Intel® Math Kernel
Library

Reference Manual

Document Number: 630813-019
World Wide Web: http://developer.intel.com

http://developer.intel.com/software/products/perflib/index.htm

Version Version Information Date

-001 Original Issue. 11/94

-002 Added functions crotg, zrotg. Documented versions of functions ?her2k, ?symm, ?syrk, and ?syr2k 5/95
not previously described. Pagination revised.

-003 Changed the title; former title: “Intel BLAS Library for the Pentium® Processor Reference Manual.” 1/96
Added functions ?rotm, ?rotmg and updated Appendix C.

-004 Documents Intel® Math Kernel library (Intel® MKL) release 2.0 with the parallelism capability. Infor- 11/96
mation on parallelism has been added in Chapter 1 and in section “BLAS Level 3 Routines” in Chap-
ter 2.

-005 Two-dimensional FFTs have been added. C interface has been added to both one- and two-dimen- 8/97
sional FFTs.

-006 Documents Intel Math Kernel Library release 2.1. Sparse BLAS section has been added in Chapter 1/98
2.

-007 Documents Intel Math Kernel Library release 3.0. Descriptions of LAPACK routines (Chapters 4 and 1/99
5) and CBLAS interface (Appendix C) have been added. Quick Reference has been excluded from
the manual; MKL 3.0 Quick Reference is now available in HTML format.

-008 Documents Intel Math Kernel Library release 3.2. Description of FFT routines have been revised. In 6/99
Chapters 4 and 5 NAG names for LAPACK routines have been excluded.

-009 New LAPACK routines for eigenvalue problems have been added in chapter 5. 11/99

-010 Documents Intel Math Kernel Library release 4.0. Chapter 6 describing the VML functions has been 06/00
added.

-011 Documents Intel Math Kernel Library release 5.1. LAPACK section has been extended to include 04/01
the full list of computational and driver routines.

-6001 Documents Intel Math Kernel Library release 6.0 beta. New DFT interface and Vector Statistical 07/02
Library functions have been added.

-6002 Documents Intel Math Kernel Library 6.0 beta update. DFT functions description has been updated. 12/02
CBLAS interface description was extended.

-6003 Documents Intel Math Kernel Library 6.0 gold. DFT functions have been updated. Auxiliary LAPACK 03/03
routines’ descriptions were added to the manual.

-6004 Documents Intel Math Kernel Library release 6.1. 07/03

-6005 Documents Intel Math Kernel Library release 7.0 beta. Includes ScaLAPACK and sparse solver 11/03
descriptions.

-017 Documents Intel MKL and Intel® Cluster MKL release 7.0 gold. Auxiliary ScaLAPACK and alterna- 04/04
tive sparse solver interface were added.

-018 Documents Intel MKL and Intel® Cluster MKL release 8.0 beta. Sparse BLAS and DFTI sections 03/05
were extended. New functionality was added: Sparse BLAS, Cluster DFTI, iterative sparse solver,
multiple-precision arithmetic, interval linear solver, and convolution/correlation. Fortran95 interface
to LAPACK functions was added.

-019 Documents Intel MKL and Intel® Cluster MKL release 8.0 gold. Fortran95 interface to BLAS and 08/05

Sparse BLAS functions has been added.

The information in this manual is subject to change without notice and Intel Corporation assumes no responsibility or liability for any
errors or inaccuracies that may appear in this document or any software that may be provided in association with this document. This doc-
ument and the software described in it are furnished under license and may only be used or copied in accordance with the terms of the
license. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. The infor-
mation in this document is provided in connection with Intel products and should not be construed as a commitment by Intel Corporation.

EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIA-
BILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR
USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PUR-
POSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY
RIGHT. Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facil-
ity applications.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves
these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to
them.

The software described in this document may contain software defects which may cause the product to deviate from published specifica-
tions. Current characterized software defects are available on request.

Intel, the Intel logo, Intel SpeedStep, Intel NetBurst, Intel NetStructure, MMX, Intel386, Intel486, Celeron, Intel Centrino, Intel Xeon,
Intel XScale, Itanium, Pentium, Pentium II Xeon, Pentium Il Xeon, Pentium M, and VTune are trademarks or registered trademarks of
Intel Corporation or its subsidiaries in the United States and other countries.

* Other names and brands may be claimed as the property of others.
Copyright © 1994-2005, Intel Corporation.
Portions © Copyright 2001 Hewlett-Packard Development Company, L.P.

Chapters 4 and 5 include derivative work portions that have been copyrighted:
© 1991, 1992, and 1998 by The Numerical Algorithms Group, Ltd.

Contents

Chapter1 Overview

AbOUt ThiS SOftWAIEeeiiiieeee e 1-1
Technical SUPPOIt ..o 1-2
BLAS ROULINESevnieieeee e e 1-2
Sparse BLAS ROULINES ... 1-3
LAPACK ROULINES......ccvviiieieee e eaaan 1-3
SCALAPACK ROULINES.vviiieieeeeeeeeeeee e 1-4
Sparse Solver ROULINEScoooo i 1-4
VML FUNCHONS.....coieeeeeeee et 14
VSL FUNCHONS ... 14
Fourier Transform FUNCLIONS.........cooooviiiiieiee e 1-5
Interval Solver ROULINESc.uuiiiiiiei e 1-5
Performance ENhanCementsoovevvvvvieeeeieeeeeeeeeeeee e 1-5
ParalleliSm ... oo 1-6
Platforms SUPPOrted.........coooiiiiiiiiiicc 1-6

AbOoUt ThiS ManNUANooiiiiieeee e 1-7
Audience for This Manualcccooeeieiiiieiiiiieee e 1-7
Manual Organization ... 1-7
Notational ConveNntioNSvuueiiiiiiiieeeeee e 1-9

Routine Name Shorthand ..., 1-9
0] 0) L 070] 017/ o] i o) o[- 1-9

Chapter 2 BLAS and Sparse BLAS Routines
BLAS Routines and Funclionscoooooiiiiiiiiiiic e 2-2

v

Intel ® Math Kernel Library Reference Manual

Routine Naming Conventionscceueeeiieiiiiiiiiiiiiieeiieeeeee e 2-2
Fortran-95 Interface Conventionsco.oiiiiiiiiiiiiiie e, 2-3
Matrix Storage SChEMES ... 2-4
BLAS Level 1 Routines and Functionsccccoooiiiiiiiiiiiiceieeee, 2-5
= 151012 [T 2-6
2AXPY ceeee e e e e e e e e e e e e e 2-7
070] o)V 2-9
e (o] (R 2-10
=T [0 AR 2-12
4o [0 (o TSR 2-13
e (o] (U TSR 2-15
141101772 2-16
4 (o) SR 2-17
T O g i 2-19
4 (0] {2 0 [2-21
PFOUMIG e 2-23
o7 | SRR 2-25
52172 o L 2-26
12= 1 4T G RT 2-28
1r2=1 0 11 o HRR RO 2-29
ACADST e 2-30
BLAS Level 2 ROULINEScoooveiieeeee e, 2-32
2ODMV L ———— 2-33
DOBIMV e e e 2-37
2B oo ——— 2-40
4[] (PP PPPTP PP 2-42
DOBIU oo —————— 2-44
4 1101 1.0 1V 2-46
4 11=1 .11V 2-49
14 01 SO 2-51
4 =) 07U 2-53
DMV s 2-56
DT e ————— 2-59
DI s 2-61

Contents

2SIV s 2-64
7 0] 1.1 1Y PP 2-67
] o) L PP 2-69
] o] 72 2-71
171111V 2-74
) PP O PP P PP PPPPPPP 2-76
1L 72 2-78
1o 2 1Y 2-81
DSV s 2-84
70 2 YRR 2-87
1011 P 2-90
4 02 1 PP 2-92
D SV e e aaeas 2-95
BLAS Level 3 ROULINESoeiiiiiiiiiiiiieeeeeeeeeeee e 2-98
Symmetric Multiprocessing Version of Intel® MKL......................... 2-98
4[] 101 o £ I PSP P PRSP PPPP 2-99
PREMIM e 2-102
PREIK e as 2-106
PREI2K s 2-109
POYIMIM ettt e e e e e e e e e as 2-112
)7L PP PPPPPPPRP 2-116
2Oy 2K s 2-119
4L .01 0 R 2-123
L= 0 0 RS RSS R 2-126
Sparse BLAS Level 1 Routines and Functionsccccccccvivnninnninnn. 2-130
Vector ArQUMENTESuiiiiiiiiiiie e 2-130
Naming Conventionsccccoieiiiii . 2-130
Routines and Data TYPESccooviiiiiiiiiiiiiiiiieeeee e 2-131
BLAS Level 1 Routines That Can Work With Sparse Vectors 2-131
DAXPY T ettt e e e e e e e 2-132
40 [| PSSP 2-134
4o 0] (o PSSRSO 2-135
40 0] [PSSR 2-137
4o | Lo PSSRSO 2-138

vi

Intel ® Math Kernel Library Reference Manual

PONIZ 2-140
4o LRSS ERRRRN 2-141
4o | RSP RERRRN 2-143
Sparse BLAS Level2and Level 3 ... 2-145
Naming Conventions in Sparse BLAS Level 2 and Level 3 2-145
Sparse Matrix Data Structures...........ooooooiioiiiicis 2-146
Routines and Supported Operationscccccccvvvviiiiiiiiiii 2-146
Routines with Standard Interfacecccccieiiiiiiee, 2-147
Routines with Simplified Interface............................c, 2-147
Interface Consideration.............cccceeeiiiiiiiiiiiicc e 2-148
Differences Between Intel MKL and NIST Interfaces................... 2-148
Simplified Interfaces ... 2-150
Operations with Partial Matricesccccoeiiiiiiiciiciis 2-151
Restrictions for Triangular Solver Routinescccccooiiiiiiieene. 2-152
Sparse BLAS Level 2 and Level 3 Routines.ccccccvvvevinniinnnnnnn, 2-152
(001 SO e T2 o 0 1 1Y/ 2-154
(1o (o= o =1 o £ 1Y P 2-157
MK _ACSISYMV et e e eeeeees 2-159
MK _dCSCMV ettt 2-161
(001 5o To7o Yo] o £ 1Z2N T 2-164
(1o (oo T =T 1 1 1V P 2-166
MKI_dCOOSYMV ..ttt eeeeeeas 2-168
MKI_AdIamV e 2-170
MKI_ddiagemV e 2-173
(1o (o 1= T3 o 2-175
MK dSKY MV e 2-177
MK SISV e 2-179
(00 SO T2 1 -3V 2-182
MK _AdCSCSY e 2-184
(001 SO e [0 Yo 13 VAT 2-186
MK _dCOOISY e 2-189
(001 SO e 1o [F= T3 T 2-191
MKI_ddIatrsy ... 2-193
MK _ASKYSY e 2-196

vii

Contents

Chapter 3

MKI_dCSIMM o, 2-198
MKIL_ACSCIMIM e e e 2-201
MKI_dCOOMM ..o, 2-203
MKL_ddiamm e 2-206
MKIL_ASKYMM e e 2-209
00 S 107 =1 1 o T 2-211
MKI_ACSCSM oo, 2-214
(001 SO e [0 Yo 1] o IR 2-217
MKI_ddiasm ... 2-219
MKI_ASKYSM oo, 2-222
LAPACK Routines: Linear Equations
Routine Naming Conventionscccccccviiiiiiiiii, 3-2
Fortran-95 Interface Conventionsoooviiiieiiiiiiiiieccce e, 3-3
Matrix Storage SChEMESuvvuiiiiiiiiiiiiiiiiiiiieieeeeere e eeeeees 3-5
Mathematical Notation ..., 3-5
o N F= Y= £ U 3-6
Computational ROULINEScoooiiiiiiiee s 3-7
Routines for Matrix Factorizationcccccoiiiiiiiiii e 3-9
4[] PP PP PPRI 3-9
4o o] 1 SRR 3-11
PO e 3-14
4010 iy OSSOSO PP PPPRSPPPPP 3-16
o)1 1o PP 3-18
4 0] o] 1 SRR 3-20
4 o] 1 (o R PRSPPI 3-22
4531 SRR 3-24
4 2 1] (o PRSPPI 3-27
4] 011 SO PRSPPI 3-30
4 2] o] (s SR PR RS OPRRP 3-33
Routines for Solving Systems of Linear Equations 3-36
2GBIIS s 3-36
2GS e ————————————————————————————a——es 3-38
2OHES s 3-41

viii

Intel ® Math Kernel Library Reference Manual

ix

PO S o —————— 3-44
011~ 3-46
IS o —————— 3-49
1= 3-51
2SYIIS oo —— 3-53
2 =11 = 3-56
2SI oo —— 3-58
0114~ 3-61
TS e e e 3-63
10 1= 3-66
ADAES e 3-69
Routines for Estimating the Condition Number...............cccooiiiiinnnn. 3-72
DOBCON e ———— 3-72
PGDCON e 3-74
2Ol CON o ————— 3-77
PPOCON e 3-79
PPCON e ———— 3-82
PDCON e 3-84
P CON o —————— 3-86
45371] o PP PPPPPR PPN 3-89
PRECON . 3-91
] 0T o o 3-93
NPCON o ——— 3-95
OO e 3-98
P DCON 3-100
P DCON e 3-102
Refining the Solution and Estimating Its Error ... 3-106
4[] £ TP OPPUPPPPPPPPIN 3-106
2GS o —————————————— 3-109
4o | g £ TSP ERRRN 3-112
OIS i 3-115
o] 4 £= SRRSO 3-118
I S 3-121
4 0] £ PRSP ERRRRN 3-124

Contents

1L (=P 3-127
4 41T 0 £ TP SPP 3-130
] o] TP 3-133
4 0] o) i £ T PR ERRSPP 3-136
TS e 3-139
410 1 PSRRI 3-142
41 o] 1 £ PRSP 3-145
Routines for Matrix Inversion...........cccco, 3-149
o 1= £ PP 3-149
o 1o PP 3-151
4o 1o PP 3-153
452 PSP PPPPPPRPPPP 3-155
PNt e 3-157
] 1 PP 3-159
4 2] o) (PR ERRSPP 3-161
4 L (PRSP 3-163
1o 1o PP 3-165
Routines for Matrix Equilibrationcccccc 3-168
o T=T=To LU PP 3-168
PODEAU e 3-170
g o T=T o [V PP 3-173
o] 1= o U 3-175
o1 o T=To [V PP 3-177
Driver ROULINES ..o, 3-180
o T=T 3 P PPPPPPPPPP 3-181
DOESVX eititettie ettt 3-183
o 137 P PPPPPPPPPP 3-189
PODSVX s 3-191
2O SV e e e e e e e e e e e e aaaaaaaaaaaaaas 3-198
41517 GO TP EPP PRSPPI 3-200
4 011 PSPPI 3-205
ZPOSVX ittt et e e e et et e e e et e et et e et e aaaaaaaaaaaaaaaans 3-207
4] 117 P PPPPPPPPPP 3-212
40101172 SRS RRRRR 3-214

Intel ® Math Kernel Library Reference Manual

Chapter 4

X1

DSV i ————————— 3-219
41172 USSP 3-221
4117 PP 3-227
415372 PR 3-229
2O SV ittt b ————————————————— 3-232
)3T G PP P PP PPPPPP 3-235
NSV e 3-240
=137 USSP 3-243
2O POV it ———————————————— 3-247
7015 U 3-250
DSV i ———————— 3-254
011372 SRR 3-257
LAPACK Routines: Least Squares and Eigenvalue Problems
Routine Naming ConveNtioNSuuuiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee e 4-3
Matrix Storage SChemes ... 4-4
Mathematical Notation ... 4-4
Computational RoOUtineS ..., 4-5
Orthogonal Factorizationscccccciiiiiiiiiniiiiieeeeeeee e 4-5
g0 [T | P PEPPPR PP 4-7
2O, i ——————————— 4-10
0 1= 0| X 4-13
o1 (o | ORI 4-16
2O Il oo ————— 4-19
40 4T o | SRRSO 4-22
UNMNOE oo 4-25
20eIGgl o ———— 4-28
o] o[« [P PRPTRPP 4-31
2OMMIG oo 4-34
PUNGIG e 4-37
PUNMIG s 4-40
2GEGI e 4-43
2OrgGl oo —————— 4-46
PUNGQL e 4-48

Contents

014 2 T | 4-50
012 o | R 4-53
0 1= o | PP 4-56
oo [([T P P POPPEPP PP PPPPPPP 4-59
03T | o [P 4-61
o3 2 21 4 P 4-63
400101 TP 4-66
7 74 PR 4-69
0 1 1.1 2P 4-72
010122 2 4-75
o o o | PP 4-78
2O e 4-82
Singular Value Decompositionccccccvvvviiiviiiiiiiiiiiieieeeeeeeeeeeeeeeeee 4-86
PGEDIA . 4-88
PGB e 4-92
oo |] SO TP EPP PP PPPPPPP 4-96
0 .11) SRR 4-99
PUNGDE e 4-103
4810 141) PSSP 4-106
o 0 <o | PP 4-110
PDASAC e 4-115
Symmetric Eigenvalue Problems ... 4-118
514 [P 4-122
0] | S TP P PP PPPPP P PPPI 4-125
40 1 .11 PRSP SPP 4-127
PRETId e 4-130
0 T | PP 4-133
010 01 PP 4-135
] 011 (o PP 4-138
0] oo | | ST T PP PPPPPP P PPPI 4-140
011111 SRR 4-142
4 0] 0] (o PSR SPP 4-145
U] T | PP 4-148
U] o] 0 1 PP 4-150

xil

Intel ® Math Kernel Library Reference Manual

2SI e 4-153
421 0] (o PRSP ERRRN 4-156
45 (= o PSP ERRRRN 4-159
1 (= o | SRS 4-161
PSEEAC i 4-165
41 L= | PP OPPUPPPRPPPPIN 4-169
41 (=0 | SRR 4-174
2StEDZ - 4-178
45 (= o PSRRI 4-182
2AISNA e a 4-184
Generalized Symmetric-Definite Eigenvalue Problems 4-187
452770 L1 SO PP OPPUPPPRPPPPRN 4-188
NEgSt o 4-191
4] 01 1) SO RPP PO PPUPPPPPPPPRN 4-194
PGSt o 4-197
OGSt e 4-199
PNDGST e 4-202
4 0] 0 1= 4 RSP RERRRN 4-204
Nonsymmetric Eigenvalue Problemscccccooviiiiiiiiciieeeeeees 4-207
PGENIA e 4-211
0] | o SRR 4-214
o)1 1] o (USRI 4-217
UNGNE 4-220
2011101 o U SPUPUUPR 4-223
2geDbal 4-226
2GEDAK e 4-229
T | PRSPPI 4-232
NSBIN e 4-237
ATV e e e e 4-243
057 0 T- PR 4-248
42 (oSSR 4-254
1= o T PPUUUPR 4-256
Yl e ————————— 4-261

xiii

Contents

Generalized Nonsymmetric Eigenvalue Problemscccccceeveeee. 4-265
POGNI <. 4-266
oo o 7= | IR 4-270
PGGDAK . 4-273
10 =T PSP 4-276
PHGBVC e 4-283
0 1= o 4-288
EGSBN e 4-292
0 3 PP 4-299
PEGSNA e 4-304

