t (m_k u_k) + \partial_x (m_k u_k \otimes u_k) &= m_k F_k \\
\partial_t (m_k h_k) + \partial_x (m_k h_k u_k) &= m_k H_k
\end{align*} \]

MF needs
- Two-way coupling
- Polydispersity
- Sources

Improvements

1. **Acoustic-convection splitting** [Doisneau et al., 2014, JPP]
3. **Coalescence terms** [Doisneau et al., 2013b, JCP]
4. **Break-up terms** [Dufour et al., 2003][Doisneau, 2013a, PhD]
Overall strategy for low inertia droplets

\[
\begin{align*}
\frac{\partial n_k}{\partial t} + \frac{\partial}{\partial x}(n_k u_k) &= 2C^n_k \\
\frac{\partial m_k}{\partial t} + \frac{\partial}{\partial x}(m_k u_k) &= 2C^m_k \\
\frac{\partial}{\partial t}(m_k u_k) + \frac{\partial}{\partial x}(m_k u_k \otimes u_k) &= m_k F_k + 2C^u_k \\
\frac{\partial}{\partial t}(m_k h_k) + \frac{\partial}{\partial x}(m_k h_k u_k) &= m_k H_k + 2C^h_k
\end{align*}
\]

MF needs
- Two-way coupling
- Polydispersity
- Sources

Navier-Stokes with sources

Improvements
1. **Acoustic-convection splitting** [Doisneau et al., 2014, JPP]
3. **Coalescence terms** [Doisneau et al., 2013b, JCP]
4. **Break-up terms** [Dufour et al., 2003][Doisneau, 2013a, PhD]
Overall strategy for low inertia droplets

\[
\frac{\partial t}{\partial t} n_k + \nabla \cdot (n_k u_k) = 2C_n^k + 2B_n^k
\]
\[
\frac{\partial t}{\partial t} m_k + \nabla \cdot (m_k u_k) = 2C_m^k + 2B_m^k
\]
\[
\frac{\partial t}{\partial t} (m_k u_k) + \nabla \cdot (m_k u_k \otimes u_k) = m_k F_k + 2C_u^k + 2B_u^k
\]
\[
\frac{\partial t}{\partial t} (m_k h_k) + \nabla \cdot (m_k h_k u_k) = m_k H_k + 2C_h^k + 2B_h^k
\]

Navier-Stokes with sources

MF needs
- Two-way coupling
- Polydispersity
- Sources

Improvements

1. **Acoustic-convection splitting** [Doisneau et al., 2014, JPP]
3. **Coalescence terms** [Doisneau et al., 2013b, JCP]
4. **Break-up terms** [Dufour et al., 2003][Doisneau, 2013a, PhD]
Applicative computations (1)

P230 realistic case

Deformed-structured 45000 cell mesh of the P230 geometry and vorticity (rad/s)

- Bimodal injection with $d_2 \approx 60d_1$: **stiff**
- Vortex Shedding instabilities VSO and VSP: **unsteady**

Purpose

Feasibility of the **time integration/coalescence** strategy [Doisneau et al., 2013a, CRM]
Applicative computations (1)

No coalescence

$t = 1.09s$
Top: Eulerian volume fraction for d_1
Middle: Eulerian volume fraction for d_2
Bottom: Lagrangian parcels colored by diameter (m)

Coalescence

$t = 0.81s$
First: Eulerian volume fraction for d_1
Second: d_2 to d_3
Third: above d_3
Bottom: Lagrangian parcels colored by diameter (m)

Eulerian/Lagrangian comparison

- both depend on particle distribution at boundary
- limited homo-PTC
- good agreement
Applicative computations (2)

Simulation of LRE subcritical flames

Model cryogenic spray, flame, and chamber under free regime (Y_{H_2}, pressure, temperature, velocity)

Heat release rate of the VHAM test bed in the centerplane (Lox spray with MRE chemistry model)
Overview

1. SRM two-phase flows
 - Two-phase flow applications
 - Two-way coupling
 - Polydispersity
 - Emerging issues

2. Disperse two-phase modeling
 - Kinetic modeling
 - Eulerian Multi-Fluid method
 - Numerical highlight

3. Low inertia droplets
 - Results for low inertia droplets
 - Description of size
 - Coalescence
 - Two-way coupling
 - Applicative computations

4. Moderate inertia droplets
 - Results for moderate inertia droplets
 - The Anisotropic Gaussian Model
 - AG Transport
 - Homo-coalescence
Results for moderate inertia droplets
Homo-PTC in SRM

[Simoès, 2006] for one-way coupling

Homo-collisions

QMOM [Belt and Simonin, 2009] : adapt for industry

Predicting nozzle flow

Inertial moderately dense nozzle flow with coalescence/break-up
The Anisotropic Gaussian Model

Need for a moderately dense/inertial model

- **Homo-PTC in SRM**
 - [Simoes, 2006] for one-way coupling

- **Homo-collisions**
 - QMOM [Belt and Simonin, 2009] : adapt for industry

Predicting nozzle flow
- Inertial moderately dense nozzle flow with coalescence/break-up
Anisotropic Gaussian model

Velocity moment method for the kinetic level

- conserve information on relative velocities: Ten second order moments
- ...transported by third order ones: unclosed
- gaussian closure

The Anisotropic Gaussian Model
The Anisotropic Gaussian Model

Anisotropic Gaussian model

Velocity moment method for the kinetic level

- conserve information on relative velocities: Ten second order moments
- transported by third order ones
- gaussian closure

Multivariate gaussian [Vié et al., 2013a, CICP]

\[N(c; u, \Sigma) = \frac{\det(\Sigma)^{-\frac{1}{2}}}{(2\pi)^{\frac{1}{2}}N_d} \exp\left(-\frac{1}{2}(c - u)^T \Sigma^{-1} (c - u)\right) \]

- origin: weakly collisional gases [Levermore and Morokoff, 1998]
- Ten parameters \(n, u, \Sigma = (\sigma_{ij}) \)
- closed

Velocity PDF for \(\sigma_{11} = 1, \sigma_{22} = 0.8 \) and \(\sigma_{12} = 0.75 \).
Anisotropic Gaussian model

Velocity moment method for the kinetic level

- conserve information on relative velocities: **Ten second order moments**
- ...transported by third order ones
- *gaussian* closure