Generalized Singular Value Decomposition..............cevvvveeeeeeeeeeeeenen. 4-309
4 [1517 I PP PP P PPPPP PSPPI 4-309
0 - P 4-314

Driver ROULINESoeeiiiiiiieeeeeeeeeeeeeeee e 4-321

Linear Least Squares (LLS) Problems...........coovvvvviiiiiieiiiiiieiiieieeeeee, 4-321
2GS e 4-322
o 1= 15 VPP 4-326
2GS e 4-330
0 1= LT PP 4-334

Generalized LLS Problems ... 4-339
o o LT P 4-339
2OGGIM e 4-342

Symmetric Eigenproblemsuuviiiiiiiiiiiiiiiieieeeeeeeeeeeeeee e 4-345
452V O PP PPPPPPRPPPPI 4-346
PNEEY e 4-349
POYEVA e 4-352
PREEVA e 4-355
) =12 G PSP PP PPPPP S PPPI 4-359
PREEVX e 4-364
)= S TP P PP PPPPPPPPPI 4-369
PNBEVI e 4-374
] 01V 4-380
1 1= PP 4-383
] 017/ [P 4-386

X1iv

Intel ® Math Kernel Library Reference Manual

PRPEVA e 4-390
] 017 4-394
NPEVX o ——— 4-398
2DV e 4-402
PNV e 4-405
] 0 1=/ [4-408
PhDEVA e 4-412
] 0 1=V 4-416
PNDEVX e 4-421
1 (=Y USRS 4-426
DSV e 4-428
1 0=V 4-432
451 (=2 RSP RERRRRN 4-436
Nonsymmetric Eigenproblemscccuuvviiiiiiiiiiiieeeeeee e 4-441
2B i 4-441
DOBESX ittt e e e e e e 4-447
2BV oo ————— 4-453
DOBBVX it e e e e e e 4-457
Singular Value Decomposition...........ccooooiiiiiiiiiiceccccccs 4-464
DOESVA e 4-464
20ESAA oo ———— 4-469
OGSV e e 4-473
Generalized Symmetric Definite Eigenproblemsccccccccvvvnnnnns 4-479
)77 | OO PPTPUPRPRPPRN 4-480
OV o 4-483
2OV GVA e 4-486
PREGVA e 4-490
45277 12 ST P P PPOPPPPPPPPRN 4-494
VX oo ————— 4-499
4] 010 VOO PPUPPPPPPPPRN 4-505
DOV oo 4-508
2OPGVA e e 4-511
PRPGVA e 4-515
4] 010 1V GO PPP T PPOPPPPPRPPPN 4-519

XV

Contents

170 Y PP 4-524
2DV e 4-529
PRD GV e 4-532
2SDGVA e 4-535
PRDGVA e 4-539
2DV e 4-543
PRDGVX e 4-548
Generalized Nonsymmetric Eigenproblems.............ccccccveeiiiiiiinnee. 4-553
o o =TT PPPPPPP 4-553
DOGESX ittt a e e 4-559
o o = PP 4-568
4 [127 G PSP P PP PPPPPRPPPI 4-573
Chapter 5 LAPACK Auxiliary and Utility Routines

AuXiliary ROULINESc.cvviiiii it ee e 5-1
PIBCGY e 5-11
PIACTM e 5-12
4 = T o P 5-13
2 A S e ——— bt ——————————————————————————————————es 5-14
) PP 5-16
4] 0] 1.0 172 OO PP PPPPPPPPPP 5-17
] o P 5-19
45171011V PPSPPPPP 5-20
45 (P EPPP PP 5-22
2MIAXT e 5-24
10 .0 PP 5-25
PGt 2 5-26
PGEDAZ s 5-27
PGENAZ ... 5-29
PGEIAZ s 5-32
o 1= Lo | PP PP 5-33
4o [T | 2SRRI 5-35
DB g i ———oes 5-37
DOESCZ ittt 5-38

Xvi

Intel ® Math Kernel Library Reference Manual

2OBIC2 . ——— 5-40
PG 2 5-41
OS2 o ————— 5-42
4 = o] o [RRRTSP 5-44
4 = oo] o USSR 5-47
2IBCPY e 5-48
P0AAIV e 5-49
2lABZ e 5-51
PNBEDZ .. 5-52
21860 ... 5-56
4 = 1= L PP 5-59
4 = 1= OSSR 5-61
4 = 1= X PR 5-63
4 = 1= OSSR RRPP 5-66
0BEAD . 5-67
4 = L= [U ERSRPP 5-68
PIBEAT e 5-70
21AEA8 ... 5-73
4 = 1= L RSP 5-77
216AA .. 5-79
4 = L= o PSRRI 5-81
PIABVZ e ————— 5-84
4 = 1= oSSR 5-85
2lAG2 e 5-87
2lagS2 e —— 5-89
gt e 5-91
2lagim o ————— 5-93
2GS e 5-95
2lagV2 o —— 5-97
4 = 1 T | 5-99
4= 101 PRSP ERRRN 5-101
4= L2 PRSP URRRRRN 5-104
4= 1 2P RRRRRN 5-106
4= 15 O PRSP URRRRRN 5-109

Xvil

Contents

lAISA e 5-113
4 = 1T PSSR SPP 5-117
4 E= 1101 (o PP 5-119
20ANGD 5-120
4 E= 1 Lo 1= TSP 5-122
2ANGE e 5-124
2IANNS e 5-125
4 = 1 1= o 5-126
20aNND e 5-128
4 = 1 1= o 5-130
4 E= 1] o o TP 5-132
21anst/?21anht .o 5-133
L= 101V 5-135
4 F= 1 1= PP 5-136
2AANTD s 5-138
4 = 11 TSP 5-140
4 =10 L P RERPPP 5-142
4 F= 1 Y77 PRSP 5-144
4 = o | PSSRSO 5-145
4 = 0 0 0| S 5-146
4 =10 V722 PSSP 5-147
2APY 3 e 5-148
4 = To o | « PP 5-149
PIAAGE e 5-151
4 E= 1o | o 122 5-153
g = To | 1 5-154
4 E= To 1= o TP 5-157
g = To 1= o 5-159
4 = 1o 1=V 5-160
4 = T | PP 5-162
4 = L PSSR 5-165
= 1 7 5-167
4 = 1 PRSP PPP 5-168
4 = 3 { o T PSR SPP 5-170

Xviil

Intel ® Math Kernel Library Reference Manual

4 = o S OPUPIR 5-172
4= SRR 5-174
4 L= 1 > TR 5177
ANV e e e 5-178
ATV s 5-180
4 L= T o o TR 5-181
4= 1 (=TT 5-183
4 L= 1 o PP 5-185
4= 1 V2T 5-187
4= Lo PP PPPUPPPRPPPPIN 5-190
4= 1 V2T 5-191
4 L= T U 1 2T 5-193
4= |- TR 5-194
4 L= T4 o TR 5-196
LAzt s 5-198
a8 2 e s 5-201
4= 1= 1o PR 5-202
1A A0 s 5-204
A8 AT s 5-206
a2 s 5-209
LA s 5-212
a8 s 5-215
A8 s 5-216
a8 s 5-218
AT e s 5-222
a8 s 5-226
A8 s 5-228
4 1= 1T = TR 5-230
21aSAQ oo ——————————— 5-234
4= 1=Te | AT 5-236
4= 1=1=] SRR 5-237
g F= 1= 1 O 5-239
2laSO2 o ——————————— 5-240
g F= 1T X R 5-241

XixX

Contents

4 = 1T T PP 5-244
g F= 1T 1 5-245
4 E= 1T [PP 5-247
4 E= 1= SO UUSUPPPRS 5-248
4 = 1 S PSRRI 5-250
g = 1o PP 5-251
PIBSVZ e 5-253
g F= 153/ o R 5-254
DIBSY2 e 5-255
LS e 5-258
AN s 5-260
AAtDS e 5-262
latdf s 5-265
4 = 11 1 5-267
4 = L1 PRSP SP 5-269
2ArS e e aean 5-272
4 = {2 PSSP 5-276
PIAUUZ e e aaaaean 5-278
4 = 10 0o T PSSP 5-280
20rg2l/2UNG2L ... 5-281
oL (e P24 Ara U] e 21 PSSR 5-283
20rgl2/7UNgI2 .. 5-284
POPGr2/7UNGI2 ettt e e e 5-286
20rmM2l/2UNM2l oo 5-287
POIM2I/PUNMZE e e e eeeeas 5-290
20rmI2/2UNMIZ oo 5-292
POPMI2/PUNIMIZ2 e e e e e 5-294
20rmMI3/2UNMES oo e aaaeeans 5-297
4 0] 0] 172 PRSP SPP 5-299
4 01] 172 PR ERRSPP 5-301
411772 5-303
4 o U URUPUPIRS 5-304
PSYGS2/PNEUS2 ..t 5-305
PSYtd2/7hetd2 e 5-307

XX

Intel ® Math Kernel Library Reference Manual

Chapter 6

XX1

SV o ———————— 5-309
=1 722 5-311
A OEXZ oo —————— 5-313
By 2 e 5-315
1 (U 5-319
Utility Functions and ROULINESccooiiiiiiiiiiiiceeeeee e 5-321
] == 0 U 5-321
oYY =To: O 5-324
LS 0 = 5-325
EST=1 0 011 o E U 5-325
g E=1 o T=To R 5-326
2laAMCN e 5-327
2laMCT o ———————————————————————————————— 5-328
4 b= 0 [0 5-329
4 E= 1 41 PO 5-330
4 =10 0 (o7 U 5-331
2lAMCD 5-331
SECONA/ASECNA ... 5-332
XEPDIA o ———— 5-333
ScalLAPACK Routines
OVEBIVIBW et e e e e e et e e e e e e e e et e eeeees 6-2
Routine Naming ConveNtioNSuuuviiiiiiiiiiiiiiieeiieeeeeeeeeeeeee e 6-3
Computational ROULINESccooeviiiiiie . 6-4
Linear EQUAtiONSccoooi i 6-4
Routines for Matrix Factorizationccccoovviiiiiiiiiiie e 6-6
O340 =1 (o PP PPPPPRPP 6-6
PGt e 6-8
O340 | o] {5 P 6-10
374 010} [y P 6-13
0374 o] o] {5 P 6-14
374 0] Lo 6-17
O340 L5 PP 6-19

Contents

Routines for Solving Systems of Linear Equations 6-22
P2GEIS i 6-22
P2ODIIS oo 6-24
374 0T (=R 6-27
P2PDOIIS oo 6-29
374 0] L1 =SSR 6-31
P2AMIS oot 6-34
P2ADIIS e 6-36
374 L= P PPPPPPPPPP 6-39

Routines for Estimating the Condition Numbercccoins 6-42
PPOECON oiiiiiiiiiitieitteee ettt e e e e e e e e e e e e e ee et e e e e e e e et aaaaaaaaaaaaaaaaaaaaaaaaaaaaans 6-42
0374 0T Yoo o TSRS 6-45
PPITCON oottt e 6-48

Refining the Solution and Estimating Its Errorcccoocciiiienns 6-51
3o =T 1 £ PP PPPPPRPP 6-51
374 0T 1 £ TSR 6-55
P 2AITES ettt a e e e e e e e e e e e 6-59

Routines for Matrix INVersion..........cccovvvviei 6-64
P2OEI oottt a e 6-64
374 0T {4 RS RR 6-66
374 L L TSP USRS PSPPPRPRPPP 6-68

Routines for Matrix Equilibrationcccco 6-70
PPOEEAU .oeiiiiiiieiieeeeee ettt ettt ettt e e e e e e et a e e e e e e e e e e e e e e aaaaaaaaaaaaaas 6-70
374 0 Yo YT [U RS SRS R 6-72

Orthogonal Factorizations................eveviiiiiieiieiiiiiiieeeeeeeeeeeeee e 6-75
3740 =T | o SRR 6-75
P 2OEAPT et 6-78
374 0] o o | SN 6-81
PPUNGQE ceiiiiitieeeieeeeeee et e e e e e e e e e e e e e e e e ee e e e e e e eeaeeaaaeaataaaaaaaaaaaaaaaaaaaaaaaaaaaas 6-83
3740 1 121 | PRSPPI 6-85
PPUNMGE ©eiittiiiieieietireeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeettaaaeaaaeaaaaaaaaaaaaaaaaaaees 6-89
P2GEIAT e 6-92
Q30T o] (o PRSP RSPPPPPRPP 6-95
374 8TV | o RS S R 6-97

xxil

Intel ® Math Kernel Library Reference Manual

0340 1 101 o P 6-99
274 8T 001 o RSP 6-102
O30 =T | P 6-106
3740 o o | PR 6-108
0374 8 Lo [| PP PPPPPPPP 6-111
3740 1 12T | PR 6-113
034 8 Lo 02T | PP 6-116
3740 =T o | PP 6-120
O30T o] (o [P PPPPPP 6-122
274 ¥ TV [o PR 6-125
O30T 101 o [P 6-127
274 8T o o1 o PR 6-130
174 ¥4 4 PP 6-133
3740 1 10 PP 6-136
034 8T 001 -2 PP 6-140
[S2rge e o o PP PPPPPTTP PP 6-143
3740 T o | P 6-148
Symmetric Eigenproblemsuvviiiiiiiiii e 6-153
Q34371 (o PP PPPPPPPP 6-154
2740 1 101 1 6-158
0374 =1 (o P 6-161
274 8T o 001 { PP 6-165
Q345 (=] o AP 6-169
03745 (=11 o TP 6-173
Nonsymmetric Eigenvalue Problemsccccoooiiiiiiiiiiciieeeeeee, 6-178
P2GENIA e 6-178
O30T 101 o PP 6-182
274 8T o 0o o PR 6-185
0374 F=1 o | SRR 6-188
Singular Value Decomposition cccoiiiiiiiiiieieeeieeeee e 6-191
O340 =1 o] o 1P 6-191
2740 1 121 o R 6-196
0348 a0 a1 o PP 6-201

Xxiil

Contents

Generalized Symmetric-Definite Eigenproblemscccccvveveeenn. 6-206
P 2SY ISt i 6-206
PPhEGST oo, 6-208

Driver ROULINESeeeieiiieieeeeeeeeeeeeeeee ettt 6-211
PPUESY eitiiiiiieitiee ettt e e ettt e 6-212
PPOESVX eeeieeeeiiitie et e et e et e e e e e e as 6-214
P2ODSY o 6-220
P2ADSY e 6-223
P2AISY oot 6-225
374 010 1=V TR 6-228
PPPOSVX eotttiteiiieiieeeeeeeee e e e e et e et e e et ee e e e e e e e e e e aaaaaaaaaaa et e e e e e e e e e e e e e e e e e e e aaaaaaas 6-230
P2PDSY e 6-237
P2PISY oottt 6-239
P2GEIS et 6-242
PP2SYEY ittt a e 6-246
PPSYEVX eeetteeeeeiitt ettt e e e e e e e as 6-249
PPREEVX oo, 6-256
PPGESVA it 6-263
P2SYGVX wrttttttiiiieeieeeee e ettt e ettt ettt e e et e 6-268
PPREGVX it 6-276

Chapter 7 ScalLAPACK Auxiliary and Utility Routines

AuXiliary ROULINESc.cvviiiii it ee e 7-1
P2IACGY e 7-6
PPMAXT oottt 7-7
FgeTo] 1.41 0= 1 4 - ot 7-9
PP2SUMT oottt e aaaaaaaaaaaaaaaaaaas 7-10
P2ADIISV oo aaa e 7-11
PPAMISY oo 7-14
P2GEDAZ . 7-18
P2ENA2 ..o 7-22
PPGEIAZ oo a e e e e aaaaaaaaaas 7-25
P2OEAIZ oo 7-28
PPOEAM2 ettt ettt et ettt e ettt e et a e ettt et aaaaaaaaaaaaaaaaas 7-30

XX1V

Intel ® Math Kernel Library Reference Manual

XXV

O340 =T o 12 P 7-33
PGt e 7-35
0374 =1 (o PP 7-37
0274 F= o7 0] o TP 7-41
0374 F= Lot] aT=1 o TP 7-43
0274 = o7 0 122U 7-44
374 = o7 0 1< J PSP 7-46
0274 F= o7 0V 7-48
O34 F= 1YY o P 7-50
274 F= 1 0T (o P 7-52
374 = 11T o1 PP 7-55
P2IANGE .o 7-56
0374 F= 1] P 7-58
P?1ansy, P?2Ianhe ... 7-60
0374 = 1 0 P 7-63
0274 =T 1 7-65
374 = o o = X PRSP 7-68
0274 F= o 3 PP 7-70
0374 F= 1= It o P 7-73
274 F= 1= 21 o P 7-74
374 = 1 P 7-76
0274 =T o TP 7-79
374 = {2 7-82
P21AITG e 7-85
374 = 1 P 7-87
0274 =1 2 7-90
374 = 7« J P 7-94
0274 =1 oSSR 7-98
374 7= 1 72 (PP 7-101
0374 F= o PP 7-105
374 F= F=T=] PP 7-107
374 F= 5] 4 1S TU o S PR 7-109
0374 F= F=T=To [P 7-110
374 F= 53,V o PR 7-112

Contents

P2AALrA oo 7-114
374 F= o TR 7-115
PPUAIIS oo 7-119
0374 = 2R 7-121
937 =0T 12U 7-124
374 F= 10 11 o o R 7-126
(9374 =1 RS PPREP 7-127
P20rG2l/PPUNG2L ..o 7-128
[Xg o] (e VA 1/ 0 4 ¥ g Te 12 SRR 7-131
P?0rgI2/PUNGI2 oo 7-133
P2OrGr2/PPUNGI2 oot e e e e 7-136
P20orm2l/P2UnNmM2l ..o 7-138
P2OrM2I/PPUNMZE oot e e e e neeeeeeeas 7-142
P?0ormi2/p2unmI2 7-146
P2OrMI2/PPUNMIZ oot e e e e neeeeaeeas 7-150
P2PDIISV e 7-154
PPPHISV oo 7-158
P2POM2 e 7-162
34 1] PSSP PPSPPPPPRP 7-163
P?SYTS2/PPNEGS2 oo 7-165
P?SYtd2/P?hetd2 ..o 7-167
P2 oo 7-171
PIAMSN e 7-173
4 = 1= PP 7-175
4 =T 1 (= PSSR 7-177
4 = 1= o PSP 7-178
2SHBINZ e 7-179
40| o] 172 PRSP 7-182
40| o) (o PRSPPI 7-184
4o L1 { o PSR SPP 7-185
OISV e 7-187
114 7-188
1 (=T | 2P 7-190

XXVi

Intel ® Math Kernel Library Reference Manual

Utility Functions and RoUtineSccoovvviiiiiiii e, 7-192
0374 F=1 o 7= T PP 7-193
P?IACHKIEEE eeeiiiiii e 7-194
274 F= 10 ¢ e o TP 7-195
0374 F= =] 0] o AP 7-196
[0 C=T 1 o] - TP 7-197

Chapter 8 Sparse Solver Routines

PARDISO - Parallel Direct Sparse Solver Interface..........ccccuvveveveveeeveeeneee. 8-1
2= o 1= o 8-3

Direct Sparse Solver (DSS) Interface Routings............cevveevveeieeiieniennnn... 8-15

Interface DEeSCrIPLIONvviviiiiieeiieeeeeeeeeeeeee e 8-17
Routing OPLioNSceviiiiiiiiiieeeeeeeeeeeee e 8-17
USEr Data ArTayS......ccoiiiiiiiiiiieieee et 8-18

DSS ROULINES ... 8-18

(o [I ol (=T | (= T 8-18
dss_define_SIrUCLUIEoeeeeee e 8-19
(o LIS (=] (o [=] (TP 8-20
dss_factor_real,

dss_factor_ComPpIeXoouuiciiiii e 8-21
dss_solve_real,

dSS_SOIVE_COMPIEX ...ceeieeieeiiiie et e e e e 8-23
ASS_AEIBLE ..o 8-24
dSS_StatiStiCS ...ooooeiiiiii e 8-25
mkl_cvt_to_null_terminated_Strccooueriieiiiii e, 8-28

Implementation Detailsoouviiiii e 8-29
Memory Allocation and Handlescccccceiiiiiiiiiic e, 8-29

Iterative Sparse Solvers based on Reverse Communication

Interface (RCIISS) ... 8-31

Conjugate Gradient Solver (RCI CG).....ccooevieiiiicicieee 8-31

Interface DeSCriplioNvvviiiiiiiieieeeee e, 8-34
Routines OPtioNS......ccoviviiiiiiiiiiiiie e, 8-34
UsSEr Data ArraysS.......uuuciii it 8-34
Common Parametersccccccuuvueiuiiiiiiiiiiiiiiiiieiieeeeeee e eee e 8-34

XXVil

Contents

Chapter 9

RCI CG ROULINES ...ceeiiieiieeieee e 8-38

o Lo TN 1o 1 (PSP 8-38

(o oo o1 1Y QP 8-39

o oo TP P PP PPPPPPP 8-40

o oo o = SRR 8-42
Implementation Details............ooooviiiiiiii 8-43
Calling Sparse Solver Routines From C/C++..........oooiiiiiiiiiieeiiiiiieeen. 8-44
Caveat fOr C USErSttt e e e e eeeeeeeeees 8-45

Vector Mathematical Functions

Data Types and Accuracy MOAEScccovviiiiiiiiiii e 9-2
Function Naming Conventionsccuuiiiiiiiiiiiiie e 9-2
Functions Interface...........cueeeiiiiii e 9-3
VML Mathematical FUNCiONScccooiiiis 9-3

Pack FUNCLIONScooiiiiiiiiiiiiiieiee e, 9-4
Unpack FUNCHIONS........ccoiieieeeeeee e, 9-4
Service FUNCLONS.........oiiiiiiiiiiee e 9-4

Input Parameters ..., 9-5
OUtpUt Parametersuuvuviiiiiiiiiiiiiiiiiieeeeeeeeeeee e 9-5
Vector Indexing Methodsoouiiiiiiiiiiii e 9-6
T o g T F=To [(0T o= 9-6
VML Mathematical FUNCtionsccooooiiiii i 9-7
] SO PREER 9-9

DIV e ————— 9-10
Yo | SO 9-11
INVSOIt o ———— 9-12

{7 o] SRR 9-13
IVt e 9-14
PO e e aaaas 9-15
POWX e 9-17

o o PSSR OPURRSRRR 9-18

o TSR PRRPPPP 9-19

I Yo 0SSP 9-20
08 ittt eaaa 9-21

XXViil

Intel ® Math Kernel Library Reference Manual

] 1o U 9-22

71 (O 1= TP 9-23
L= IO ROt 9-24
oo L TN 9-25

A SN e 9-26

N = | o ORI 9-27
ALANZ e 9-28
{07011 o [PPSR 9-29

] 12 o SR 9-31
L= 21 o PR 9-32
ACOSN e 9-33
ASINN e 9-34
AtaNN e 9-35

] o 9-36

] o (R 9-37
VML Pack/Unpack FUNCLIONScooiiiiiiiiiee e, 9-39
PaCK e 9-39

U T = Lo QUSSR 9-41
VML Service FUNCLIONS ooooiiiieeeee e, 9-43
SEMOAE ... 9-44
(11 (1Y, Lol [T 9-46
SEtEMStatus ...oooeeeeee e 9-47

(T =y] =) (U TR 9-49
ClearErrStatusoooveeeeeeeeeeee e 9-49
SetErrorCallBackooovviuiiiiieeieeeeeee e 9-50
GetErrorCallBackKoooeiiviiieeeeeee e 9-52
ClearErrorCallBackuueeeeieeeeieeeeeeee e 9-53

Chapter 10 Statistical Functions

Random Number Generatorsccoovvveviiiiiiiee e 10-1
(0701 01V =T o) T0] o = 10-2
Mathematical Notationcoeiiiiiiiiiiie e 10-2
Naming CONVENLIONS...........uuiuiiiiiiiiiiiiiiiiiiieeeereerrereeeeeereere e rerreeeeees 10-4
e T (o CT=T [T = | (o] (=R 10-8

XXIX

Contents

BRNG Parameter Definitioncccooeeviiiiiiiiiiieeeeeeeeeeeeeeee e 10-10
RanNdom Streamsooovivieiiiieee e 10-11
Data TYPES ..o 10-11
Error REPOIINGcveeieiiie e 10-12
SEervice ROULINES..........ooeeeeiiieeee et 10-13
N NS ((=T= 0 o F TR 10-14
NEeWSIIeamEX ..o 10-16
iINewADbstractStreamoooiiiiiiiiie e 10-18
dNewADbstractStreamceeeiiiiiiiiieee e 10-20
sSNewAbstractStreamcoooiiiiiiiiie e 10-22
DeleteStreamooovviiiiiiii e 10-25
COPYSIrEaAM .o 10-26
CopyStreamState ovveeiiiiiiiiiieeeeee e 10-27
SaveStreamF ... 10-28
LoadStreamF ... 10-30
LeapfrogStream ... 10-31
SKIpPAheadStreamccccccciiiiiiiiiiiii e 10-34
GetStreamStateBrng ... 10-37
GetNUMREGBINGS ...vvviiiiiiiiiiiiiiiiieeeeeee e 10-38
Distribution GeNErators..............uoiiviiiie e 10-39
Continuous Distributionsueeiiiiiiiiieeee e 10-41
L0 o1 10T o o o KSR 10-41
GAUSSIAN e 10-43
GausSIianNMV ... 10-45
Exponential ... 10-49
Laplace ..o, 10-52
WEIBUIL e e 10-54
CAUCKNY e 10-56
Rayleigh oo 10-59
LOGNOIMAal .o 10-61
GUMDEL e 10-63
(€71 0012 4T OO 10-65
Bela 10-68

XXX

Intel ® Math Kernel Library Reference Manual

Discrete Distributions.............c.oiiiiiiiiiiiii e, 10-70

10 o1 1 0] o o o HE R 10-70

(0 o1 (o] 4 0] =11 R 10-72
Bernoulli ..o 10-75
(7T o] 04 T=Y i o o 10-77
Binomial ..o 10-79
Hypergeometric ..o 10-81
POISSON .eee e 10-83
POISSONY 10-85
NegBinomial ... 10-87
Advanced Service ROULINESceiiiiiiiiiiieceee e 10-89
Data tyPeS....ceiieiiie s 10-89
RegisterBrNg ..o 10-91
GetBrNgProperties ... 10-92
Formats for User-Designed Generators...........ccoevvveevveeeieeiienieennen.. 10-93
IBRNG .. 10-95
SBRNG - ———————————— 10-96
ABRING ...t e e e e 10-97
Convolution and Correlationeeeeiiiiiiiiiieieee e, 10-98
OVEIVIBW ...ttt e 10-98

N F=Ta a1 aTe I @] a1Y/=T o 110 o - TR 10-99
Data TYPES ..eeeeeeeeeiieee e 10-100
Parameterscooooeiiiiieee e 10-101
TaSK STAtUS ... 10-103
Task CONSITUCLONSueeeeeieee e 10-103
NEWTASK ..o 10-104
NEWTASKTID ... 10-106
NEWTASKX ..o 10-108
NEWTASKXTID ...t 10-111

B E= 1] S =L [(o] =P 10-114
SEeIMOAE ... e 10-115
SetInternalPreciSionooooiiiiiie e 10-116
7] 5] =1 R 10-118
SetDecimationooviiiii e 10-119

XXX1

Contents

Task Execution Routings...............coiiiiiiiiiii e 10-121
E X C e 10-122
(=Tt I I SR 10-124
(o3, SR 10-126
(T G | R 10-128
TaSK DESITUCIOISceeeeeeeeeeeee e 10-130
DeleteTaskoouoiiiiiii e 10-130
TASK COPY -ttt 10-131
(O70] o)V F= 1< QRSP PP PRSPPI 10-131
Usage EXamMPIES.......ooiiiiiiiiiiieeee e 10-133
Using Multiple Threads.......cccooovevvveiiiiiiiii e 10-135
Mathematical Notation and Definitionsccccoooiiiiiiiiiiiiceeeeenne. 10-136
Linear ConvolULIoN...........ceeiiiiieiieeecee e, 10-137
Linear Correlation.............couiiiiiiiiii e 10-137

Data AlloCation...........ccooooeiuiiiiiii e 10-137

Finite Functions and Data Vectors..............cccoeveiivieieiiiiieeee, 10-138
Allocation of Data VeCtorscooovvieeeiiieeeeeeeeeeeeeeeee e 10-139

Chapter 11 Fourier Transform Functions

DFT FUNCHONS ...ttt ettt a e e e e e e e e e e e e e e e e 11-1
Computing DF T ... ae e 11-3
DFET INterface ...coovvvvvieiiiiieeee e, 11-3
Status Checking FUNCLIONScccooiiiiiiiii s 11-5

ErrorClass ..o 11-5
ErrOrMESSaQE ... 11-7
Descriptor Manipulation ..., 11-8
CreateDESCrIPLOruuueiiiiiiiiti e e e ee e b eeserssaeeeeeeees 11-8
(07eTaaTa a1 1B LT oty o] (o] PP 11-10
10707017/ B I-Y-To3 ¢ o] (o] (RPN 11-11
FreeDescCriptor ...ooovvvvvieiieee e, 11-12
DFT Computation.........ccoooviiiiiiiiiii 11-13
CompULEFOrWArdeuviiiiiiiiiiiiiiiiiieiieee e e e ee e e 11-13
ComputeBackwardcccccccciiiiiiiiiiiiiiiiiiiieeee e 11-16

XXXil

Intel ® Math Kernel Library Reference Manual

Descriptor Configurationuuveieeiiieiiiiiiiiiieeeeeeeeeeeeeeeee e 11-18
SetValue ..o 11-18
GetVaAlUE ... 11-20

Configuration Settings..........cccoiiiiiiiiiii e 11-23

Precision of transform ... 11-26
Forward domain of transformcccccii 11-27
Transform dimension and lengthscccc e, 11-27
Number of transforms ... 11-28
SCaAIE e 11-28
Placement of result ... 11-28
Packed formats ... 11-28
StOrage SCNEMESuiiiiiiiiiiei e 11-32
Number of user threadscccccooiiiiiiiiie e 11-42
Input and output distances ... 11-42
SIS .ot 11-43
(@70 [T o [o PP PPPPPPPPPPPRN 11-45
TranSPOSILION......coe e e 11-45
Cluster DFT FUNCLONS......ccoiiiiiieeeee e, 11-47

Computing Cluster DFT ..., 11-49

Cluster DFT Interface.........cooiiooiiii e 11-52

Descriptor Manipulationcoiiiiiiiiicc e 11-53
CreateDescriptorDM ... 11-53
CommitDescriptorDM ... 11-55
FreeDescriptorDM ... 11-57

DFT Computationuuuviiiiiiiiiiiiiiieieeeeeieeeeeeeeeee e ee e e e e e e e e e e e eeeeees 11-58
ComputeForwardDM ... 11-58
ComputeBackwardDM ..o 11-60

Descriptor Configuration ..o 11-62
SetValueDM ..o 11-63
GetValueDM e 11-65

Status Checking Functions ..o, 11-67

Fast Fourier Transforms (Deprecated)..........ccccccvviiiiiiiiiiiiiiiiiiiieeeeen 11-68
One-dimensional FETSooiiiiiiie e 11-68
Data Storage TYPEScoooeiiiiiiiiiiieee e 11-68

XXXiil

Contents

Chapter 12

Data Structure Requirementscccccccvvviiii 11-69
Complex-to-Complex One-dimensional FFTsccccceeeeene. 11-70
cfft1d/zfft1d (deprecated).........ccuveeeiieeiiiiiieee e 11-71
cfft1dc/zfft1dc (deprecated)cccoveeiiiiiiiiiiiiee 11-72
Real-to-Complex One-dimensional FFTsc. 11-73
scfft1d/dzfft1d (deprecated)........cccoveeiiiiiiiiiiiiiieeeeeee e 11-74
scfftidc/dzfft1dc (deprecated)ccovviiiiiiiiiiiiiie 11-76
Complex-to-Real One-dimensional FFTS ..., 11-77
csfft1d/zdfft1d (deprecated)........cccvveeiiiiiiiiiiiiee e 11-79
csfft1dc/zdfft1dc (deprecated)ccoooviimiiiiiiiiiiiiiieee 11-80
Two-dimensional FFTS. ..., 11-82
Complex-to-Complex Two-dimensional FFTscccccceeiiiiins 11-83
cfft2d/zfft2d (deprecated).........cccuveieeriiiiiiee e 11-84
cfft2dc/zfft2dc (deprecated)cvveiiiiiiiiiiiis 11-85
Real-to-Complex Two-dimensional FFTsccccccvvvvivviiiiineiennnnn. 11-86
scfft2d/dzfft2d (deprecated).........ccvveeiiiiiiiiiieieeeee 11-87
scfft2dc/dzfft2dc (deprecated)ooovviiiiiiieiiiiiiies 11-89
Complex-to-Real Two-dimensional FFTsSccccoviiiiiiiiiiiniinnnnnn. 11-92
csfft2d/zdfft2d (deprecated)........c.oovevveiiiiiiiiiiie e 11-93
csfft2dc/zdfft2dc (deprecated) ..o 11-94

Interval Linear Solvers
Routine Naming Conventions ... 12-2
Routines for Fast Solution of Interval Systemscccoooiiiiiiiee. 12-3
4 L (SR 12-3
e[S F= LT PP PPTPPP 12-5
2B S e ——————————————————————————— 12-7
POEKWS .t 12-8
DU i aa— e ——e 12-9
PGENDS . 12-11
Routines for Sharp Solution of Interval Systemsl. 12-13
o =] o] o 1< T PP 12-13
Routines for Inverting Interval Matricescccccccovviii. 12-16
4 L (PP ROPPP 12-16

XXX1V

Intel ® Math Kernel Library Reference Manual

0 =T 4 SRR 12-17
Routines for Checking Properties of Interval Matrices 12-19
0 1= o) SRR 12-19
4 [55SSOSO OPPUPPPPPPPPRN 12-20
Auxiliary and Utility ROULINEScooiiiiiieieecee e, 12-23
4[] 101 o PP PPUPPPPPRPPRN 12-23
Appendix A Linear Solvers Basics
Sparse Linear SYStEMS ... A-1
Matrix Fundamentalscccccooiiiiiiiiiiiee e A-2
Direct Methodeeieiii e A-3
Fill-In and Reordering of Sparse Matricescccccccviiiiiiiiennnnnns A-4
Sparse Matrix Storage Formats..........coooooiiiiiiiiiiiiicceees A-8
Storage Formats for the PARDISO Solvercccccooeeiiinniinniiiinnnnns A-8
Sparse Storage Formats for Sparse BLAS Levels 2-3................... A-11
CSR FOrMato e e e A-11
CSC FOrMALeeiiiieeeeeeee e e e e ennes A-13
Coordinate Formatccooooiiii e A-14
Diagonal Storage Schemecccccoi A-15
Skyline Storage SChemME.........cooiiiiiiiiiei e A-16
Interval Linear SYSIEMSuuuuuuiiiiiiiiiiiiiiiiiiiitiee e eree e eeereeseeeeees A-17
T (T V= SRR A-17
Interval vectors and matriCesuveeiiiiiiiiiiiiiiiieeee e A-18
Interval Linear SyStems...........coiiiiiiiiiiiiii e A-19
Preconditioningccoocoe i A-22
Inverting interval Matrices ... A-22

Appendix B Routine and Function Arguments

Vector Arguments in BLAS ... B-1
Vector Arguments in VIMIL ... B-3
Positive Increment INAexXingcccoooiiiiiiieiiiie e B-3
[aTe L=y QYL =Yei (o] il 1o [(] o [B-3
Mask Vector INAeXiNgccouiiiiiiiiieeiie e B-3
MatriX ArgUMENTS ..o e B-4

XXXV

Contents

Appendix C

Appendix D

Glossary
Bibliography

Index

Code Examples

BLAS COde EXAMPIESuuvureiiniiiiiiiiiiiiiiiiiiieiieeeeeetseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees C-1
PARDISO Code EXAmPIES........uuuuiiiiiiiiiiiiiiieiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees C-7
Examples for Sparse Symmetric Linear Systems.......................ooo. C-7
Example Results for Symmetric Systemscoooeiiiiiiiiiiiiiinnne, C-7
Examples for Sparse Unsymmetric Linear Systems............ccccccuuu.e. C-17
Example Results for Unsymmetric Systemsccccoeeiiinnnnn. C-17
Direct Sparse Solver Code Examples.........cccccceeeeeeiiiie, Cc-27
Example results for symmetric systems......................... Cc-27
Iterative Sparse Solver Code Example ..o C-35
Example of Use RCI (Preconditioned) Conjugate Gradient Solver C-35

DFT Code EXamMPIESoovviiiiiiiiieiiieee e, C-40
Examples of Using Multi-Threading for DFT Computation................. C-49
Interval Linear Solvers Code Examples...........cccccoevvieeiie, C-55

CBLAS Interface

to the BLAS

CBLAS ArQUMENTS ...ttt D-1
Enumerated TYPES.....cov it D-2

Level 1 CBLAS ...t e e e e e e D-3

Level 2 CBLAS ...t e e D-5

LeVel B CBLASo D-12

Sparse CBLAS ... D-16

XXXVI

Overview 1

The Intel® Math Kernel Library (Inte]® MKL) provides Fortran routines and functions that
perform a wide variety of operations on vectors and matrices including sparse matrices and
interval matrices. The library also includes discrete Fourier transform routines, as well as vector
mathematical and vector statistical functions with Fortran and C interfaces.