Multivariate gaussian [Vié et al., 2013a, CICP]

\[
N(c; u, \Sigma) = \frac{\text{det}(\Sigma)^{-\frac{1}{2}}}{(2\pi)^{\frac{1}{2}} N_d} \exp\left(-\frac{1}{2} (c - u)^T \Sigma^{-1} (c - u)\right)
\]

- origin: weakly collisional gases [Levermore and Morokoff, 1998]
- **Ten** parameters \(n, u, \Sigma = (\sigma_{ij}) \)
- **closed**

Mathematical properties

- hyperbolic equations and entropic structure
- still hypercompressible
- but less singularities
Model behavior analysis

Homo-PTC case: $\text{Kn} = +\infty$, $\text{St} = +\infty$

Monokinetic: singularity Anisotropic Gaussian Multi-velocities: “exact”

Potential of AG: variance of repartition after the crossing
The Anisotropic Gaussian Model

Model behavior analysis

Homo-PTC case: $Kn = +\infty$, $St = +\infty$

Potential of AG: variance of repartition after the crossing

Monokinetic: singularity Anisotropic Gaussian Multi-velocities: “exact”

Remarks on isotropy

Isotropic Gaussian
- fails on variance
- spurious “backscattering”
The Anisotropic Gaussian Model

Model behavior analysis

Homo-PTC case: $Kn = +\infty$, $St = +\infty$

Potential of AG: variance of repartition after the crossing

Monokinetic: singularity Anisotropic Gaussian Multi-velocities: “exact”

Remarks on isotropy

Isotropic Gaussian

- fails on variance
- spurious “backscattering”

Second order moments: “Energies”

- macroscopic energy $u_i u_j$: mean velocities
- ”microscopic” energy σ_{ij}: agitation

$$\partial_t (n\sigma_{ij}) + \partial_x \cdot (n\sigma_{ij} \mathbf{u}) = -\frac{1}{3} n\sigma_{ij} \partial_x \sigma^{Sym} \cdot \mathbf{u} - \frac{n\sigma_{ij}}{\tau} \mathbf{u}$$
Transport scheme

AG hypercompressibility

- 1st order scheme [Berthon, 2006] insufficient
- multi-dimension: anisotropy issue

A new 2nd order MUSCL scheme [Vié et al., 2013a, CICP]

- linear reconstruction and minmod type limiter
- FV conservative
- realizable (positivity of n, σ_{ij} and $\det(\Sigma)$)
- HLL fluxes [Harten et al., 1983]

\Rightarrow 3D structured grids

AG2D (Research 2D code developed at EM2C)

- Structured code
- 2nd order schemes
- dimensional splitting: adapted to anisotropy

Tested configurations

- unique crossing
- crossing with a potential force
- Taylor-Green vortices
- time-dependent HIT
Transport scheme

AG hypercompressibility
- 1st order scheme [Berthon, 2006] insufficient
- multi-dimension: anisotropy issue

A new 2nd order MUSCL scheme [Vié et al., 2013a, CICP]
- linear reconstruction and minmod type limiter
- FV conservative
- realizable (positivity of n, σ_{ii} and $\det(\Sigma)$)
- HLL fluxes [Harten et al., 1983]
 \Rightarrow 3D structured grids

AG2D (Research 2D code developed at EM2C)
- Structured code
- 2nd order schemes
- dimensional splitting: adapted to anisotropy

Tested configurations
- unique crossing
- crossing with a potential force
- Taylor-Green vortices
- time-dependent HIT
Results on transport

HIT test case [Vié et al., 2013a, CICP]

- Turbulent field ($\nabla \mathbf{u} = 0$)
- full spectrum of time/space structures
- decaying: sweeps different Stokes

Number density fields ($St = 7.5St_c$, $t = 3.6$ s)

- Lagrangian tracking
- Eulerian isotropic (IG)
- Eulerian anisotropic (AG)
Results on transport

HIT test case [Vié et al., 2013a, CICP]

- Turbulent field ($\nabla u = 0$)
- full spectrum of time/space structures
- decaying: sweeps different Stokes

Number density fields ($St = 7.5St_c$, $t = 3.6$ s)

- Lagrangian tracking
- Eulerian isotropic (IG)
- Eulerian anisotropic (AG)

Space repartition

- satisfactory (vacuum, spatial structures)
- visible differences on small scales
Results on transport (cont’d)

Second order statistics (St = 7.5St_c)

- Segregation
- Mean macroscopic energy
- Mean total energy

- AG behaves well: captures segregation and enranges
- Mesh refinement is beneficial

Lagrangian (—–)
Eulerian IG (– –)
Anisotropic AG (- -)
→ mesh refinement (from \(256^2\) to \(2048^2\))
AG Transport

Results on transport (cont’d)

Second order statistics (St = 7.5St_c)

- Segregation
- Mean macroscopic energy
- Mean total energy

- **AG behaves well**: captures segregation and enranges
- **mesh refinement is beneficial**

Conclusion on transport

- **AG closure**: sensitive on statistics
- **needed for the physics of sources** (drag, two-way, reactive, radiative)
- **2nd order scheme needed**
Coalescence method with AG

SAP2 (Research 2D code developed at EM2C)

- polydispersity: **TSM method**
- **AG** and 2nd order transport
- Hermite **velocity quadratures** qualified

Coalescence velocity integrals

\[
\int |c^* - c^\circ| N^* N^\circ dc^* dc^\circ
\]

up to 6D!

\[\Rightarrow\] mass, mean and agitation sources
Coalescence method with AG

SAP2 (Research 2D code developed at EM2C)

- polydispersity: **TSM method**
- **AG** and 2nd order transport
- Hermite **velocity quadratures** qualified

Coalescence velocity integrals

\[
\int |c^* - c^\circ| N^* N^\circ dc^* dc^* \\
\text{up to 6D!}
\Rightarrow \text{mass, mean and agitation sources}
\]

Homo-PTC with drag (Kn \sim 1, St \sim St_c) [Doisneau et al., 2014, CTR-COAL]

Homo-coalescence dynamics

- expected polydispersity
- angle reduction observed
Reference validation

Lagrangian DPS cross comparison [Doisneau et al., 2014, CTR-COAL]

Asphodele code [Reveillon and Demoulin, 2007]
- point-particle DNS
- deterministic collisions
- describes more detailed physics

Instantaneous particles colored by size

Inst. Eulerian r_{30}

Time average DPS r_{30}
Homo-coalescence

Reference validation

Lagrangian DPS cross comparison [Doisneau et al., 2014, CTR-COAL]