The version of the library named Intel® Cluster MKL is a superset of Intel MKL and includes also
ScaLAPACK software and Cluster DFT software for solving respective computational problems
on distributed-memory parallel computers.

The Intel MKL enhances performance of the application programs that use it because the library
has been optimized for latest generations of Intel® processors.

This chapter introduces the Intel Math Kernel Library and provides information about the
organization of this manual.

About This Software

The Intel Math Kernel Library includes the following groups of routines:

* Basic Linear Algebra Subprograms (BLAS):
— vector operations
— matrix-vector operations
— matrix-matrix operations

® Sparse BLAS Level 1, 2, and 3 (basic operations on sparse vectors and matrices)
¢ LAPACK routines for solving systems of linear equations

®* LAPACK routines for solving least-squares problems, eigenvalue and singular value
problems, and Sylvester’s equations

* Auxiliary and utility LAPACK routines

1-1

1 Intel® Math Kernel Library Reference Manual

* ScaLAPACK computational, driver and auxiliary routines (for Intel Cluster MKL only)
® Direct and Iterative Sparse Solver routines

® Vector Mathematical Library (VML) functions for computing core mathematical functions on
vector arguments (with Fortran and C interfaces)

® Vector Statistical Library (VSL): functions for generating vectors of pseudorandom numbers
with different types of statistical distributions and for performing convolution and correlation
computations

® General Discrete Fourier Transform Functions (DFT) and a subset of Fast Fourier transform
routines (FFT) with Fortran and C interfaces.

® Cluster DFT functions (for Intel Cluster MKL only)

¢ Interval Solver routines for solving systems of interval linear equations

For specific issues on using the library, please refer to the MKL Release Notes.

Technical Support

Intel MKL provides a product web site that offers timely and comprehensive product information,
including product features, white papers, and technical articles. For the latest information, check:
http://developer.intel.com/software/products/

Intel also provides a support web site that contains a rich repository of self help information,
including getting started tips, known product issues, product errata, license information, user
forums, and more (visit http://support.intel.com/support/).

Registering your product entitles you to one year of technical support and product updates through
Intel® Premier Support. Intel Premier Support is an interactive issue management and
communication web site providing these services:

® Submit issues and review their status.

* Download product updates anytime of the day.

To register your product, contact Intel, or seek product support, please visit:
http://www.intel.com/software/products/support

BLAS Routines

BLAS routines and functions are divided into the following groups according to the operations
they perform:

http://developer.intel.com/software/products/perflib/index.htm
http://support.intel.com/support/performancetools/libraries/mkl
http://developer.intel.com/software/products/support

Overview 1

* BLAS Level 1 Routines and Functions perform operations of both addition and reduction on
vectors of data. Typical operations include scaling and dot products.

* BLAS Level 2 Routines perform matrix-vector operations, such as matrix-vector
multiplication, rank-1 and rank-2 matrix updates, and solution of triangular systems.

* BLAS Level 3 Routines perform matrix-matrix operations, such as matrix-matrix
multiplication, rank-k update, and solution of triangular systems.

Starting from release 8.0, Intel MKL also supports Fortran-95 interface to BLAS routines.

Sparse BLAS Routines

Sparse BLLAS Level 1 Routines and Functions and Sparse BLAS Level 2 and Level 3 routines and
functions operate on sparse vectors and matrices. These routines perform vector operations similar
to BLAS Level 1, 2, and 3 routines. Sparse BLAS routines take advantage of vector and matrix
sparsity: they allow you to store only non-zero elements of vectors and matrices. Intel MKL also
supports Fortran-95 interface to Sparse BLAS routines.

LAPACK Routines

The Intel Math Kernel Library covers the full set of the LAPACK computational, driver, auxiliary
and utility routines.

The original versions of LAPACK from which that part of Intel MKL was derived can be obtained
from http://www.netlib.org/lapack/index.html. The authors of LAPACK are E. Anderson, Z. Bai,
C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A.
McKenney, and D. Sorensen.

The LAPACK routines can be divided into the following groups according to the operations they
perform:

* Routines for solving systems of linear equations, factoring and inverting matrices, and
estimating condition numbers (see Chapter 3).

® Routines for solving least-squares problems, eigenvalue and singular value problems, and
Sylvester’s equations (see Chapter 4).

® Auxiliary and utility routines used to perform certain subtasks, common low-level
computation or related tasks (see Chapter 5).

Starting from release 8.0, Intel MKL also supports Fortran-95 interface to LAPACK
computational and driver routines. This interface provides an opportunity for simplified calls of
LAPACK routines with fewer required arguments.

1-3

1 Intel® Math Kernel Library Reference Manual

ScaLAPACK Routines

ScaLAPACK package (included with Intel Cluster MKL only, see Chapter 6 and Chapter 7) runs
on distributed-memory architectures and includes routines for solving systems of linear equations,
solving linear least-squares problems, eigenvalue and singular value problems, as well as
performing a number of related computational tasks.

The original versions of ScaLAPACK from which that part of Intel Cluster MKL was derived can
be obtained from http://www.netlib.org/scalapack/index.html. The authors of ScaL APACK are

L. Blackford, J. Choi, A.Cleary, E. D’ Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S.
Hammarling, G. Henry, A. Petitet, K.Stanley, D. Walker, and R. Whaley.

Intel Cluster MKL version of ScaLAPACK is optimized for Intel processors and uses MPICH
version of MPI as well as Intel MPI.

Sparse Solver Routines

Direct sparse solver routines in Intel MKL (see Chapter 8) solve symmetric and
symmetrically-structured sparse matrices with real or complex coefficients. For symmetric
matrices, these Intel MKL subroutines can solve both positive definite and indefinite systems.
Inte]l MKL includes the PARDISO* sparse solver interface as well as an alternative set of user
callable direct sparse solver routines.

Intel MKL provides also an iterative sparse solver (see Chapter 8) that uses sparse BLAS level 2
and 3 routines and works with different sparse data formats.

VML Functions

Vector Mathematical Library (VML) functions (see Chapter 9) include a set of highly optimized
implementations of certain computationally expensive core mathematical functions (power,
trigonometric, exponential, hyperbolic etc.) that operate on real vector arguments.

VSL Functions

Vector Statistical Library (VSL) includes two sets of functions (see Chapter 10). The first set
includes a collection of pseudo- and quasi-random number generator subroutines implementing
basic continuous and discrete distributions. To provide best performance, VSL subroutines use
calls to highly optimized Basic Random Number Generators and the library of vector
mathematical functions, VML. The second set includes a collection of routines that implement a
wide variety of convolution and correlation operations.

Overview 1

Fourier Transform Functions

The Intel MKL multidimensional Discrete Fourier Transform functions with mixed radix support
(see Chapter 11) provide uniformity of DFT computation and combine functionality with ease of
use. Both Fortran and C interface specification are given. There is also a cluster version of DFT
functions which runs on distributed-memory architectures and is provided with Intel Cluster MKL
package.

For compatibility with previous versions, Intel MKL provides also a set of simplified one- and
two-dimensional Fast Fourier Transform functions that support powers of 2 transform size. These
FFT functions are deprecated and neither their features nor performance match those of the DFTs,
mentioned above.

Since only DFT and Cluster DFT functions continue to be developed and optimized, use only
these functions instead of FFTs in your application.

Interval Solver Routines

Interval Solver routines included into Intel MKL (see Chapter 12) can be used to solve interval
systems of linear equations and related problems.

Performance Enhancements

The Intel Math Kernel Library has been optimized by exploiting both processor and system
features and capabilities. Special care has been given to those routines that most profit from
cache-management techniques. These especially include matrix-matrix operation routines such as
dgemm ().

In addition, code optimization techniques have been applied to minimize dependencies of
scheduling integer and floating-point units on the results within the processor.

The major optimization techniques used throughout the library include:
* Loop unrolling to minimize loop management costs.

* Blocking of data to improve data reuse opportunities.

* Copying to reduce chances of data eviction from cache.

¢ Data prefetching to help hide memory latency.

® Multiple simultaneous operations (for example, dot products in dgemm) to eliminate stalls due
to arithmetic unit pipelines.

1 Intel® Math Kernel Library Reference Manual

® Use of hardware features such as the SIMD arithmetic units, where appropriate.

These are techniques from which the arithmetic code benefits the most.

Parallelism

In addition to the performance enhancements discussed above, the Intel MKL offers performance
gains through parallelism provided by the symmetric multiprocessing performance (SMP) feature.
You can obtain improvements from SMP in the following ways:

® One way is based on user-managed threads in the program and further distribution of the
operations over the threads based on data decomposition, domain decomposition, control
decomposition, or some other parallelizing technique. Each thread can use any of the Intel
MKL functions because the library has been designed to be thread-safe.

® Another method is to use the FFT and BLAS level 3 routines. They have been parallelized and
require no alterations of your application to gain the performance enhancements of
multiprocessing. Performance using multiple processors on the level 3 BLAS shows excellent
scaling. Since the threads are called and managed within the library, the application does not
need to be recompiled thread-safe (see also Fortran-95 Interface Conventions in Chapter 2).

® Yet another method is to use tuned LAPACK routines. Currently these include the single- and
double precision flavors of routines for QR factorization of general matrices, triangular
factorization of general and symmetric positive-definite matrices, solving systems of
equations with such matrices, as well as solving symmetric eigenvalue problems.

For instructions on setting the number of available processors for the BLAS level 3 and LAPACK
routines, see the Intel MKL Technical User Notes.

Platforms Supported

The Intel Math Kernel Library includes Fortran routines and functions optimized for Inte]®
processor-based computers running operating systems that support multiprocessing. In addition to
the Fortran interface, the Intel MKL includes a C-language interface for the Discrete Fourier
transform functions, as well as for the Vector Mathematical Library and Vector Statistical Library
functions.

For hardware and software requirements to use Intel MKL, see MKL Release Notes.

Overview 1

About This Manual

This manual describes the routines and functions of the Intel MKL and Intel Cluster MKL.
Each reference section describes a routine group typically consisting of routines used with four
basic data types: single-precision real, double-precision real, single-precision complex, and
double-precision complex.

Each routine group is introduced by its name, a short description of its purpose, and the calling
sequence, or syntax, for each type of data with which each routine of the group is used. The
following sections are also included:

Description Describes the operation performed by routines of the group based on one
or more equations. The data types of the arguments are defined in
general terms for the group.

Input Parameters Defines the data type for each parameter on entry, for example:

a REAL for saxpy
DOUBLE PRECISION for daxpy

Output Parameters Lists resultant parameters on exit.

Audience for This Manual

The manual addresses programmers proficient in computational mathematics and assumes a
working knowledge of the principles and vocabulary of linear algebra, mathematical statistics, and
Fourier transforms.

Manual Organization

The manual contains the following chapters and appendixes:

Chapter 1 Overview. Introduces the Intel Math Kernel Library software, provides
information on manual organization, and explains notational conventions.
Chapter 2 BLAS and Sparse BLAS Routines. Provides descriptions of BLAS and Sparse

BLAS functions and routines.

Chapter 3 LAPACK Routines: Linear Equations. Provides descriptions of LAPACK
routines for solving systems of linear equations and performing a number of
related computational tasks: triangular factorization, matrix inversion,
estimating the condition number of matrices.

1 Intel® Math Kernel Library Reference Manual

1-8

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Appendix A

Appendix B

Appendix C

Appendix D

LAPACK Routines: Least Squares and Eigenvalue Problems. Provides
descriptions of LAPACK routines for solving least-squares problems, standard
and generalized eigenvalue problems, singular value problems, and Sylvester’s
equations.

LAPACK Auxiliary and Utility Routines. Describes auxiliary and utility
LAPACK routines that perform certain subtasks or common low-level
computation.

ScaL APACK Routines. Describes ScaLAPACK computational and driver
routines (software included with Intel Cluster MKL only).

ScalL APACK Auxiliary and Utility Routines. Describes ScaLAPACK auxiliary
routines (software included with Intel Cluster MKL only).

Sparse Solver Routines. Describes direct sparse solver routines that solve
symmetric and symmetrically-structured sparse matrices. Also describes the
iterative sparse solver routines.

Vector Mathematical Functions. Provides descriptions of VML functions for
computing elementary mathematical functions on vector arguments.

Statistical Functions. Provides descriptions of VSL functions for generating
vectors of pseudorandom numbers and for performing convolution and
correlation operations.

Fourier Transform Functions. Describes multidimensional functions for
computing the Discrete Fourier Transform. Gives also the description of
cluster DFT functions (software included with Intel Cluster MKL only) and
simplified Fast Fourier Transform (FFT) functions. The FFT functions have
been deprecated in Intel MKL and are retained only for legacy reasons. DFT
functions should be used instead.

Interval Linear Solvers. Describes routines that can be used to solve interval
systems of linear equations and related problems.

Linear Solvers Basics. Briefly describes the basic definitions and approaches
used in linear algebra for solving systems of linear equations. Also describes
sparse data storage formats, as well as basic concepts of interval arithmetic.

Routine and Function Arguments. Describes the major arguments of the BLAS
routines and VML functions: vector and matrix arguments.

Code Examples. Provides code examples of calling various Intel MKL
functions and routines (BLAS, Sparse Solver, DFT).

CBLAS Interface to the BLAS. Provides the C interface to the BLAS.

Overview 1

The manual also includes a Bibliography, Glossary and an Index.

Notational Conventions

This manual uses the following notational conventions:

¢ Routine name shorthand (?ungqgr instead of cungqgr/zungqgr).

®* Font conventions used for distinction between the text and the code.

Routine Name Shorthand

For shorthand, character codes are represented by a question mark “?”” in names of routine groups.
The question mark is used to indicate any or all possible varieties of a function; for example:

?swap Refers to all four data types of the vector-vector ? swap routine: sswap,
dswap, cswap, and zswap.

Font Conventions

The following font conventions are used:

UPPERCASE COURIER

lowercase courier

lowercase courier mixed
with UpperCase courier

lowercase courier italic

Data type used in the discussion of input and output parameters
for Fortran interface. For example, CHARACTER*1.

Code examples:
a(k+i,j) = matrix(i,3j)
and data types for C interface, for example, const £loat*

Function names for C interface,
for example, vmlSetMode

Variables in arguments and parameters discussion. For example,
incx.

Used as a multiplication symbol in code examples and
equations and where required by the Fortran syntax.

1-9

BLAS and Sparse BLAS
Routines

This chapter contains descriptions of the BLAS and Sparse BLAS routines of the Intel® Math
Kernel Library. The routine descriptions are arranged in several sections according to the BLAS
level of operation:

* BLAS Level 1 Routines and Functions (vector-vector operations)

* BLAS Level 2 Routines (matrix-vector operations)

* BLAS Level 3 Routines (matrix-matrix operations)

* Sparse BLAS [evel 1 Routines and Functions (vector-vector operations).

® Sparse BLAS Level 2 and Level 3 (matrix-vector and matrix-matrix operations).

Each section presents the routine and function group descriptions in alphabetical order by routine
or function group name; for example, the ?asum group, the ?axpy group. The question mark in
the group name corresponds to different character codes indicating the data type (s, d, ¢, and z or
their combination); see Routine Naming Conventions on the next page.

When BLAS or Sparse BLAS routines encounter an error, they call the error reporting routine
xerbla. To be able to view error reports, you must include xerbla in your code. A copy of the
source code for xerbla is included in the library.

[T¥REL)

In BLAS Level 1 groups i?amax and i?amin, an “i” is placed before the character code and
corresponds to the index of an element in the vector. These groups are placed in the end of the
BLAS Level 1 section.

2-1

2 Intel® Math Kernel Library Reference Manual

BLAS Routines and Functions

Routine Naming Conventions

BLAS routine names have the following structure:

<character code> <name> <mod> ()

The <character codes is a character that indicates the data type:
s real, single precision c complex, single precision

d real, double precision z complex, double precision

Some routines and functions can have combined character codes, such as
sc or dz. For example, the function scasum uses a complex input array and returns a real value.

The <name> field, in BLAS level 1, indicates the operation type. For example, the BLAS level 1
routines ?dot, ?rot, ?swap compute a vector dot product, vector rotation, and vector swap,
respectively.

In BLAS level 2 and 3, <name > reflects the matrix argument type:

ge general matrix

gb general band matrix

sy symmetric matrix

sp symmetric matrix (packed storage)
sb symmetric band matrix

he Hermitian matrix

hp Hermitian matrix (packed storage)
hb Hermitian band matrix

tr triangular matrix

tp triangular matrix (packed storage)

tb triangular band matrix.

The <mod> field, if present, provides additional details of the operation.
BLAS level 1 names can have the following characters in the <mod> field:

c conjugated vector
u unconjugated vector
g Givens rotation.

BLAS level 2 names can have the following characters in the <mod> field:
mv matrix-vector product

BLAS and Sparse BLAS Routines 2

sv solving a system of linear equations with matrix-vector operations
r rank-1 update of a matrix
r2 rank-2 update of a matrix.

BLAS level 3 names can have the following characters in the <mod> field:
mm matrix-matrix product

sm solving a system of linear equations with matrix-matrix operations
rk rank-k update of a matrix

r2k rank-2k update of a matrix.

The examples below illustrate how to interpret BLAS routine names:

<d> <dot>
<c> <dot> <c>

<SC> <asum>

<c> <dot> <u>
<S> <ge> <mv>

<zZ> <tr> <mm>

ddot: double-precision real vector-vector dot product
cdotc: complex vector-vector dot product, conjugated

scasum: sum of magnitudes of vector elements, single precision real output
and single precision complex input

cdotu: vector-vector dot product, unconjugated, complex
sgemv: matrix-vector product, general matrix, single precision

ztrmm: matrix-matrix product, triangular matrix, double-precision complex.

Sparse BLAS naming conventions are similar to those of BLAS level 1.
For more information, see “Naming Conventions”.

Fortran-95 Interface Conventions

Fortran-95 interface to BLAS and Sparse BLAS Level 1 routines is implemented through
wrappers that call respective Fortran-77 routines. This interface uses such features of Fortran-95 as
assumed-shape arrays and optional arguments to provide simplified calls to BLAS and Sparse
BLAS Level 1 routines with fewer arguments.

The main conventions that are used in Fortran-95 interface are as follows:

¢ The names of arguments used in Fortran-95 call are typically the same as for the respective
generic (Fortran-77) interface. However, to reduce the number of argument names used in the
library, the following identity settings of formal argument names were made:

Generic Argument Fortran-95 Argument

Name

ap

Name

a

2 Intel® Math Kernel Library Reference Manual

Note that these name changes of formal arguments have no impact on program semantics and
follow the conventions of unification names.

* Input arguments such as array dimensions are not required in Fortran-95 and are skipped from
the calling sequence. Array dimensions are reconstructed from the user data that must exactly
follow the required array shape.

Also, an argument can be skipped if its value is completely defined by the presence or
absence of another argument in the calling sequence, and the restored value is the only
meaningful value for the skipped argument.

* Arguments incx and incy are skipped. In all cases their values are assumed to be 1. One can
obtain the effect of the values of incx and incy not being equal to 1 by using corresponding
Fortran-95 feature: index incrementing may be directly established in actual arguments. Other
possibility to obtain this effect is to use Fortran-77 call.

* Some generic arguments are declared as optional in Fortran-95 interface and may or may not
be present in the calling sequence. An argument can be declared optional if it satisfies one of
the following conditions:

1. If an input argument can take only a few possible values, it can be declared as optional.
The default value of such argument is typically set as the first value in the list and all
exceptions to this rule are explicitly stated in the routine description.

2. Ifan input argument has a natural default value, it can be declared as optional. The
default value of such optional argument is set to its natural default value.

® Optional arguments are given in square brackets in Fortran-95 call syntax.

The concrete rules used for reconstructing the values of omitted optional parameters are specific
for each routine and are detailed in the respective “Fortran-95 Notes* subsection given at the end
of routine specification section. If this subsection is omitted, the Fortran-95 interface for the given
routine does not differ from the corresponding Fortran-77 interface.

Note that this interface is not implemented in the current version of Sparse BLAS Level 2 and
Level 3 routines. Fortran-95 interfaces for each these routines is given in the “Interfaces -
Fortran-95 subsection at the end of the respective routine specification section.

Matrix Storage Schemes

Matrix arguments of BLAS routines can use the following storage schemes:

® Full storage: a matrix A is stored in a two-dimensional array a, with the matrix element a;;
stored in the array element a (i, 7).

BLAS and Sparse BLAS Routines 2

® Packed storage scheme allows you to store symmetric, Hermitian, or triangular matrices more
compactly: the upper or lower triangle of the matrix is packed by columns in a
one-dimensional array.

® Band storage: a band matrix is stored compactly in a two-dimensional array: columns of the
matrix are stored in the corresponding columns of the array, and diagonals of the matrix are

stored in rows of the array.

For more information on matrix storage schemes, see “Matrix Arguments” in Appendix B.
9

BLAS Level 1 Routines and Functions

BLAS Level 1 includes routines and functions, which perform vector-vector operations. Table 2-1
lists the BLAS Level 1 routine and function groups and the data types associated with them.

Table 2-1 BLAS Level 1 Routine Groups and Their Data Types

Routine or

Function

Group Data Types Description

?asum s, d, sc, dz Sum of vector magnitudes (functions)

?axpy s,d,c,z Scalar-vector product (routines)

?copy s,d, c,z Copy vector (routines)

?dot s, d Dot product (functions)

?sdot sd, d Dot product with extended precision
(functions)

2?dotc c, z Dot product conjugated (functions)

?dotu c,z Dot product unconjugated (functions)

?2nrm2 s, d, sc, dz Vector 2-norm (Euclidean norm) a normal
or null vector (functions)

?rot s, d, cs, zd Plane rotation of points (routines)

?rotg s,d,c,z Givens rotation of points (routines)

?rotm s, d Modified plane rotation of points

?rotmg s, d Givens modified plane rotation of points

?scal s, d, ¢, z, cs, zd Vector scaling (routines)

?swap s,d, ¢z Vector-vector swap (routines)

i?amax s,d,c, z Vector maximum value, absolute largest

element of a vector, where 1 is an index
to this value in the vector array (functions)

2 Intel® Math Kernel Library Reference Manual

Table 2-1 BLAS Level 1 Routine Groups and Their Data Types
Routine or
Function
Group Data Types Description
i?amin s,d,c,z Vector minimum value, absolute smallest

element of a vector, where 1 is an index
to this value in the vector array (functions)

dcabsl d Absolute value of a double complex
number z.

?asum

Computes the sum of magnitudes of the vector elements.

Syntax

Fortran 77:

res = gsasum(n, x, incx)
res = scasum(n, x, incx)
res = dasum(n, x, incx)
res = dzasum(n, x, incx)
Fortran 95:

res = asum(x)

Description

Given a vector x, ?asum functions compute the sum of the magnitudes of its elements or, for
complex vectors, the sum of magnitudes of the elements’ real parts plus magnitudes of their
imaginary parts:

res = |Rex (1) |+ [Imx (1) + [Rex (2) | + [Imx (2) [+ ... + |Rex (n) | + |Imx (n) |
where x is a vector of order n.

Input Parameters

n INTEGER. Specifies the order of vector x.

BLAS and Sparse BLAS Routines 2

x REAL for sasum
DOUBLE PRECISION for dasum
COMPLEX for scasum
DOUBLE COMPLEX for dzasum

Array, DIMENSION at least (1 + (n-1)*abs(incx)).

incx INTEGER. Specifies the increment for the elements of x.

Output Parameters

res REAL for sasum
DOUBLE PRECISION for dasum
REAL for scasum
DOUBLE PRECISION for dzasum

Contains the sum of magnitudes of all elements’ real parts plus magnitudes of

their imaginary parts.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine asum interface are the following:

x Holds the array of size (n).

?axpy

Computes a vector-scalar product and adds the result
fo a vector.

Syntax

Fortran 77:

call saxpy(n, a, x, incx, y, incy)
call daxpy(n, a, x, incx, y, incy)
call caxpy(n, a, x, incx, y, incy)

call zaxpy(n, a, x, incx, y, incy)

2-7

2 Intel® Math Kernel Library Reference Manual

2-8

Fortran 95:
call axpy(x, y [,al)

Description

The ?axpy routines perform a vector-vector operation defined as
y = a*x + y

where:

a is a scalar

x and y are vectors of order n.

Input Parameters
n INTEGER. Specifies the order of vectors x and y

a REAL for saxpy
DOUBLE PRECISION for daxpy
COMPLEX for caxpy
DOUBLE COMPLEX for zaxpy

Specifies the scalar a.

x REAL for saxpy
DOUBLE PRECISION for daxpy
COMPLEX for caxpy
DOUBLE COMPLEX for zaxpy

Array, DIMENSION at least (1 + (n-1)*abs(incx)).
inex INTEGER. Specifies the increment for the elements of x.

v REAL for saxpy
DOUBLE PRECISION for daxpy
COMPLEX for caxpy
DOUBLE COMPLEX for zaxpy

Array, DIMENSION at least (1 + (n-1)*abs(incy)).

incy INTEGER. Specifies the increment for the elements of y:

Output Parameters

v Contains the updated vector y

BLAS and Sparse BLAS Routines 2

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine axpy interface are the following:

x Holds the array of size (n).

v Holds the array of size (n).

a The default value is 1.
?copy

Copies vector to another vector.

Syntax
Fortran 77:

call scopy(n, x, incx, y, incy)
call dcopy(n, x, incx, y, incy)
call ccopy(n, x, incx, y, incy)

call zcopy(n, x, incx, y, incy)

Fortran 95:

call copy(x, y)

Description

The ?copy routines perform a vector-vector operation defined as
y = X

where x and y are vectors.

Input Parameters

n INTEGER. Specifies the order of vectors x and y.

2-9

2 Intel® Math Kernel Library Reference Manual

x REAL for scopy

DOUBLE PRECISION for dcopy
COMPLEX for ccopy
DOUBLE COMPLEX for zcopy

Array, DIMENSION at least (1 + (n-1)*abs(incx)).

incx INTEGER. Specifies the increment for the elements of x.

v REAL for scopy

DOUBLE PRECISION for dcopy
COMPLEX for ccopy
DOUBLE COMPLEX for zcopy

Array, DIMENSION at least (1 + (n-1)*abs (incy)).

incy INTEGER. Specifies the increment for the elements of y.

Output Parameters
y Contains a copy of the vector x if n is positive. Otherwise, parameters are

unaltered.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine copy interface are the following:
x Holds the vector of length (n).
v Holds the vector of length (n).

?dot

Computes a vector-vector dot product.

2-10

Syntax
Fortran 77:

res = sdot(n, x, incx, y, incy)

BLAS and Sparse BLAS Routines 2

res = ddot(n, x, incx, y, incy)

Fortran 95:

res = dot(x, y)

Description

The ?dot functions perform a vector-vector reduction operation defined as

res = Z (x*y),

where x and y are vectors.

Input Parameters
n INTEGER. Specifies the order of vectors x and y.

x REAL for sdot
DOUBLE PRECISION for ddot

Array, DIMENSION at least (1+ (n-1) *abs (incx)).
incx INTEGER. Specifies the increment for the elements of x.

v REAL for sdot
DOUBLE PRECISION for ddot

Array, DIMENSION at least (1+ (n-1) *abs (incy)).

incy INTEGER. Specifies the increment for the elements of y:

Output Parameters

res REAL for sdot
DOUBLE PRECISION for ddot

Contains the result of the dot product of x and y; if n is positive. Otherwise,

res contains 0.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine dot interface are the following:

x Holds the vector of length (n).

2 Intel® Math Kernel Library Reference Manual

v Holds the vector of length (n).
?sdot
Computes a vector-vector dot product with extended
precision.

Syntax

Fortran 77:

res = sdsdot(n, sb, sx, incx, sy, incy)
res = dsdot(n, sx, incx, sy, incy)
Fortran 95:

res = sdot (sx, sy)

res = sdot(sx, sy, sb)

Description

The ?sdot functions compute the inner product of two vectors with extended precision. Both
functions use extended precision accumulation of the intermediate results, but the function
sdsdot outputs the final result in single precision, whereas the function dsdot outputs the
double precision result. The function sdsdot also adds scalar value sb to the inner product.

Input Parameters

n INTEGER. Specifies the number of elements in the input vectors sx and sy

sb REAL. Single precision scalar to be added to inner product (for the function
sdsdot only).

sx, sy REAL. Arrays, DIMENSION at least (1+ (n-1) *abs (incx)) and
(1+ (n-1) *abs (incy)), respectively. Contain the input single precision
vectors.
incx INTEGER. Specifies the increment for the elements
of sx.
incy INTEGER. Specifies the increment for the elements
of sy

2-12

BLAS and Sparse BLAS Routines 2

Output Parameters

res REAL for sdsdot
DOUBLE PRECISION for dsdot

Contains the result of the dot product of sx and sy (with sb added for
sdsdot), if n is positive. Otherwise, res contains sb for sdsdot and 0 for
dsdot.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine sdot interface are the following:

sx Holds the vector of length (n).

sy Holds the vector of length (n).
: NOTE. Note that scalar parameter sb is declared as a required parameter
_ in Fortran-95 interface for the function sdot to distinguish between function

flavors that output final result in different precision.

?dotc

Computes a dot product of a conjugated vector with
another vector.

Syntax

Fortran 77:

res = cdotc(n, x, incx, y, incy)
res = zdotc(n, x, incx, y, incy)
Fortran 95:

res = dotc(x, y)

2 Intel® Math Kernel Library Reference Manual

2-14

Description

The ?dotc functions perform a vector-vector operation defined as

res = Z (conjg(x)*y),

where x and y are n-element vectors.

Input Parameters

n

X

incx

incy

INTEGER. Specifies the order of vectors x and y.

COMPLEX for cdotc
DOUBLE COMPLEX for zdotc

Array, DIMENSION at least (1 + (n-1) *abs (incx)).
INTEGER. Specifies the increment for the elements of x.

COMPLEX for cdotc
DOUBLE COMPLEX for zdotc

Array, DIMENSION at least (1 + (n-1) *abs (incy)).

INTEGER. Specifies the increment for the elements of y:

Output Parameters

res

COMPLEX for cdotc
DOUBLE COMPLEX for zdotc

Contains the result of the dot product of the conjugated x and unconjugated y;
if n is positive. Otherwise, res contains 0.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine dotc interface are the following:

X

y

Holds the vector of length (n).
Holds the vector of length (n).

BLAS and Sparse BLAS Routines 2

?dotu

Computes a vector-vector dot product.

Syntax
Fortran 77:

res = cdotu(n, x, incx, y, incy)

res = zdotu(n, x, incx, y, incy)

Fortran 95:

res = dotul(x, y)

Description
The ?dotu functions perform a vector-vector reduction operation defined as res = Z (x*y),

where x and y are n-element complex vectors.

Input Parameters
n INTEGER. Specifies the order of vectors x and y.

x COMPLEX for cdotu
DOUBLE COMPLEX for zdotu

Array, DIMENSION at least (1 + (n-1)*abs (incx)).
inecx INTEGER. Specifies the increment for the elements of x.

v COMPLEX for cdotu
DOUBLE COMPLEX for zdotu

Array, DIMENSION at least (1 + (n-1) *abs (incy)).

incy INTEGER. Specifies the increment for the elements of y:

Output Parameters

res COMPLEX for cdotu
DOUBLE COMPLEX for zdotu

Contains the result of the dot product of x and y; if n is positive. Otherwise,
res contains 0.

2-15

2 Intel® Math Kernel Library Reference Manual

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine dotu interface are the following:

x Holds the vector of length (n).
v Holds the vector of length (n).
?nrm2

Computes the Euclidean norm of a vector.

Syntax

Fortran 77:

res = snrm2(n, x, 1ncx)
res = dnrm2(n, x, incx)
res = scnrm2(n, x, incx)
res = dznrm2(n, x, incx)
Fortran 95:

res = nrm2 (x)

Description

The ?nrm2 functions perform a vector reduction operation defined as

res = ||x|]|,
where:

x 18 a vector

res is a value containing the Euclidean norm of the elements of x.

BLAS and Sparse BLAS Routines 2

Input Parameters
n INTEGER. Specifies the order of vector x.

x REAL for snrm2
DOUBLE PRECISION for dnrm2
COMPLEX for scnrm2
DOUBLE COMPLEX for dznrm2

Array, DIMENSION at least (1 + (n-1) *abs (incx)).

incx INTEGER. Specifies the increment for the elements of x.

Output Parameters

res REAL for snrm2
DOUBLE PRECISION for dnrm2
REAL for scnrm?2
DOUBLE PRECISION for dznrm2

Contains the Euclidean norm of the vector x.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine nrm2 interface are the following:

x Holds the vector of length (n).

Performs rotation of points in the plane.

Syntax

Fortran 77:
call srot(n, x, incx, y, incy, c, s)
call drot(n, x, incx, y, incy, c, S)

call csrot(n, x, incx, y, incy, c, s)

2-17

2 Intel® Math Kernel Library Reference Manual

call zdrot(n, x, incx, y, incy, c, s)

Fortran 95:
call rot(x, y [,cl [,s])

Description

Given two complex vectors x and y; each vector element of these vectors is replaced as follows:
x(1) = c*x(1i) + s*y(1)

y(i) = c*y(i) - s*x(1i)

Input Parameters
n INTEGER. Specifies the order of vectors x and y.

x REAL for srot
DOUBLE PRECISION for drot
COMPLEX for csrot
DOUBLE COMPLEX for zdrot

Array, DIMENSION at least (1 + (n-1) *abs (incx)).
incx INTEGER. Specifies the increment for the elements of x.

v REAL for srot
DOUBLE PRECISION for drot
COMPLEX for csrot
DOUBLE COMPLEX for zdrot

Array, DIMENSION at least (1 + (n-1) *abs (incy)).
incy INTEGER. Specifies the increment for the elements of y:

c REAL for srot
DOUBLE PRECISION for drot
REAL for csrot
DOUBLE PRECISION for zdrot

A scalar.

s REAL for srot
DOUBLE PRECISION for drot
REAL for csrot
DOUBLE PRECISION for zdrot

2-18

BLAS and Sparse BLAS Routines 2

A scalar.