Asphodele code [Reveillon and Demoulin, 2007]
- point-particle DNS
- deterministic collisions
- describes more detailed physics

Instantaneous particles colored by size

Conclusion on homo-coalescence
- size growth predicted
- jet width estimated
Conclusion on the AG model

Anisotropic Gaussian
- homo-PTC
- homo-coalescence

Minimal model for SRM nozzle flow

Other studies
- shear-mixing layer [Vié et al., 2012]
- unstructured grids [Sabat et al., 2013]
Conclusion on the AG model

Anisotropic Gaussian

- homo-PTC
- homo-coalescence

Minimal model for SRM nozzle flow

Other studies

- shear-mixing layer [Vié et al., 2012]
- unstructured grids [Sabat et al., 2013]

SRM prospects

- study of two-way coupling
- hybridation to monokinetic approach
Summary of the modeling strategy

A comprehensive **modeling** and **numerical strategy**

has been developed and validated for the unsteady simulation of **moderately dense** and **polydisperse** two-phase flows.
References I

Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables.
Dover, New York, ninth dover printing, tenth gpo printing edition.

Synthèse de nanoparticules d'aluminium et enrobage par des polymères pour des applications énergétiques.
PhD thesis, Université Paris Diderot.

Coalescence and separation in binary collisions of liquid droplets.

Numerical collision efficiencies for small raindrops colliding with micron size particles.

Quadrature method of moments for the pdf modeling of droplet coalescence in turbulent two-phase flow.
In ASME Conference Proceedings, pages 783–793.

Numerical approximations of the 10-moment Gaussian closure.
References II

Études expérimentales et modélisation de la combustion des nuages de particules micrométriques et nanométriques d'aluminium.
PhD thesis, Université d'Orléans.

The interaction falling water drops : coalescence.
Proceedings of the Royal Society, 326 :393–408.

The mathematical theory of non-uniform gases.
Cambridge University Pr.

Space discretization methods.
Aerospace Lab, 2 :1–14.

Polydisperse evaporating spray turbulent dispersion : Eulerian model and numerical simulation.

Microstructure effects in aluminized solid rocket propellants.
, 26(4) :724–733.
Operator splitting for nonlinear reaction-diffusion systems with an entropic structure: singular perturbation and order reduction.

Etude expérimentale et numérique pour la validation d’un modèle de coalescence.
Technical Report RF 1/05166 DMAE, ONERA.

Eulerian modeling and simulation of polydisperse moderately dense coalescing spray flows with nanometric-to-inertial droplets: application to Solid Rocket Motors.

Doisneau, F., Dupays, J., Laurent, F., and Massot, M.
Derivation of a fluid-kinetic description from kinetic theory for a nanometric two-phase mixture.
In preparation.

Doisneau, F., Dupays, J., Laurent, F., and Massot, M.
A unified model for nano-micro polydisperse sprays with coalescence.
In preparation for Physics of Fluids.
Eulerian VS Lagrangian simulation of unsteady two-way coupled coalescing two-phase flows in solid propellant combustion.
, 341 :44–54.
Special issue “Combustion, spray and flow dynamics for aerospace propulsion”.

Two-way coupled simulation of acoustic waves in polydispersed coalescing two-phase flows : application to Solid Rocket Motor instabilities.
In 4th EUCASS.

Eulerian Multi-Fluid models for the simulation of dynamics and coalescence of particles in solid propellant combustion.
, 234 :230–262.

Numerical strategy for unsteady two-way coupled polydisperse sprays : Application to solid-rocket instabilities.
, 30(3) :727–747.

Méthodes numériques adaptatives pour la simulation de la dynamique de fronts de réaction multi-échelles en temps et en espace.
References V

Modélisation Multi-Fluide eulérienne pour les écoulements diphasiques à inclusions dispersées.
PhD thesis, Université Paul Sabatier Toulouse III.

Étude d’un modèle de fragmentation secondaire pour les brouillards de gouttelettes.

A two-equation turbulence model for two-phase flows.

Multi-physics coupling approaches for aerospace numerical simulations.
Aerospace Lab, 2 :1–16.
Available at www.aerospacelab-journal.org/al2.

Direct Numerical Simulation of polydisperse evaporating sprays in 3D jet configuration using Euler-Euler and Euler-Lagrange formalisms.
In , pages 345–354, Center for Turbulence Research, Stanford University.
Smoke, Dust and Haze, Fundamentals of Aerosol Dynamics.
Oxford University Press.

Mechanics of Aerosols.
Pergamon, New York.

Orthogonal polynomials : applications and computation.
Acta numerica, 5 :45–119.

Aluminum nanopowders produced by electrical explosion of wires and passivated by non-inert coatings : Characterisation and reactivity with air and water.
Powder technology, 164(2) :111–115.

Efficient implementation of high order reconstruction in finite volume methods.
Finite Volumes for Complex Applications VI Problems & Perspectives, pages 553–560.

On upstream differencing and Godunov-type schemes for hyperbolic conservation laws.
SIAM Review, 25(1) :35–61.
Drop properties after secondary breakup.

Eulerian quadrature-based moment models for dilute polydisperse evaporating sprays.

A high order moment method with mesh movement for the description of a polydisperse evaporating spray.
available online at http://hal.archives-ouvertes.fr/hal-00498214/en/.

The production of rain by a chain reaction in cumulous clouds at temperatures above freezing.
J. Meteor., 5 :17–192.

Numerical analysis of Eulerian Multi-Fluid models in the context of kinetic formulations for dilute evaporating sprays.

Linear reconstruction for two-size moment Eulerian Multi-Fluid method.
Multi-fluid modeling of laminar poly-dispersed spray flames: origin, assumptions and comparison of the sectional and sampling methods.

Linear reconstruction for two-size moment Eulerian Multi-Fluid method.
In preparation for Mathematical Models and Methods in Applied Sciences.

Numerical methods on unstructured meshes for the simulation of sprays within liquid rocket engines.
In 20th ECCOMAS conference, Vienna, Austria.

The Gaussian moment closure for gas dynamics.

Simulation aux grandes échelles de l'injection de carburant liquide dans les moteurs à combustion interne.

Numerical modeling of dispersed two-phase flows.

On the development of high order realizable schemes for the Eulerian simulation of disperse phase flows on unstructured grids: a convex-state preserving Discontinuous Galerkin method.

Modélisation eulérienne de la phase dispersée dans les moteurs à propergol solide, avec prise en compte de la pression particulaire.