Output Parameters
x Each element is replaced by c*x + s*y.

v Each element is replaced by c*y - s*x.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine rot interface are the following:

x Holds the vector of length (n).

v Holds the vector of length (n).

c The default value is 1.

s The default value is 1.
?rotg

Computes the parameters for a Givens rotation.

Syntax

Fortran 77:

call srotg(a, b, c, s)
call drotg(a, b, ¢, s)
call crotg(a, b, c, s)
call zrotg(a, b, c, s)

Fortran 95:
call rotg(a, b, c, s)

2 Intel® Math Kernel Library Reference Manual

2-20

Description

Given the cartesian coordinates (a, b) of a point p, these routines return the parameters a, b, c,
and s associated with the Givens rotation that zeros the y-coordinate of the point.

See a more accurate LAPACK version ?lartg.

Input Parameters

a REAL for srotg
DOUBLE PRECISION for drotg
COMPLEX for crotg
DOUBLE COMPLEX for zrotg

Provides the x-coordinate of the point p.

b REAL for srotg
DOUBLE PRECISION for drotg
COMPLEX for crotg
DOUBLE COMPLEX for zrotg

Provides the y-coordinate of the point p.

Output Parameters

a Contains the parameter r associated with the Givens rotation.
b Contains the parameter z associated with the Givens rotation.
c REAL for srotg

DOUBLE PRECISION for drotg
REAL for crotg
DOUBLE PRECISION for zrotg

Contains the parameter c associated with the Givens rotation.

s REAL for srotg
DOUBLE PRECISION for drotg
COMPLEX for crotg
DOUBLE COMPLEX for zrotg

Contains the parameter s associated with the Givens rotation.

BLAS and Sparse BLAS Routines 2

?rotm

Performs rotation of points in the modified plane.

Syntax
Fortran 77:

call srotm(n, x, incx, y, incy, param)

call drotm(n, x, incx, y, incy, param)

Fortran 95:

call rotm(x, y [,param])

Description

Given two complex vectors x and y; each vector element of these vectors is replaced as follows:
x(i) = H*x (1) + H*y (1)

y(i) = H*y (i) - H*x (1)

where:

His a modified Givens transformation matrix whose values are stored in the param(2) through
param(5) array. See discussion on the param argument.

Input Parameters

n INTEGER. Specifies the order of vectors x and y.

x REAL for srotm
DOUBLE PRECISION for drotm
Array, DIMENSION at least (1 + (n-1)*abs (incx)).

incx INTEGER. Specifies the increment for the elements of x.

v REAL for srotm
DOUBLE PRECISION for drotm
Array, DIMENSION at least (1 + (n-1) *abs (incy)).

incy INTEGER. Specifies the increment for the elements of y:

2-21

2 Intel® Math Kernel Library Reference Manual

2-22

param REAL for srotm
DOUBLE PRECISION for drotm
Array, DIMENSION 5.

The elements of the param array are:

param (1) contains a switch, flag.
param(2-5) contain h11, h21, h12, and h22, respectively, the components of
the array H.

Depending on the values of f1ag, the components of H are set as follows:

flag = -1.: g =|h11 h12
h21 h22

flag = 0.: H = 1. hiz
h21 1.

flag:l:H:hll 1.
—-1. h22

flag = -2.:H = {1' 0}
0. 1.

In the above cases, the matrix entries of 1., -1., and 0. are assumed based on
the last three values of £1ag and are not actually loaded into the param vector.

Output Parameters

x Each element is replaced by hi1*x + hi2*y.
Yy Each element is replaced by h21+x + h22*y.
H Givens transformation matrix updated.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine rotm interface are the following:

x Holds the vector of length (n).

BLAS and Sparse BLAS Routines 2

v Holds the vector of length (n).
param The default value for param(1) is -2.
?rotmg
Computes the modified parameters for a Givens
rotation.
Syntax
Fortran 77:

call srotmg(di, d2, x1, yl, param)
call drotmg(di, d2, x1, yl, param)

Fortran 95:
call rotmg(xl, yl, param [,d1] [d2])

Description

Given cartesian coordinates (x1, y1) of an input vector, these routines compute the components of
a modified Givens transformation matrix H that zeros the y-component of the resulting vector:

3
0 vyl
Input Parameters

di1 REAL for srotmg
DOUBLE PRECISION for drotmg
Provides the updated scaling factor for the x-coordinate of the input vector
(sqrt (d1)x1).

dz REAL for srotmg
DOUBLE PRECISION for drotmg
Provides the updated scaling factor for the y-coordinate of the input vector
(sqrt (d2) y1).

2-23

2 Intel® Math Kernel Library Reference Manual

x1 REAL for srotmg
DOUBLE PRECISION for drotmg
Provides the rotated x-coordinate of the input vector.

yvi REAL for srotmg
DOUBLE PRECISION for drotmg
Provides the y-coordinate of the input vector.

Output Parameters

param REAL for srotmg
DOUBLE PRECISION for drotmg
Array, DIMENSION 5.

The elements of the param array are:

param (1) contains a switch, flag.
param(2-5) contain h11, h21, h12, and h22, respectively, the components of
the array H.

Depending on the values of £1ag, the components of H are set as follows:
_1.. g -|h11 h12
h21 h22

flag

flag = 0.: H = { 1. hlﬂ
h

21 1.

flag = 1.: H = {hll l'}
-1. h22

flag = -2.: H = {1'0}
0. 1.

In the above cases, the matrix entries of 1., -1., and 0. are assumed based on the
last three values of £f1ag and are not actually loaded into the param vector.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine rotmg interface are the following:

2-24

BLAS and Sparse BLAS Routines 2

d1 The default value is 1.
dz The default value is 1.

?scal

Computes a vector by a scalar product.

Syntax
Fortran 77:

call sscal(n, a, x, incx
call dscal(n, a, x, incx

call cscal(n, a, x, incx

)
)
)
call zscal(n, a, x, incx)

call c¢sscal(n, a, x, incx)

call zdscal(n, a, x, incx)

Fortran 95:

call scal(x, a)

Description

The ?scal routines perform a vector-vector operation defined as
X = a*x

where:

a is a scalar, x is an n-element vector.

Input Parameters
n INTEGER. Specifies the order of vector x.

a REAL for sscal and csscal
DOUBLE PRECISION for dscal and zdscal
COMPLEX for cscal
DOUBLE COMPLEX for zscal

Specifies the scalar a.

2-25

2 Intel® Math Kernel Library Reference Manual

x REAL for sscal
DOUBLE PRECISION for dscal
COMPLEX for cscal and csscal
DOUBLE COMPLEX for zscal and csscal

Array, DIMENSION at least (1 + (n-1) *abs (incx)).

incx INTEGER. Specifies the increment for the elements of x.

Output Parameters

x Overwritten by the updated vector x.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine scal interface are the following:

x Holds the vector of length (n).

: NOTE. Note that scalar parameter a is declared as a required parameter in
_ Fortran-95 interface for the routine scal to distinguish between routine
flavors that operate on different data types.

?swap

Swaps a vector with another vector.

2-26

Syntax
Fortran 77:

call sswap(n, x, incx, y, incy
call dswap(n, x, incx, y, incy
call cswap(n, x, incx, y, incy

call zswap(n, x, incx, y, incy

BLAS and Sparse BLAS Routines 2

Fortran 95:
call swap(x, y)

Description

Given the two complex vectors x and y; the ? swap routines return vectors y and x swapped, each
replacing the other.

Input Parameters

n INTEGER. Specifies the order of vectors x and y.

x REAL for sswap
DOUBLE PRECISION for dswap
COMPLEX for cswap
DOUBLE COMPLEX for zswap

Array, DIMENSION at least (1 + (n-1)*abs (incx)).
inecx INTEGER. Specifies the increment for the elements of x.

v REAL for sswap
DOUBLE PRECISION for dswap
COMPLEX for cswap
DOUBLE COMPLEX for zswap

Array, DIMENSION at least (1 + (n-1) *abs (incy)).

incy INTEGER. Specifies the increment for the elements of y:

Output Parameters
x Contains the resultant vector x.

v Contains the resultant vector y:

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine swap interface are the following:
x Holds the vector of length (n).

v Holds the vector of length (n).

2-27

2 Intel® Math Kernel Library Reference Manual

i?7amax

Finds the element of a vector that has the largest
absolute value.

Syntax
Fortran 77:

index = isamax(n, x, incx)

index = idamax(n, x, incx)

index = icamax(n, x, incx)
index = izamax(n, x, incx)
Fortran 95:

res = lamax (x)

Description

Given a vector x, the 1 ?amax functions return the position of the vector element x (1) that has the
largest absolute value or, for complex flavors, the position of the element with the largest sum
[Re x (1) |+ [Im x (1)].

If n is not positive, 0 is returned.

If more than one vector element is found with the same largest absolute value, the index of the first
one encountered is returned.

Input Parameters

n INTEGER. Specifies the order of the vector x.

x REAL for isamax
DOUBLE PRECISION for idamax
COMPLEX for icamax
DOUBLE COMPLEX for izamax

Array, DIMENSION at least (1+ (n-1) *abs (incx)).

inex INTEGER. Specifies the increment for the elements of x.

2-28

BLAS and Sparse BLAS Routines 2

Output Parameters
index INTEGER. Contains the position of vector element x that has the largest
absolute value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine amax interface are the following:

x Holds the vector of length (n).

i7amin
Finds the element of a vector that has the smallest
absolute value.

Syntax

Fortran 77:

index = isamin(n, x, incx)
index = idamin(n, x, incx)
index = icamin(n, x, incx)
index = izamin(n, x, incx)
Fortran 95:

res = lamin(x)

Description

Given a vector x, the 1 ?amin functions return the position of the vector element x (1) that has the
smallest absolute value or, for complex flavors, the position of the element with the smallest sum
[Rex (1)]+ [Imx (1) |-

If nn is not positive, 0 is returned.

2-29

2 Intel® Math Kernel Library Reference Manual

If more than one vector element is found with the same smallest absolute value, the index of the
first one encountered is returned.

Input Parameters

n INTEGER. On entry, n specifies the order of the vector x.

x REAL for isamin
DOUBLE PRECISION for idamin
COMPLEX for icamin
DOUBLE COMPLEX for izamin

Array, DIMENSION at least (1+ (n-1) *abs (incx)).

incx INTEGER. Specifies the increment for the elements of x.

Output Parameters
index INTEGER. Contains the position of vector element x that has the smallest

absolute value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine amin interface are the following:

x Holds the vector of length (n).

dcabs1

Computes absolute value of double complex number.

Syntax
Fortran 77:

res = dcabsl (z)

Fortran 95:

res = dcabsl (z)

BLAS and Sparse BLAS Routines 2

Description

The dcabs1 is an auxiliary routine for a few BLAS Level 1 routines. This function performs an
operation defined as

res=|[Re(z)|+|Im(2)],
where z is a scalar and res is a value containing the absolute value of a double complex number z.

Input Parameters

z DOUBLE COMPLEX scalar.

Output Parameters

res DOUBLE PRECISION.Contains the absolute value of a double complex number
Z.

2-31

2 Intel® Math Kernel Library Reference Manual

BLAS Level 2 Routines

This section describes BLAS Level 2 routines, which perform matrix-vector operations. Table 2-2
lists the BLAS Level 2 routine groups and the data types associated with them.

Table 2-2 BLAS Level 2 Routine Groups and Their Data Types

Routine Data

Groups Types Description

?gbmv s, d,c,z Matrix-vector product using a general band
matrix

?gemv s,d, ¢,z Matrix-vector product using a general matrix

?ger s, d Rank-1 update of a general matrix

?gerc c, z Rank-1 update of a conjugated general matrix

?geru c z Rank-1 update of a general matrix,
unconjugated

?hbmv cz Matrix-vector product using a Hermitian band
matrix

?hemv cz Matrix-vector product using a Hermitian matrix

?her c z Rank-1 update of a Hermitian matrix

?her2 c z Rank-2 update of a Hermitian matrix

?hpmv c, z Matrix-vector product using a Hermitian packed
matrix

?hpr c z Rank-1 update of a Hermitian packed matrix

?hpr2 c, z Rank-2 update of a Hermitian packed matrix

?sbmv s, d Matrix-vector product using symmetric band
matrix

? spmv s, d Matrix-vector product using a symmetric packed
matrix

?spr s, d Rank-1 update of a symmetric packed matrix

?spr2 s, d Rank-2 update of a symmetric packed matrix

? symv s, d Matrix-vector product using a symmetric matrix

?sSyr s, d Rank-1 update of a symmetric matrix

?Syr2 s, d Rank-2 update of a symmetric matrix

? tbmv s,d,c,z Matrix-vector product using a triangular band
matrix

?tbsv s, d,c,z Linear solution of a triangular band matrix

BLAS and Sparse BLAS Routines 2

Table 2-2 BLAS Level 2 Routine Groups and Their Data Types (continued)

Routine Data

Groups Types Description

? tpmv s,d,c,z Matrix-vector product using a triangular packed

matrix

?tpsv s, d,c,z Linear solution of a triangular packed matrix

?trmv s, d, ¢,z Matrix-vector product using a triangular matrix

?trsv s, d,c,z Linear solution of a triangular matrix
?gbmv

Computes a matrix-vector product using
a general band matrix

Syntax

Fortran 77:

call sgbmv(trans, m, n, k1, ku, alpha, a, lda, x, inxc, beta, y, incy)
call dgbmv(trans, m, n, k1, ku, alpha, a, lda, x, incx, beta, y, incy)
call cgbmv(trans, m, n, k1, ku, alpha, a, lda, x, incx, beta, y, incy)
call zgbmv(trans, m, n, k1, ku, alpha, a, lda, x, incx, beta, y, incy)
Fortran 95:

call gbmv(a, x, y [,k1]1 [,m] [,alphal I[,betal I[,trans])

Description

The ?gbmv routines perform a matrix-vector operation defined as

y := alpha*a*x + beta*y

or

y := alpha*a'*x + beta*y,

or

y := alpha*conjg(a')*x + beta*y,

where:

2-33

2 Intel® Math Kernel Library Reference Manual

alpha and beta are scalars,

x and y are vectors,

a is an m-by-n band matrix, with k1 sub-diagonals and ku super-diagonals.

Input Parameters

trans

ki1

alpha

2-34

CHARACTER*1. Specifies the operation to be performed, as follows:

trans value Operation to be Performed

Norn y:= alpha*a*x + beta*y

Tort y:= alpha*a'*x + beta*y

Corc y:= alpha*conjg(a') *x +beta*y

INTEGER. Specifies the number of rows of the matrix a. The value of m must
be at least zero.

INTEGER. Specifies the number of columns of the matrix a. The value of n
must be at least zero.

INTEGER. Specifies the number of sub-diagonals of the matrix a. The value of
k1 must satisfy 0 < k1.

INTEGER. Specifies the number of super-diagonals of the matrix a. The value
of ku must satisfy 0 < ku.

REAL for sgbmv

DOUBLE PRECISION for dgbmv
COMPLEX for cgbmv

DOUBLE COMPLEX for zgbmv

Specifies the scalar alpha.

REAL for sgbmv

DOUBLE PRECISION for dgbmv
COMPLEX for cgbmv

DOUBLE COMPLEX for zgbmv

Array, DIMENSION (1da, n). Before entry, the leading (k1 + ku+ 1) by n
part of the array a must contain the matrix of coefficients. This matrix must be
supplied column-by-column, with the leading diagonal of the matrix in row
(ku + 1) of the array, the first super-diagonal starting at position 2 in row ku,

BLAS and Sparse BLAS Routines 2

lda

incx

beta

the first sub-diagonal starting at position 1 in row (ku + 2), and so on.
Elements in the array a that do not correspond to elements in the band matrix
(such as the top left ku by ku triangle) are not referenced.

The following program segment transfers a band matrix from conventional full
matrix storage to band storage:

do 20, j =1, n

k=ku+1-73

do 10, i = max(1l, j-ku), min(m, j+kl)
a(k+i, j) = matrix(i,j)
10 continue
20 continue

INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of 1da must be at least (k1 + ku + 1).

REAL for sgbmv

DOUBLE PRECISION for dgbmv
COMPLEX for cgbmv

DOUBLE COMPLEX for zgbmv

Array, DIMENSION at least (1 + (n - 1) *abs (incx)) when trans = 'N' or
'n' and at least (1 + (m - 1) *abs (incx)) otherwise. Before entry, the
incremented array x must contain the vector x.

INTEGER. Specifies the increment for the elements of x. incx must not be
Zero.

REAL for sgbmv

DOUBLE PRECISION for dgbmv
COMPLEX for cgbmv

DOUBLE COMPLEX for zgbmv

Specifies the scalar beta. When beta is supplied as zero, then y need not be set
on input.

REAL for sgbmv

DOUBLE PRECISION for dgbmv
COMPLEX for cgbmv

DOUBLE COMPLEX for zgbmv

Array, DIMENSION at least (1 + (m- 1) *abs (incy)) when trans = 'N' or
'n' and at least

(1+ (n-1)*abs (incy)) otherwise. Before entry, the incremented array y
must contain the vector y.

2-35

2 Intel® Math Kernel Library Reference Manual

incy INTEGER. Specifies the increment for the elements of y. The value of incy
must not be zero.
Output Parameters

v Overwritten by the updated vector y.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine gbmv interface are the following:
a Holds the array 4 of size (k1+ku+1, n).

x Holds the vector of length (rx) where
rx=nif trans="'N',
rx = motherwise.

v Holds the vector of length (ry) where
ry=mif trans="'N"',
ry = n otherwise.

trans Must be 'N', 'C', or 'T'. The default value is 'N'.
k1 If omitted, assumed k1 = ku.

ku Restored as ku = 1da-k1-1.

m If omitted, assumed m = n.

alpha The default value is 1.

beta The default value is 1.