Simultaneous formaldehyde PLIF and high-speed Schlieren imaging for ignition visualization in high-pressure spray flames.

Drei Vorträge über Diffusion, Brownsche Bewegung und Koagulation von Kolloidteilchen.

On the construction and comparison of difference schemes.

Accounting for polydispersion in the Eulerian Large Eddy Simulation of the two-phase flow in an aeronautical-type burner.
References XI

Size-velocity correlations in hybrid high order moment/multi-fluid methods for polydisperse evaporating sprays: Modeling and numerical issues.

On the direct numerical simulation of moderate-Stokes-number turbulent particulate flows using algebraic-closure-based and kinetic-based moment methods.

A rationally-based correlation of mean fragment size for drop secondary breakup.

Spray combustion and atomization.
, 1 :541–545.
Extra slides

5 Numerical methods
- Disperse two-phase flow numerical strategies
- Presentation of an industrial code

6 Models for flows with nanometric droplets
- Nanometric droplets
- Modeling issues
- Unifying the approach for all sizes
- Nano-micro computations

7 Break-up source terms
- Break-up source terms
Extra slides

5. Numerical methods
- Disperse two-phase flow numerical strategies
- Presentation of an industrial code

6. Models for flows with nanometric droplets
- Nanometric droplets
- Modeling issues
- Unifying the approach for all sizes
- Nano-micro computations

7. Break-up source terms
- Break-up source terms
Time integration

Physical constraints
- many fluids: no resolution at once
- strong coupling
- stiffness due to polydispersity

Industrial constraints
- efficiency
- legacy and liability
- flexibility

Splitting methods [Strang, 1968, Descombes and Massot, 2004]
- Many possibilities!
Time integration

Physical constraints
- many fluids: **no resolution at once**
- strong coupling
- stiffness due to polydispersity

Industrial constraints
- efficiency
- legacy and liability
- flexibility

Liability of a multi-solver approach: CEDRE [Errera et al., 2011]
- time integration per phase
- with conservative coupling strategy
- △ high loadings C or time steps Δt

Splitting methods [Strang, 1968, Descombes and Massot, 2004]
- Many possibilities!
Time integration

Physical constraints
- many fluids: no resolution at once
- strong coupling
- stiffness due to polydispersity

Industrial constraints
- efficiency
- legacy and liability
- flexibility

Liability of a multi-solver approach: CEDRE [Errera et al., 2011]
- time integration per phase
- with conservative coupling strategy

△ high loadings C or time steps Δt

Splitting methods [Strang, 1968, Descombes and Massot, 2004]
- Many possibilities!

Splitting focal issues
- two-way coupling
- stiffness
Transport in physical space

Hypercompressibility (gradients, singularities and vacuum)

- **accuracy issues** (structures participate to the physics)
- **stability issues** (high order near discontinuities, undershoots)
Transport in physical space

Hypercompressibility (gradients, singularities and vacuum)

- **accuracy issues** (structures participate to the physics)
- **stability issues** (high order near discontinuities, undershoots)

Structured grids (research codes)

Kinetic schemes
- pressureless: 2nd order Bouchut/dimensional splitting

 [de Chaisemartin, 2009]
- weak pressure: open topic

Unstructured grids (industrial codes)

- Finite volume 2nd order MUSCL strategy:

 dedicated implementation [Le Touze et al., 2012]
- Cell-vertex with high order scheme/artificial viscosity:

 dedicated stabilization method [Martinez, 2009]
Transport in physical space

Hypercompressibility (gradients, singularities and vacuum)
- **Accuracy issues** (structures participate to the physics)
- **Stability issues** (high order near discontinuities, undershoots)

Need for dedicated methods
- An open topic
- In progress

Structured grids (research codes)
- Kinetic schemes
 - Pressureless: 2nd order Bouchut/dimensional splitting
 - [de Chaisemartin, 2009]
 - Weak pressure: open topic

Unstructured grids (industrial codes)
- Finite volume 2nd order MUSCL strategy:
 - Dedicated implementation [Le Touze et al., 2012]
- Cell-vertex with high order scheme/artificial viscosity:
 - Dedicated stabilization method [Martinez, 2009]
Phase space evolution

Phase space constraints
- accuracy/stability (stiffness)
- realizability

Industrial constraints
- robust
- flexible

Moment method phase space dynamics

Sources: integrals with many dependencies
1. reconstruction from the moments
2. phase space integration
3. computation of the sources
4. time integration of the system

\[
\frac{dU}{dt} = \Omega \left(\int \Phi \cdot fU \right)
\]

Quadratures [Abramowitz and Stegun, 1964, Gautschi, 1996]
- Many possibilities!
Phase space evolution

Phase space constraints
- accuracy/stability (stiffness)
- realizability

Industrial constraints
- robust
- flexible

Moment method phase space dynamics

Sources: **integrals** with many **dependencies**

1. reconstruction from the moments
2. phase space integration
3. computation of the sources
4. time integration of the system

\[\frac{d\tilde{f}_U}{dt} = \Omega \left(\int \Phi \cdot f_U \right) \]

Quadratures [Abramowitz and Stegun, 1964, Gautschi, 1996]
- Many possibilities!

F. Doisneau
NASA ARC, Mountain View 2015
Phase space constraints
- accuracy/stability (stiffness)
- realizability

Industrial constraints
- robust
- flexible

Moment method phase space dynamics

Sources: **integrals** with many **dependencies**
1. reconstruction from the moments
2. phase space integration
3. computation of the sources
4. time integration of the system

\[
\frac{d\bar{U}}{dt} = \Omega \left(\int \Phi \cdot f_U \right)
\]

Quadratures [Abramowitz and Stegun, 1964, Gautschi, 1996]
- Many possibilities!
Phase space evolution

Phase space constraints
- accuracy/stability (stiffness)
- realizability

Industrial constraints
- robust
- flexible

Moment method phase space dynamics

Sources: **integrals** with many dependencies
1. reconstruction from the moments
2. phase space integration
3. computation of the sources
4. time integration of the system

\[
\frac{d\tilde{\Phi}}{dt} = \Omega \left(\int \Phi \cdot f_U \right)
\]

Quadratures [Abramowitz and Stegun, 1964, Gautschi, 1996]
- Many possibilities!
Phase space evolution

Phase space constraints
- accuracy/stability (stiffness)
- realizability

Industrial constraints
- robust
- flexible

Moment method phase space dynamics

Sources: integrals with many dependencies
1. reconstruction from the moments
2. phase space integration
3. computation of the sources
4. time integration of the system

\[
\frac{d\tilde{\mathbf{U}}}{dt} = \tilde{\Omega} \left(\int \Phi \cdot \tilde{\mathbf{U}} \right)
\]

Quadratures [Abramowitz and Stegun, 1964, Gautschi, 1996]
- Many possibilities!
Phase space evolution

Phase space constraints
- accuracy/stability (stiffness)
- realizability

Industrial constraints
- robust
- flexible

Moment method phase space dynamics

Sources: integrals with many dependencies
1. reconstruction from the moments
2. phase space integration
3. computation of the sources
4. time integration of the system

Quadratures [Abramowitz and Stegun, 1964, Gautschi, 1996]
- Many possibilities!

Source focal issues
- reconstruction/quadratures
- time integration
The CEDRE code (ONERA)

Industrial-oriented code [Courbet et al., 2011]
- 3D unstructured (generic cells)
- Multi-physics (two-phase, radiative, wall conduction, soot)
- Solver coupling: exchange terms [Errera et al., 2011]

CHARME [Refloch et al., 2011]
- Navier-Stokes
- Compressible
- Reactive
- 2nd order MUSCL
- Upcoming 4th order [Haider et al., 2011]

SPARTE [Murrone and Villedieu, 2011]
- Statistical Lagrangian

SPIREE [Murrone and Villedieu, 2011]
- Eulerian size sampling
- Eulerian two size moment MF
- No coalescence
- 2nd order MUSCL [Le Touze et al., 2012]
Presentation of an industrial code

The CEDRE code (ONERA)

Industrial-oriented code [Courbet et al., 2011]
- 3D unstructured (generic cells)
- Multi-physics (two-phase, radiative, wall conduction, soot)
- **Solver coupling** : exchange terms [Errera et al., 2011]

CHARME [Refloch et al., 2011]
- Navier-Stokes
- Compressible
- Reactive
- 2nd order MUSCL
- upcoming 4th order [Haider et al., 2011]

SPARTE [Murrone and Villedieu, 2011]
- Statistical Lagrangian

SPIREE [Murrone and Villedieu, 2011]
- Eulerian size sampling
- Eulerian **two size moment MF**
- **no coalescence**
- 2nd order MUSCL [Le Touze et al., 2012]

⇒ Present work feasibility of the developed strategies cross-comparisons with Lagrangian applicative computations
Presentation of an industrial code

The CEDRE code (ONERA)

Industrial-oriented code [Courbet et al., 2011]
- 3D unstructured (generic cells)
- Multi-physics (two-phase, radiative, wall conduction, soot)
- **Solver coupling**: exchange terms [Errera et al., 2011]

CHARME [Refloch et al., 2011]
- Navier-Stokes
- Compressible
- Reactive
- 2nd order MUSCL
- upcoming 4th order [Haider et al., 2011]

SPARTE [Murrone and Villedieu, 2011]
- Statistical Lagrangian

SPIREE [Murrone and Villedieu, 2011]
- Eulerian size sampling
- Eulerian **two size moment MF**
- no coalescence
- 2nd order MUSCL [Le Touze et al., 2012]

Present work
- **feasibility** of the developed strategies
- **cross-comparisons** with Lagrangian
- **applicative** computations
Extra slides

5. Numerical methods
 - Disperse two-phase flow numerical strategies
 - Presentation of an industrial code

6. Models for flows with nanometric droplets
 - Nanometric droplets
 - Modeling issues
 - Unifying the approach for all sizes
 - Nano-micro computations

7. Break-up source terms
 - Break-up source terms
Towards “Nanopropellants”

Aluminum nanoparticle synthesis

<table>
<thead>
<tr>
<th>Path</th>
<th>Average Size (nm)</th>
<th>Surface state</th>
<th>Quantities</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wire explosion</td>
<td>150 nm</td>
<td>uncoated</td>
<td>100 g/h/machine</td>
<td>[Gromov et al., 2006]</td>
</tr>
<tr>
<td>Precipitation</td>
<td>40 nm</td>
<td>coated</td>
<td>0.5 g/bath</td>
<td>[Aït Atmane, 2012]</td>
</tr>
<tr>
<td>Plasma condensation</td>
<td>40 to 200 nm</td>
<td>coated or uncoated</td>
<td></td>
<td>[DeLuca et al., 2010]</td>
</tr>
<tr>
<td>Pneumatic milling</td>
<td>2500 nm</td>
<td>uncoated</td>
<td></td>
<td>[DeLuca et al., 2010]</td>
</tr>
</tbody>
</table>

Nano-fuel properties

- ⊕ combustion rate
- ⊖ oxide layer
- ❓ residual size

[Reference: [Bocanegra, 2007]]
Towards “Nanopropellants”

Aluminum nanoparticle synthesis

<table>
<thead>
<tr>
<th>Path</th>
<th>Average Size (nm)</th>
<th>Surface state</th>
<th>Quantities</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wire explosion</td>
<td>150 nm</td>
<td>uncoated</td>
<td>100 g/h/machine</td>
<td>[Gromov et al., 2006]</td>
</tr>
<tr>
<td>Precipitation</td>
<td>40 nm</td>
<td>coated</td>
<td>0.5 g/bath</td>
<td>[Aït Atmane, 2012]</td>
</tr>
<tr>
<td>Plasma condensation</td>
<td>40 to 200 nm</td>
<td>coated or uncoated</td>
<td></td>
<td>[DeLuca et al., 2010]</td>
</tr>
<tr>
<td>Pneumatic milling</td>
<td>2500 nm</td>
<td>uncoated</td>
<td></td>
<td>[DeLuca et al., 2010]</td>
</tr>
</tbody>
</table>

Nano-fuel properties

⊕ combustion rate
⊖ oxide layer
? residual size

Need for preliminary studies on nano-residual flows

- reduction of I_{sp} loss?
- reduction of slag?
- what impact on instabilities?
Nanometric droplets \(\text{St} \ll \text{St}_c \)

Ensemble transport

negligible inertia
Nanometric droplets

\[\text{St} \ll \text{St}_c \]

Ensemble transport

negligible inertia

Nanometric droplet modeling issues

- nanoparticle combustion, nanoresidual formation
- transport: diffusion, out-of-equilibrium forces (thermophoresis)
- Brownian coalescence
1) Kinetic model for dense nanoparticle flows