BLAS and Sparse BLAS Routines 2

?gemv

Computes a matrix-vector product
using a general matrix

Syntax
Fortran 77:

call sgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy
call dgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy
call cgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy

call zgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy
Fortran 95:

call gemv(a, x, y [,alphal [,betal [, trans])

Description

The ?gemv routines perform a matrix-vector operation defined as

y := alpha*a*x + beta*y,

or

y := alpha*a'*x + beta*y,

or

y := alpha*conjg(a')*x + beta*y,
where:

alpha and beta are scalars,

x and y are vectors,

a is an m-by-n matrix.

2-37

2 Intel® Math Kernel Library Reference Manual

2-38

Input Parameters

trans

alpha

lda

incx

CHARACTER* 1. Specifies the operation to be performed, as follows:

trans value Operation to be Performed

Norn y:= alpha*a*x + beta*y

Tort y:= alpha*a'*x + beta*y

Corc y:= alpha*conjg(a') *x +beta*y

INTEGER. Specifies the number of rows of the matrix a. m must be at least
zero.

INTEGER. Specifies the number of columns of the matrix a. The value of n
must be at least zero.

REAL for sgemv

DOUBLE PRECISION for dgemv
COMPLEX for cgemv

DOUBLE COMPLEX for zgemv

Specifies the scalar alpha.

REAL for sgemv

DOUBLE PRECISION for dgemv
COMPLEX for cgemv

DOUBLE COMPLEX for zgemv

Array, DIMENSION (lda, n). Before entry, the leading m-by-n part of the
array a must contain the matrix of coefficients.

INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of 1da must be at least max (1, m).

REAL for sgemv

DOUBLE PRECISION for dgemv
COMPLEX for cgemv

DOUBLE COMPLEX for zgemv

Array, DIMENSION at least (1+ (n-1) *abs (incx)) when trans = 'N' or
'n' and at least (1+(m - 1) *abs (incx)) otherwise. Before entry, the
incremented array x must contain the vector x.

INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

BLAS and Sparse BLAS Routines 2

beta

incy

REAL for sgemv

DOUBLE PRECISION for dgemv
COMPLEX for cgemv

DOUBLE COMPLEX for zgemv

Specifies the scalar beta. When beta is supplied as zero, then y need not be
set on input.

REAL for sgemv

DOUBLE PRECISION for dgemv
COMPLEX for cgemv

DOUBLE COMPLEX for zgemv

Array, DIMENSION at least (1 + (m- 1) *abs (incy)) when trans = 'N' or
'n' and at least (1 + (n - 1) *abs (incy)) otherwise. Before entry with
beta non-zero, the incremented array y must contain the vector y.

INTEGER. Specifies the increment for the elements of y. The value of incy
must not be zero.

Output Parameters

Y

Overwritten by the updated vector y.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine gemv interface are the following:

a

X

trans
alpha

beta

Holds the matrix 4 of size (m, n).

Holds the vector of length (rx) where
rx=nif trans="'N',
rx = motherwise.

Holds the vector of length (ry) where
ry=mif trans='N"',
ry = n otherwise.

Must be 'N', 'C', or 'T'. The default value is 'N'.
The default value is 1.
The default value is 1.

2-39

2 Intel® Math Kernel Library Reference Manual

?ger

Performs a rank-1 update of a general matrix.

2-40

Syntax
Fortran 77:

call sger(m, n, alpha, x, incx, y, incy, a, lda)

call dger(m, n, alpha, x, incx, y, incy, a, lda)

Fortran 95:
call ger(a, x, y [,alphal)

Description

The 2ger routines perform a matrix-vector operation defined as
a := alpha*x*y' + a,

where:

alpha is a scalar,

x 18 an m-element vector,

v is an n-element vector,

a is an m-by-n matrix.

Input Parameters

m INTEGER. Specifies the number of rows of the matrix a. The value of m must
be at least zero.

n INTEGER. Specifies the number of columns of the matrix a. The value of n
must be at least zero.

alpha REAL for sger
DOUBLE PRECISION for dger

Specifies the scalar alpha.

x REAL for sger
DOUBLE PRECISION for dger

BLAS and Sparse BLAS Routines 2

incx

incy

lda

Array, DIMENSION at least (1 + (m - 1) *abs (incx)). Before entry, the
incremented array x must contain the m-element vector x.

INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

REAL for sger
DOUBLE PRECISION for dger

Array, DIMENSION at least (1 + (n - 1) *abs (incy)). Before entry, the
incremented array y must contain the n-element vector y.

INTEGER. Specifies the increment for the elements of y. The value of incy
must not be zero.

REAL for sger
DOUBLE PRECISION for dger

Array, DIMENSION (lda, n). Before entry, the leading m-by-n part of the
array a must contain the matrix of coefficients.

INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of 1da must be at least max (1, m).

Output Parameters

a

Overwritten by the updated matrix.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine ger interface are the following:

a
X

y
alpha

Holds the matrix 4 of size (m, n).
Holds the vector of length (m).
Holds the vector of length (n).
The default value is 1.

2-41

2 Intel® Math Kernel Library Reference Manual

?gerc

Performs a rank-1 update (conjugated)
of a general matrix.

2-42

Syntax
Fortran 77:

call cgerc(m, n, alpha, x, incx, y, incy, a, lda)

call zgerc(m, n, alpha, x, incx, y, incy, a, lda)
Fortran 95:

call gerc(a, x, y [,alphal)

Description

The ?gerc routines perform a matrix-vector operation defined as

a := alpha*x*conjg(y') + a,

where:

alpha is a scalar,

x 18 an m-element vector,

y is an n-element vector,

a is an m-by-n matrix.

Input Parameters

m INTEGER. Specifies the number of rows of the matrix a. The value of m must
be at least zero.

n INTEGER. Specifies the number of columns of the matrix a. The value of n
must be at least zero.

alpha SINGLE PRECISION COMPLEX for cgerc
DOUBLE PRECISION COMPLEX for zgerc

Specifies the scalar alpha.

BLAS and Sparse BLAS Routines 2

incx

incy

lda

SINGLE PRECISION COMPLEX for cgerc
DOUBLE PRECISION COMPLEX for zgerc

Array, DIMENSION at least (1 + (m - 1) *abs (incx)). Before entry, the
incremented array x must contain the m-element vector x.

INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

COMPLEX for cgerc
DOUBLE COMPLEX for zgerc

Array, DIMENSION at least (1 + (n - 1) *abs (incy)). Before entry, the
incremented array y must contain the n-element vector y.

INTEGER. Specifies the increment for the elements of y. The value of incy
must not be zero.

COMPLEX for cgerc
DOUBLE COMPLEX for zgerc

Array, DIMENSION (lda, n). Before entry, the leading m-by-n part of the
array a must contain the matrix of coefficients.

INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of 1da must be at least max (1, m).

Output Parameters

a

Overwritten by the updated matrix.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine gerc interface are the following:

a
X

y
alpha

Holds the matrix 4 of size (m, n).
Holds the vector of length (m).
Holds the vector of length (n).
The default value is 1.

2-43

2 Intel® Math Kernel Library Reference Manual

?geru

Performs a rank-1 update (unconjugated) of a general

martrix.

2-44

Syntax
Fortran 77:

call cgeru(m, n, alpha, x, incx, y, incy, a, lda)

call zgeru(m, n, alpha, x, incx, y, incy, a, lda)
Fortran 95:

call gerul(a, x, y [,alphal)

Description

The ?geru routines perform a matrix-vector operation defined as
a:= alpha*x*y' + a,

where:

alpha is a scalar,

x is an m-element vector,

y is an n-element vector,

a is an m-by-n matrix.

Input Parameters

m INTEGER. Specifies the number of rows of the matrix a. The value of m must
be at least zero.

n INTEGER. Specifies the number of columns of the matrix a. The value of n
must be at least zero.

alpha COMPLEX for cgeru
DOUBLE COMPLEX for zgeru

Specifies the scalar alpha.

BLAS and Sparse BLAS Routines 2

incx

incy

lda

COMPLEX for cgeru
DOUBLE COMPLEX for zgeru

Array, DIMENSION at least (1 + (m - 1) *abs (incx)). Before entry, the
incremented array x must contain the m-element vector x.

INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

COMPLEX for cgeru
DOUBLE COMPLEX for zgeru

Array, DIMENSION at least (1 + (n - 1) *abs (incy)). Before entry, the
incremented array y must contain the n-element vector y.

INTEGER. Specifies the increment for the elements of y. The value of incy
must not be zero.

COMPLEX for cgeru
DOUBLE COMPLEX for zgeru

Array, DIMENSION (lda, n). Before entry, the leading m-by-n part of the
array a must contain the matrix of coefficients.

INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of 1da must be at least max (1, m).

Output Parameters

a

Overwritten by the updated matrix.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine geru interface are the following:

a
X

y
alpha

Holds the matrix 4 of size (m, n).
Holds the vector of length (m).
Holds the vector of length (n).
The default value is 1.

2-45

2 Intel® Math Kernel Library Reference Manual

?hbmv

Computes a matrix-vector product using a Hermitian
band matrix.

2-46

Syntax
Fortran 77:

call chbmv(uplo, n, k, alpha, a, lda, x, incx, beta, y, incy)

call zhbmv(uplo, n, k, alpha, a, lda, x, incx, beta, y, incy)
Fortran 95:

call hbmv(a, x, y [,uplol [,alphal I[,betal)

Description

The ?hbmv routines perform a matrix-vector operation defined as

y := alpha*a*x + beta*y,
where:

alpha and beta are scalars,

x and y are n-element vectors,

a is an n-by-n Hermitian band matrix, with k super-diagonals.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
band matrix a is being supplied, as follows:

uplo value Part of Matrix a Supplied
voru The upper triangular part of matrix a is being
supplied.
Lorl The lower triangular part of matrix a is being
supplied.
n INTEGER. Specifies the order of the matrix a. The value of n must be at least
ZET0.

BLAS and Sparse BLAS Routines 2

alpha

INTEGER. Specifies the number of super-diagonals of the matrix a. The value
of k must satisfy 0 < k.

COMPLEX for chbmv
DOUBLE COMPLEX for zhbmv

Specifies the scalar alpha.

COMPLEX for chbmv
DOUBLE COMPLEX for zhbmv

Array, DIMENSION (lda, n). Before entry with

uplo='U"' or 'u', the leading (k + 1) by n part of the array a must contain
the upper triangular band part of the Hermitian matrix. The matrix must be
supplied column-by-column, with the leading diagonal of the matrix in row (k
+ 1) of the array, the first super-diagonal starting at position 2 in row k, and so
on. The top left k by k triangle of the array a is not referenced.

The following program segment transfers the upper triangular part of a
Hermitian band matrix from conventional full matrix storage to band storage:
do 20, j =1, n

m=5%kx+1-73

do 10, i = max(1, j - k), J

a(m + 1, j) = matrix(i, jJ)

10 continue
20 continue

Before entry with uplo='L' or '1', the leading

(k + 1) by n part of the array a must contain the lower triangular band part of
the Hermitian matrix, supplied column-by-column, with the leading diagonal
of the matrix in row 1 of the array, the first sub-diagonal starting at position 1
in row 2, and so on. The bottom right k by k triangle of the array a is not
referenced.

The following program segment transfers the lower triangular part of a
Hermitian band matrix from conventional full matrix storage to band storage:

do 20, j =1, n

m=1-7

do 10, 1 = j, min(n, j + k)
a(m+ i, j) = matrix(i, j)

10 continue
20 continue

The imaginary parts of the diagonal elements need not be set and are assumed
to be zero.

2-47

2 Intel® Math Kernel Library Reference Manual

lda INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of 1da must be at least (k + 1).

X COMPLEX for chbmv
DOUBLE COMPLEX for zhbmv

Array, DIMENSION at least (1 + (n - 1) *abs (incx)). Before entry, the
incremented array x must contain the vector x.

incx INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

beta COMPLEX for chbmv
DOUBLE COMPLEX for zhbmv

Specifies the scalar beta.

v COMPLEX for chbmv
DOUBLE COMPLEX for zhbmv

Array, DIMENSION at least (1 + (n - 1) *abs (incy)). Before entry, the
incremented array y must contain the vector y.

incy INTEGER. Specifies the increment for the elements of y: The value of incy
must not be zero.
Output Parameters

v Overwritten by the updated vector y.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine hbmv interface are the following:

a Holds the array 4 of size (k+1, n).

x Holds the vector of length (n).

v Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U".
alpha The default value is 1.

beta The default value is 1.

2-48

BLAS and Sparse BLAS Routines 2

?hemv

Computes a matrix-vector product
using a Hermitian matrix.

Syntax
Fortran 77:

call chemv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)

call zhemv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)
Fortran 95:

call hemv(a, x, y [,uplo]l [,alphal I[,betal)

Description

The ?hemv routines perform a matrix-vector operation defined as

y := alpha*a*x + beta*y,
where:

alpha and beta are scalars,

x and y are n-element vectors,

a is an n-by-n Hermitian matrix.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
array a is to be referenced, as follows:

uplo value Part of Array a To Be Referenced
vuoru The upper triangular part of array a is to be
referenced.
Lorl The lower triangular part of array a is to be
referenced.
n INTEGER. Specifies the order of the matrix a. The value of n must be at least
ZET0.

2-49

2 Intel® Math Kernel Library Reference Manual

2-50

alpha

lda

incx

beta

incy

COMPLEX for chemv
DOUBLE COMPLEX for zhemv

Specifies the scalar alpha.

COMPLEX for chemv
DOUBLE COMPLEX for zhemv

Array, DIMENSION (lda, n). Before entry with

uplo='U"' or 'u', the leading n-by-n upper triangular part of the array a
must contain the upper triangular part of the Hermitian matrix and the strictly
lower triangular part of a is not referenced. Before entry with

uplo='L" or '1', the leading n-by-n lower triangular part of the array a
must contain the lower triangular part of the Hermitian matrix and the strictly
upper triangular part of a is not referenced.

The imaginary parts of the diagonal elements need not be set and are assumed
to be zero.

INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of 1da must be at least max (1, n).

COMPLEX for chemv
DOUBLE COMPLEX for zhemv

Array, DIMENSION at least (1 + (n - 1) *abs (incx)). Before entry, the
incremented array x must contain the n-element vector x.

INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

COMPLEX for chemv
DOUBLE COMPLEX for zhemv

Specifies the scalar beta. When beta is supplied as zero then y need not be
set on input.

COMPLEX for chemv
DOUBLE COMPLEX for zhemv

Array, DIMENSION at least (1 + (n - 1) *abs (incy)). Before entry, the
incremented array y must contain the n-element vector y.

INTEGER. Specifies the increment for the elements of y: The value of incy
must not be zero.

BLAS and Sparse BLAS Routines 2

Output Parameters

v Overwritten by the updated vector y.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine hemv interface are the following:

a Holds the matrix 4 of size (n1, nn).

x Holds the vector of length (n).

v Holds the vector of length (n).

uplo Must be 'U! or 'L'. The default value is 'U".
alpha The default value is 1.

beta The default value is 1.

?her

Performs a rank-1 update of a Hermitian matrix.

Syntax
Fortran 77:

call cher(uplo, n, alpha, x, incx, a, lda)

call zher(uplo, n, alpha, x, incx, a, lda)
Fortran 95:

call her(a, x [,uplo]l I[,alphal)

Description

The ?her routines perform a matrix-vector operation defined as

a := alpha*x*conijg(x') + a,

where:

2-51

2 Intel® Math Kernel Library Reference Manual

alpha is a real scalar,

x 18 an n-element vector,

ais an n-by-n Hermitian matrix.

Input Parameters

uplo

alpha

incx

2-52

CHARACTER*1. Specifies whether the upper or lower triangular part of the
array a is to be referenced, as follows:

uplo value Part of Array a To Be Referenced

Uoru The upper triangular part of array a is to be
referenced.

Lorl The lower triangular part of array a is to be
referenced.

INTEGER. Specifies the order of the matrix a. The value of n must be at least
Zero.

REAL for cher
DOUBLE PRECISION for zher

Specifies the scalar alpha.

COMPLEX for cher
DOUBLE COMPLEX for zher

Array, dimension at least (1 + (n - 1) *abs (incx)). Before entry, the
incremented array x must contain the n-element vector x.

INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

COMPLEX for cher
DOUBLE COMPLEX for zher

Array, DIMENSION (lda, n). Before entry with

uplo = 'U" or 'u', the leading n-by-n upper triangular part of the array a
must contain the upper triangular part of the Hermitian matrix and the strictly
lower triangular part of a is not referenced.

Before entry with uplo= 'L or '1', the leading n-by-n lower triangular part
of the array a must contain the lower triangular part of the Hermitian matrix
and the strictly upper triangular part of a is not referenced.

BLAS and Sparse BLAS Routines 2

The imaginary parts of the diagonal elements need not be set and are assumed
to be zero.

lda INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of 1da must be at least max (1, n).
Output Parameters

a With uplo= 'U' or 'u', the upper triangular part of the array a is overwritten
by the upper triangular part of the updated matrix.

With uplo='L' or '1', the lower triangular part of the array a is overwritten
by the lower triangular part of the updated matrix.

The imaginary parts of the diagonal elements are set to zero.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine her interface are the following:

a Holds the matrix 4 of size (n1, n).
x Holds the vector of length (n).
uplo Mustbe 'U' or 'L'. The default value is 'U".
alpha The default value is 1.
?her2

Performs a rank-2 update of a Hermitian matrix.

Syntax
Fortran 77:

call cher2(uplo, n, alpha, x, incx, y, incy, a, lda)

call zher2(uplo, n, alpha, x, incx, y, incy, a, lda)

2-53

2 Intel® Math Kernel Library Reference Manual

2-54

Fortran 95:
call her2(a, x, y [,uplo]l [,alphal)
Description

The ?her2 routines perform a matrix-vector operation defined as

a := alpha*x*conjg(y') + conjg(alpha)*y*conjg(x') + a,
where:

alpha is a scalar’

x and y are n-element vectors’

a is an n-by-n Hermitian matrix.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
array a is to be referenced, as follows:

uplo value Part of Array a To Be Referenced
voru The upper triangular part of array a is to be
referenced.
Lorl The lower triangular part of array a is to be
referenced.
n INTEGER. Specifies the order of the matrix a. The value of n must be at least
ZET0.
alpha COMPLEX for cher2

DOUBLE COMPLEX for zher2
Specifies the scalar alpha.

x COMPLEX for cher2
DOUBLE COMPLEX for zher2

Array, DIMENSION at least (1 + (n - 1) *abs (incx)). Before entry, the
incremented array x must contain the n-element vector x.

incx INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

BLAS and Sparse BLAS Routines 2

incy

lda

COMPLEX for cher2
DOUBLE COMPLEX for zher2

Array, DIMENSION at least (1 + (n - 1) *abs (incy)). Before entry, the
incremented array y must contain the n-element vector y.