Doisneau, F., Dupays, J., Laurent, F., and Massot, M. Derivation of a fluid-kinetic description from kinetic theory for a nanometric two-phase mixture. *In preparation*

- fully kinetic model
- exhibits [links to the literature](#) models
- foundation of a [fully coupled](#) approach
- coupled [out-of-equilibrium transport](#)

Kinetic-Kinetic
Boltzmann and Williams-Boltzmann
(coexisting and coupled through collision terms)

Nano Fluid-Kinetic
Fluid and Williams-Boltzmann
(coexisting and coupled through sources)
1) Kinetic model for dense nanoparticle flows

Doisneau, F., Dupays, J., Laurent, F., and Massot, M. Derivation of a fluid-kinetic description from kinetic theory for a nanometric two-phase mixture. *In preparation*

- fully kinetic model
- exhibits links to the literature models
- foundation of a fully coupled approach
- coupled out-of-equilibrium transport

Kinetic-Kinetic

Boltzmann and Williams-Boltzmann (coexisting and coupled through collision terms)

Nano Fluid-Kinetic

Fluid and Williams-Boltzmann (coexisting and coupled through sources)

Achievements: model unification

- of transport
- of coalescence
2) Nano-micro mixture modeling

Doisneau, F., Dupays, J., Laurent, F., and Massot, M. *A unified model for nano-micro polydisperse sprays with coalescence.* *In preparation for Physics of Fluids*

- nano-micro model derived from a kinetic base
- **coalescence kernels** for Brownian-inertial transition
- **implementation** in CEDRE
- feasibility computations
2) Nano-micro mixture modeling

Doisneau, F., Dupays, J., Laurent, F., and Massot, M. *A unified model for nano-micro polydisperse sprays with coalescence*. In preparation for *Physics of Fluids*

- Nano-micro model derived from a kinetic base
- Coalescence kernels for Brownian-inertial transition
- Implementation in CEDRE
- Feasibility computations

Achievements: application

- Achieves size-size coupling
- Insight on nano-micro physics
Suspensions of nanometric particles

Physical peculiarities below a micrometer

- **negligible inertia**
- **transport** properties?
- origin of **coalescence**?
Suspensions of nanometric particles

Physical peculiarities below a micrometer

- negligible inertia
- transport properties?
- origin of coalescence?

- transport properties of diffusion and thermophoresis
- coalescence rates

but

- in a one-way coupling frame
- for limited size intervals
Suspensions of nanometric particles

Physical peculiarities below a micrometer

- negligible inertia
- transport properties?
- origin of coalescence?

- transport properties of diffusion and thermophoresis
- coalescence rates

but

- in a one-way coupling frame
- for limited size intervals

Free-Flight transition Diffusive transition Inertial

\[d_0 \quad d_N \quad d_p \]
A comprehensive approach

Fully kinetic model

- **Kinetic-Kinetic**
 - Boltzmann and Williams-Boltzmann
 (coexisting and coupled through collision terms)

- **Nano Fluid-Kinetic**
 - Fluid and Williams-Boltzmann
 (coexisting and coupled through sources)

- Two kinetic equations **coupled by collisions**

- **Scale separation** \(\varepsilon = \sqrt{\frac{m_0^g}{m_0^p}} \)

- Chapman-Enskog expansion
 [Chapman and Cowling, 1939]

- \(\Rightarrow \) **Fluid-Kinetic frame**
A comprehensive approach

Fully kinetic model

- **Kinetic-Kinetic**
 - Boltzmann and Williams-Boltzmann
 - (coexisting and coupled through collision terms)

- **Nano Fluid-Kinetic**
 - Fluid and Williams-Boltzmann
 - (coexisting and coupled through sources)

- **two kinetic equations coupled by collisions**

- **scale separation** $\varepsilon = \sqrt{\frac{m_0 g}{m_0 p}}$

- Chapman-Enskog expansion
 - [Chapman and Cowling, 1939]

 \Rightarrow **Fluid-Kinetic frame**

Achievements

- **Fokker-Planck**-like terms
- Out-of-equilibrium **transport** term
- **Two-way coupling**

Limits

- cross-section **modeling**
- **resolution** for industrial deployment
- **analysis** for reduced models
One-way coupling approaches

[Smoluchowski, 1916]'s equation

\[
\partial_t n + \partial_x \cdot (n u_g) = \partial_x \cdot D \partial_x n + C(n, n)
\]

Frame: macroscopic

Fokker-Planck equation [Pottier, 2007]

\[
\partial_t f + c \cdot \partial_x f + \partial_c \left(\frac{u_g - c}{\tau u(S)} f \right) = \partial_c \cdot (D \partial_c f)
\]

Frame: kinetic

Collision kernel (integrated)

- semi-empirical approach [Fuchs, 1964]
- incompatible with slip velocity

NA
One-way coupling approaches

Smoluchowski, 1916’s equation
\[
\partial_t n + \partial_x \cdot (n u_g) = \partial_x \cdot D \partial_x n + C(n, n)
\]
Frame: macroscopic

Fokker-Planck equation [Pottier, 2007]
\[
\partial_t f + c \cdot \partial_x f + \partial_c \left(\frac{u_g - c}{\tau u(S)} f \right) = \partial_c \cdot (D \partial_c f)
\]
Frame: kinetic

Brownian diffusion
\[
D = \frac{3kT_g}{2m_p}
\]

Collision kernel (integrated)
- semi-empirical approach [Fuchs, 1964]
- incompatible with slip velocity

Modeling issues

Numerical methods

Models for flows with nanometric droplets

Break-up source terms

F. Doisneau

NASA ARC, Mountain View 2015
Identifying the scales

Characteristic lengths

- \(d_{pp} = dp \sqrt{\frac{\rho l_\frac{4}{3} \pi}{\rho g C}} \)
- \(a_{drift} \) (inertia or diffusion)

A scale separation for nano-collisions

Nanoparticle collisions after a significant drift

\[a_{drift} \ll d_{pp} \]
Numerical methods

Models for flows with nanometric droplets

Break-up source terms

Unifying the approach for all sizes

Identifying the scales

Characteristic lengths

- \(d_{pp} = d_p \sqrt{\frac{\rho \frac{4}{3} \pi}{\rho g C}} \)
- \(a_{drift} \) (inertia or diffusion)

A scale separation for nano-collisions

Nanoparticle collisions after a significant drift

\[a_{drift} \ll d_{pp} \]

Particle-particle correlations

Two-point pdf \(f^{(2)} \) to describe collisions

\[
\mathcal{C} = \frac{1}{2} \int_{x^*, c^*} \int_{v^*} f^{(2)}(t, x, c^*, v^*, x^*, c^*, v^*) |c^* - c^*| \beta(v^*, v^*) J dv^* dx^* dc^* \\
+ \int_{x^*, c^*} \int_{v^*} f^{(2)}(t, x, c, v, x^*, c^*, v^*) |c - c^*| \beta(v, v^*) dv^* dx^* dc^*
\]

Evolution of \(f^{(2)} \)

- diffusion equation [Batchelor, 1982]
- neglected three-point correlations
Nano-micro coalescence kernels

Nano-micro particle correlations

Need to solve a convection-diffusion equation ... that of $f^{(2)}$!
Nano-micro coalescence kernels

Nano-micro particle correlations

Need to solve a convection-diffusion equation

... that of $f^{(2)}$!

Diffusive kernel [Fuchs, 1964]

$$K_{\text{coal}}^\text{bro} (r^*, r^\circ) = \frac{2kTg}{3\mu g} \left(\frac{1}{r^*} + \frac{1}{r^\circ} \right) \left(r^* + r^\circ \right)$$

no slip
Nano-micro coalescence kernels

Nano-micro particle correlations

Need to solve a convection-diffusion equation ... that of $f^{(2)}$!

Diffusive kernel [Fuchs, 1964]

$$K_{\text{coal}}^{\text{bro}}(\mathbf{r}^*, \mathbf{r}^\circ) = \frac{2kTg}{3\mu g} \left(\frac{1}{r^*} + \frac{1}{r^\circ} \right) \left(r^* + r^\circ \right)$$

no slip

Additive Kernel

$$K_{\text{coal}}^{\text{bro+bal}} = K_{\text{coal}}^{\text{bro}} + K_{\text{coal}}^{\text{bal}}$$

no correlation
Unifying the approach for all sizes

Nano-micro coalescence kernels

Nano-micro particle correlations

Need to solve a convection-diffusion equation ... that of \(f^{(2)} \)

Diffusive kernel [Fuchs, 1964]

\[
\mathcal{K}_{\text{coal}}^{\text{bro}}(r^*, r^\diamond) = \frac{2kTg}{3\mu g} \left(\frac{1}{r^*} + \frac{1}{r^\diamond} \right) (r^* + r^\diamond)
\]

- no slip

Additive Kernel

\[
\mathcal{K}_{\text{coal}}^{\text{bro+bal}} = \mathcal{K}_{\text{coal}}^{\text{bro}} + \mathcal{K}_{\text{coal}}^{\text{bal}}
\]

- no correlation

Kinetic Kernel

\[
\mathcal{K}_{\text{coal}}^{\text{K-B}} = \pi (r^* + r^\diamond)^2 \left[|u^* - u^\diamond| \text{ erf} \left(\frac{|u^* - u^\diamond|}{\sqrt{2(\sigma^* \sigma^\diamond)}} \right) + \frac{\sqrt{2(\sigma^* \sigma^\diamond)}}{\sqrt{\pi}} \text{ exp} \left(-\frac{|u^* - u^\diamond|^2}{2(\sigma^* \sigma^\diamond)} \right) \right]
\]

- FMR-balistic
Nano-micro coalescence kernels

Nano-micro particle correlations

Need to solve a convection-diffusion equation ... that of $f^{(2)}$!

Diffusive kernel [Fuchs, 1964]

$$
\mathcal{R}_{\text{coal}}^{\text{bro}}(r^*, r^\circ) = \frac{2kTg}{3\mu g} \left(\frac{1}{r^*} + \frac{1}{r^\circ} \right) (r^* + r^\circ)
$$

Additive Kernel

$$
\mathcal{R}_{\text{coal}}^{\text{bro+bal}} = \mathcal{R}_{\text{coal}}^{\text{bro}} + \mathcal{R}_{\text{coal}}^{\text{bal}}
$$

Kinetic Kernel

$$
\mathcal{R}_{\text{coal}}^{\text{K-B}} = \pi (r^* + r^\circ)^2 \left[|u^* - u^\circ| \operatorname{erf} \left(\frac{|u^* - u^\circ|}{\sqrt{2(\sigma^2 + \rho^2)}} \right) + \sqrt{\frac{2(\sigma^2 + \rho^2)}{\pi}} \exp \left(-\frac{|u^* - u^\circ|^2}{2(\sigma^2 + \rho^2)} \right) \right]
$$

FMR-ballistic

Hybrid Kernel: analogy with mass transfer convective correction

$$
\mathcal{R}_{\text{coal}}^{\text{D-B}} = 4\pi (D^* + D^\circ)(r^* + r^\circ) \left[1 + \frac{0.3\sqrt{2(r^* + r^\circ)|u^* - u^\circ|}}{\sqrt{g} \left(\frac{D^* + D^\circ}{3} \right)^{\frac{1}{3}}} \right]
$$

Diffusive-ballistic
Phenomenology of nano-micro mixtures

Decelerating nozzle test case with K-B_{coal}

- $z = 0.05\text{m}$
- $z = 0.07\text{m}$

Boxes: One size moment hybrid MF with 80 sections
Lines: Two size moment hybrid MF with 16 sections.

Mass density function (kg/m3/microns) vs. Radius (microns)

Section average velocity (m/s) vs. Radius (microns)
Phenomenology of nano-micro mixtures

Decelerating nozzle test case with $K\cdot B_{\text{coal}}$

<table>
<thead>
<tr>
<th>Radius (μm)</th>
<th>Mass density function (kg/m3/microns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.05</td>
</tr>
<tr>
<td>10</td>
<td>0.1</td>
</tr>
<tr>
<td>20</td>
<td>0.15</td>
</tr>
<tr>
<td>30</td>
<td>0.2</td>
</tr>
<tr>
<td>40</td>
<td>0.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Radius (μm)</th>
<th>Section average velocity (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.05</td>
</tr>
<tr>
<td>10</td>
<td>0.1</td>
</tr>
<tr>
<td>20</td>
<td>0.15</td>
</tr>
<tr>
<td>30</td>
<td>0.2</td>
</tr>
<tr>
<td>40</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Size-Size coupling
- Total

Size-velocity coupling
- For the larger ones only...
- but enhanced by nanoparticles!

Boxes: One size moment hybrid MF with 80 sections
Lines: Two size moment hybrid MF with 16 sections.

Footnote: NASA ARC, Mountain View 2015
The TEP test case

A small motor

- Additive kernel to test: $K_{\text{coal}}^{\text{bro}+\text{bal}}$
- Splitting for stiffness: $\tau_{\text{min}} \sim 10^{-8}$ s

Dispersed phase volume fractions per section
The TEP test case

A small motor

- Additive kernel to test: $K_{\text{coal}}^{\text{bro+bal}}$
- splitting for stiffness: $\tau_{\text{min}} \sim 10^{-8}$ s

Dispersed phase volume fractions per section

Achievements

- time/source strategy efficient for nano-micro flows
- physical insight on nano-micro mixtures
- guides definition of new experiments
Extra slides

5. Numerical methods
 - Disperse two-phase flow numerical strategies
 - Presentation of an industrial code

6. Models for flows with nanometric droplets
 - Nanometric droplets
 - Modeling issues
 - Unifying the approach for all sizes
 - Nano-micro computations

7. Break-up source terms
 - Break-up source terms
Break-up source terms

\[2B_{n+}^k = \sum_{i=k}^N Q_{ik}^n\]
\[2B_{m+}^k = \sum_{i=k}^N Q_{ik}^m\]
\[2B_{u+}^k = \sum_{i=1}^k Q_{ik}^{mu}\]

\[2B_{n-}^k = \sum_{i=1}^N L_{ik}^n\]
\[2B_{m-}^k = \sum_{i=1}^N Q_{ki}^m\]
\[2B_{u-}^k = u_k \cdot 2B_{m-}^k\]

No particular problem to integrate. Same algorithm than coalescence possible.
Break-up source terms

\[
\begin{align*}
2B^+_{nk} &= \sum_{i=k}^{N} Q^n_{ik} \\
2B^+_{mk} &= \sum_{i=k}^{N} Q^m_{ik} \\
2B^+_{mu} &= \sum_{i=1}^{k} Q^{mu}_{ik} \\
2B^-_{nk} &= \sum_{i=1}^{N} L^n_{ki} \\
2B^-_{mk} &= \sum_{i=1}^{N} Q^n_{ki} \\
2B^-_{mu} &= u_k \cdot 2B^-_{mk}
\end{align*}
\]

Break up modeling:
\(ν_{bu} \) depends on Weber number [Hsiang and Faeth, 1993]
\(n_{bu} \) [O’Rourke and Amsden, 1987, Dufour et al., 2003]
with Sauter radius from [Wert, 1995]
\(u_{bu} \) [Hsiang and Faeth, 1993]

No particular problem to integrate. Same algorithm than coalescence possible.
Break-up source terms

\[
\begin{align*}
2B_{n+}^k &= \sum_{i=k}^{N} Q_{ik}^n \\
2B_{m+}^k &= \sum_{i=k}^{N} Q_{ik}^m \\
2B_{u+}^k &= \sum_{i=1}^{k} Q_{ik}^{mu}
\end{align*}
\]

\[
\begin{align*}
2B_{n-}^k &= \sum_{i=1}^{N} L_{ik}^n \\
2B_{m-}^k &= \sum_{i=1}^{N} Q_{ki}^m \\
2B_{u-}^k &= u_k \cdot 2B_{m-}^k
\end{align*}
\]

Break up modeling:

- \(\nu_{bu} \) depends on Weber number [Hsiang and Faeth, 1993]
- \(n_{bu} \) [O’Rourke and Amsden, 1987, Dufour et al., 2003]
- with Sauter radius from [Wert, 1995]
- \(u_{bu} \) [Hsiang and Faeth, 1993]

\[
\begin{align*}
\left(\begin{array}{c}
Q_{ik}^n \\
Q_{ik}^m \\
Q_{ik}^{mu}
\end{array} \right) &= \int_{S_{i-1}} S_i
\left(\begin{array}{c}
1 \\
\frac{\rho_l}{6\sqrt{\pi}} S^* \frac{3}{2}
\end{array} \right)
\left(\begin{array}{c}
\frac{\rho_l}{6\sqrt{\pi}} S^* \frac{3}{2}
\end{array} \right) \left(S_{bu}(S^*, u_i) \frac{\rho_l}{6\sqrt{\pi}} S^* \frac{3}{2} \right) \\
&\cdot 2\kappa_i(t, x, S^*) \nu_{bu}(\text{We}(S^*)) n_{bu}(S^*) dS^* dS^*
\end{align*}
\]

\[
L_{k}^n = \int_{S_{k-1}}^{S_k} 2\kappa_k(t, x, S) \nu_{bu}(\text{We}(S)) dS
\]

No particular problem to integrate. Same algorithm than coalescence possible.
Break-up source terms

\[
2B_{n+}^k = \sum_{i=k}^N Q_{ik}^n \\
2B_{m+}^k = \sum_{i=k}^N Q_{ik}^m \\
2B_{u+}^k = \sum_{i=1}^k Q_{ik}^{mu}
\]

\[
2B_{n-}^k = \sum_{i=1}^N L_{ik}^n \\
2B_{m-}^k = \sum_{i=1}^N Q_{ki}^m \\
2B_{u-}^k = u_k \cdot 2B_{m-}^k
\]

Break up modeling:
\[
\nu_{bu} \text{ depends on Weber number} \quad [\text{Hsiang and Faeth, 1993}]
\]
\[
n_{bu} \quad [\text{O’Rourke and Amsden, 1987, Dufour et al., 2003}]
\]

with Sauter radius from [Wert, 1995]

\[
u_{bu} \quad [\text{Hsiang and Faeth, 1993}]
\]

\[
\left(\begin{array}{c}
Q_{ik}^n \\
Q_{ik}^m \\
Q_{ik}^{mu}
\end{array} \right) = \int_{S_{i-1}} S_i \left(\begin{array}{c}
1 \\
\frac{\rho_l}{6\sqrt{\pi}} S'^{3/2} \\
u_{bu}(S^*, u_i) \frac{\rho_l}{6\sqrt{\pi}} S^{3/2}
\end{array} \right) 2\kappa_i(t, x, S^*) \nu_{bu}(\text{We}(S^*)) n_{bu}(S^\circ) \, dS^* \, dS^\circ
\]

\[
L_{n}^k = \int_{S_{k-1}}^{S_k} 2\kappa_k(t, x, S) \nu_{bu}(\text{We}(S)) \, dS
\]

No particular problem to integrate. Same algorithm than coalescence possible.