INTEGER. Specifies the increment for the elements of y: The value of incy
must not be zero.

COMPLEX for cher2
DOUBLE COMPLEX for zher2

Array, DIMENSION (lda, n). Before entry with

uplo = 'U"' or 'u', the leading n-by-n upper triangular part of the array a
must contain the upper triangular part of the Hermitian matrix and the strictly
lower triangular part of a is not referenced.

Before entry with uplo="'L"' or '1', the leading n-by-n lower triangular part
of the array a must contain the lower triangular part of the Hermitian matrix
and the strictly upper triangular part of a is not referenced.

The imaginary parts of the diagonal elements need not be set and are assumed
to be zero.

INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of 1da must be at least max (1, n).

Output Parameters

a

With uplo= 'U' or 'u', the upper triangular part of the array a is overwritten
by the upper triangular part of the updated matrix.

With uplo= 'L' or '1', the lower triangular part of the array a is overwritten
by the lower triangular part of the updated matrix.

The imaginary parts of the diagonal elements are set to zero.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine her2 interface are the following:

a

Holds the matrix 4 of size (n1, n).

2-55

2 Intel® Math Kernel Library Reference Manual

x Holds the vector of length (n).
v Holds the vector of length (n).
uplo Mustbe 'U' or 'L'. The default value is 'U".
alpha The default value is 1.
?hpmv

Computes a matrix-vector product using a Hermitian
packed matrix.

Syntax
Fortran 77:

call chpmv(uplo, n, alpha, ap, x, incx, beta, y, incy)

call zhpmv(uplo, n, alpha, ap, x, incx, beta, y, incy)
Fortran 95:

call hpmv(a, x, y [,uplol [,alphal I[,betal)

Description

The ?hpmv routines perform a matrix-vector operation defined as

y := alpha*a*x + beta*y,
where:

alpha and beta are scalars,

x and y are n-element vectors,

a is an n-by-n Hermitian matrix, supplied in packed form.

2-56

BLAS and Sparse BLAS Routines 2

Input Parameters

uplo

alpha

ap

incx

beta

CHARACTER*1. Specifies whether the upper or lower triangular part of the
matrix a is supplied in the packed array ap, as follows:

uplo value Part of Matrix a Supplied

Uoru The upper triangular part of matrix a is supplied in
ap.

Lorl The lower triangular part of matrix a is supplied in
ap.

INTEGER. Specifies the order of the matrix a. The value of n must be at least
zero.

COMPLEX for chpmv
DOUBLE COMPLEX for zhpmv

Specifies the scalar alpha.

COMPLEX for chpmv
DOUBLE COMPLEX for zhpmv

Array, DIMENSION at least ((n* (n+ 1)) /2). Before entry with uplo = 'U'
or 'u', the array ap must contain the upper triangular part of the Hermitian
matrix packed sequentially, column-by-column, so that ap (1) contains a (1,
1), ap(2) and ap(3) contain a (1, 2) and a (2, 2) respectively, and so on.
Before entry with uplo = 'L' or '1', the array ap must contain the lower
triangular part of the Hermitian matrix packed sequentially,
column-by-column, so that ap (1) contains a(1, 1), ap(2) and ap(3)
contain a (2, 1) and a (3, 1) respectively, and so on.

The imaginary parts of the diagonal elements need not be set and are assumed
to be zero.

COMPLEX for chpmv
DOUBLE PRECISION COMPLEX for zhpmv

Array, DIMENSION at least (1 + (n - 1) *abs (incx)). Before entry, the
incremented array x must contain the n-element vector x.

INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

COMPLEX for chpmv
DOUBLE COMPLEX for zhpmv

2-57

2 Intel® Math Kernel Library Reference Manual

Specifies the scalar beta. When beta is supplied as zero then y need not be
set on input.

y COMPLEX for chpmv
DOUBLE COMPLEX for zhpmv

Array, DIMENSION at least (1 + (n - 1) *abs (incy)). Before entry, the
incremented array y must contain the n-element vector y.

incy INTEGER. Specifies the increment for the elements of y. The value of incy
must not be zero.
Output Parameters

b Overwritten by the updated vector y.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine hpmv interface are the following:

a Holds the array 4 of size (n* (n+1) /2).

x Holds the vector of length (n).

v Holds the vector of length (n).

uplo Mustbe 'U' or 'L'. The default value is 'U".
alpha The default value is 1.

beta The default value is 1.

BLAS and Sparse BLAS Routines 2

?hpr

Performs a rank-1 update of a Hermitian packed
matrix.

Syntax
Fortran 77:

call chpr(uplo, n, alpha, x, incx, ap)

call zhpr(uplo, n, alpha, x, incx, ap)
Fortran 95:

call hpr(a, x [,uplol [,alphal)
Description

The ?hpr routines perform a matrix-vector operation defined as

a := alpha*x*conjg(x') + a,
where:

alpha is a real scalar,

x 18 an n-element vector,

a is an n-by-n Hermitian matrix, supplied in packed form.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
matrix a is supplied in the packed array ap, as follows:

uplo value Part of Matrix a Supplied
vuoru The upper triangular part of matrix a is supplied in
ap.
Lorl The lower triangular part of matrix a is supplied in
ap.
n INTEGER. Specifies the order of the matrix a. The value of n must be at least
ZET0.

2-59

2 Intel® Math Kernel Library Reference Manual

2-60

alpha

incx

ap

REAL for chpr
DOUBLE PRECISION for zhpr

Specifies the scalar alpha.

COMPLEX for chpr
DOUBLE COMPLEX for zhpr

Array, DIMENSION at least (1 + (n - 1) *abs (incx)). Before entry, the
incremented array x must contain the n-element vector x.

INTEGER. Specifies the increment for the elements of x. incx must not be
zero.

COMPLEX for chpr
DOUBLE COMPLEX for zhpr

Array, DIMENSION at least ((n* (n+ 1)) /2). Before entry with uplo = 'U"
or 'u', the array ap must contain the upper triangular part of the Hermitian

matrix packed sequentially, column-by-column, so that ap (1) contains a (1,
1), ap(2) and ap(3) contain a (1, 2) and a (2, 2) respectively, and so on.

Before entry with uplo = 'L' or '1', the array ap must contain the lower
triangular part of the Hermitian matrix packed sequentially,
column-by-column, so that ap (1) contains a(1, 1), ap(2) and ap(3)
contain a (2, 1) and a (3, 1) respectively, and so on.

The imaginary parts of the diagonal elements need not be set and are assumed
to be zero.

Output Parameters

ap

With uplo = 'U' or 'u', overwritten by the upper triangular part of the
updated matrix.

With uplo = 'L' or '1', overwritten by the lower triangular part of the
updated matrix.

The imaginary parts of the diagonal elements are set to zero.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine hpr interface are the following:

BLAS and Sparse BLAS Routines 2

a Holds the array 4 of size (n* (n+1) /2).
x Holds the vector of length (n).
uplo Mustbe 'U' or 'L'. The default value is 'U".
alpha The default value is 1.
?hpr2
Performs a rank-2 update of a Hermitian packed
matrix.
Syntax
Fortran 77:

call chpr2(uplo, n, alpha, x, incx, y, incy, ap)
call zhpr2(uplo, n, alpha, x, incx, y, incy, ap)

Fortran 95:
call hpr2(a, x, y [,uplol [,alphal)
Description

The ?hpr2 routines perform a matrix-vector operation defined as

a := alpha*x*conjg(y') + conjg(alpha)*y*conjg(x') + a,
where:

alpha is a scalar,

x and y are n-element vectors,

a is an n-by-n Hermitian matrix, supplied in packed form.

2-61

2 Intel® Math Kernel Library Reference Manual

Input Parameters

uplo

alpha

incx

incy

ap

2-62

CHARACTER*1. Specifies whether the upper or lower triangular part of the
matrix a is supplied in the packed array ap, as follows

uplo value Part of Matrix a Supplied

Uoru The upper triangular part of matrix a is supplied in
ap.

Lorl The lower triangular part of matrix a is supplied in
ap.

INTEGER. Specifies the order of the matrix a. The value of n must be at least
zero.

COMPLEX for chpr2
DOUBLE COMPLEX for zhpr2

Specifies the scalar alpha.

COMPLEX for chpr2
DOUBLE COMPLEX for zhpr2

Array, dimension at least (1 + (n - 1) *abs (incx)). Before entry, the
incremented array x must contain the n-element vector x.

INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

COMPLEX for chpr2
DOUBLE COMPLEX for zhpr2

Array, DIMENSION at least (1 + (n - 1) *abs (incy)). Before entry, the
incremented array y must contain the n-element vector y.

INTEGER. Specifies the increment for the elements of y: The value of incy
must not be zero.

COMPLEX for chpr2
DOUBLE COMPLEX for zhpr2

Array, DIMENSION at least ((n* (n+ 1)) /2). Before entry with uplo = 'U'
or 'u', the array ap must contain the upper triangular part of the Hermitian

matrix packed sequentially, column-by-column, so that ap (1) contains a (1,
1),ap(2) and ap(3) contain a (1, 2) and a (2, 2) respectively, and so on.

BLAS and Sparse BLAS Routines 2

Before entry with uplo = 'L or '1', the array ap must contain the lower
triangular part of the Hermitian matrix packed sequentially,
column-by-column, so that ap (1) contains a(1, 1), ap(2) and ap(3)
contain a (2, 1) and a (3, 1) respectively, and so on.

The imaginary parts of the diagonal elements need not be set and are assumed
to be zero.

Output Parameters

ap

With uplo = 'U" or 'u', overwritten by the upper triangular part of the
updated matrix.

With uplo = 'L' or '1', overwritten by the lower triangular part of the
updated matrix.

The imaginary parts of the diagonal elements need are set to zero.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine hpr2 interface are the following:

a
b
y
uplo

alpha

Holds the array 4 of size (n* (n+1) /2).
Holds the vector of length (n).

Holds the vector of length (n).

Must be 'U" or 'L'. The default value is 'U"'.

The default value is 1.

2-63

2 Intel® Math Kernel Library Reference Manual

?sbmv

Computes a matrix-vector product using a symmetric
band matrix.

2-64

Syntax
Fortran 77:

call ssbmv(uplo, n, k, alpha, a, lda, x, incx, beta, y, incy)

call dsbmv(uplo, n, k, alpha, a, lda, x, incx, beta, y, incy)
Fortran 95:

call sbmv(a, x, y [,uplol [,alphal I[,betal)

Description

The ?sbmv routines perform a matrix-vector operation defined as

y := alpha*a*x + beta*y,
where:

alpha and beta are scalars,

x and y are n-element vectors,

a is an n-by-n symmetric band matrix, with k super-diagonals.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
band matrix a is being supplied, as follows:

uplo value Part of Matrix a Supplied
voru The upper triangular part of matrix a is supplied.
Lorl The lower triangular part of matrix a is supplied.
n INTEGER. Specifies the order of the matrix a. The value of n must be at least
Z€T0.
k INTEGER. Specifies the number of super-diagonals of the matrix a. The value

of k must satisfy 0 < k.

BLAS and Sparse BLAS Routines 2

alpha

lda

REAL for ssbmv
DOUBLE PRECISION for dsbmv

Specifies the scalar alpha.

REAL for ssbmv
DOUBLE PRECISION for dsbmv

Array, DIMENSION (l1da, n).Before entry with

uplo='U" or 'u', the leading (k + 1) by n part of the array a must contain
the upper triangular band part of the symmetric matrix, supplied
column-by-column, with the leading diagonal of the matrix in row (k + 1) of
the array, the first super-diagonal starting at position 2 in row k, and so on. The
top left k by k triangle of the array a is not referenced.

The following program segment transfers the upper triangular part of a
symmetric band matrix from conventional full matrix storage to band storage:

do 20, j =1, n

m=%k+ 1 -3

do 10, 1 = max(1, j - k), jJ
a(m+ i, j) = matrix(i, j)

10 continue
20 continue

Before entry with uplo='L' or '1', the leading

(k + 1) by n part of the array a must contain the lower triangular band part of
the symmetric matrix, supplied column-by-column, with the leading diagonal
of the matrix in row 1 of the array, the first sub-diagonal starting at position 1
in row 2, and so on. The bottom right k by k triangle of the array a is not
referenced.

The following program segment transfers the lower triangular part of a
symmetric band matrix from conventional full matrix storage to band storage:

do 20, j =1, n

m=1-73
do 10, 1 = j, min(n, j + k)
a(m+ 1, j) = matrix(i, J)

10 continue
20 continue

INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of 1da must be at least (k + 1).

REAL for ssbmv
DOUBLE PRECISION for dsbmv

2-65

2 Intel® Math Kernel Library Reference Manual

2-66

Array, DIMENSION at least (1 + (n - 1) *abs (incx)) . Before entry, the
incremented array x must contain the vector x.

inex INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

beta REAL for ssbmv
DOUBLE PRECISION for dsbmv

Specifies the scalar beta.

v REAL for ssbmv
DOUBLE PRECISION for dsbmv

Array, DIMENSION at least (1 + (n - 1) *abs (incy)). Before entry, the
incremented array y must contain the vector y.

incy INTEGER. Specifies the increment for the elements of y. The value of incy
must not be zero.

Output Parameters

v Overwritten by the updated vector y.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine sbmv interface are the following:

a Holds the array A4 of size (k+1, n).

x Holds the vector of length (n).

v Holds the vector of length (n).

uplo Must be 'U! or 'L'. The default value is 'U".
alpha The default value is 1.

beta The default value is 1.

BLAS and Sparse BLAS Routines 2

?spmv

Computes a matrix-vector product
using a symmetric packed matrix.

Syntax
Fortran 77:

call sspmv(uplo, n, alpha, ap, x, incx, beta, y, incy)

call dspmv(uplo, n, alpha, ap, x, incx, beta, y, incy)
Fortran 95:

call spmv(a, x, y [,uplol [,alphal I[,betal)

Description

The ?spmv routines perform a matrix-vector operation defined as

y := alpha*a*x + beta*y,
where:

alpha and beta are scalars,

x and y are n-element vectors,

a is an n-by-n symmetric matrix, supplied in packed form.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
matrix a is supplied in the packed array ap, as follows:

uplo value Part of Matrix a Supplied
voru The upper triangular part of matrix a is supplied in
ap.
Lorl The lower triangular part of matrix a is supplied in
ap.
n INTEGER. Specifies the order of the matrix a. The value of n must be at least
ZET0.

2-67

2 Intel® Math Kernel Library Reference Manual

alpha

ap

incx

beta

incy

REAL for sspmv
DOUBLE PRECISION for dspmv

Specifies the scalar alpha.

REAL for sspmv
DOUBLE PRECISION for dspmv

Array, DIMENSION at least ((n* (n + 1)) /2). Before entry with uplo = 'U"
or 'u', the array ap must contain the upper triangular part of the symmetric
matrix packed sequentially, column-by-column, so that ap (1) contains a (1,
1), ap(2) and ap(3) contain a (1, 2)and a (2, 2) respectively, and so on.
Before entry with uplo = 'L' or '1', the array ap must contain the lower
triangular part of the symmetric matrix packed sequentially,
column-by-column, so that ap (1) contains a (1, 1), ap(2) and ap(3)
contain a (2, 1) and a (3, 1) respectively, and so on.

REAL for sspmv
DOUBLE PRECISION for dspmv

Array, DIMENSION at least (1 + (n - 1) *abs (incx)). Before entry, the
incremented array x must contain the n-element vector x.

INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

REAL for sspmv
DOUBLE PRECISION for dspmv

Specifies the scalar beta. When beta is supplied as zero, then y need not be
set on input.

REAL for sspmv
DOUBLE PRECISION for dspmv

Array, DIMENSION at least (1 + (n - 1) *abs (incy)). Before entry, the
incremented array y must contain the n-element vector y.

INTEGER. Specifies the increment for the elements of y: The value of incy
must not be zero.

Output Parameters

Yy

2-68

Overwritten by the updated vector y.

BLAS and Sparse BLAS Routines 2

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine spmv interface are the following:

a Holds the array 4 of size (n* (n+1) /2).

x Holds the vector of length (n).

v Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U".
alpha The default value is 1.

beta The default value is 1.

?spr

Performs a rank-1 update
of a symmetric packed matrix.

Syntax
Fortran 77:

call sspr(uplo, n, alpha, x, incx, ap)

call dspr(uplo, n, alpha, x, incx, ap)
Fortran 95:

call spr(a, x [,uplo]l [,alphal)
Description

The ?spr routines perform a matrix-vector operation defined as

a:= alpha*x*x' + a,
where:

alpha is a real scalar,

2-69

2 Intel® Math Kernel Library Reference Manual

x 18 an n-element vector,

a is an n-by-n symmetric matrix, supplied in packed form.

Input Parameters

uplo

alpha

incx

ap

2-70

CHARACTER*1. Specifies whether the upper or lower triangular part of the
matrix a is supplied in the packed array ap, as follows:

uplo value Part of Matrix a Supplied

voru The upper triangular part of matrix a is supplied in
ap.

Lorl The lower triangular part of matrix a is supplied in
ap.

INTEGER. Specifies the order of the matrix a. The value of n must be at least
Zero.

REAL for sspr
DOUBLE PRECISION for dspr

Specifies the scalar alpha.

REAL for sspr
DOUBLE PRECISION for dspr

Array, DIMENSION at least (1 + (n - 1) *abs (incx)). Before entry, the
incremented array x must contain the n-element vector x.

INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

REAL for sspr
DOUBLE PRECISION for dspr

Array, DIMENSION at least ((n* (n+ 1)) /2). Before entry with uplo = 'U'
or 'u', the array ap must contain the upper triangular part of the symmetric
matrix packed sequentially, column-by-column, so that ap (1) contains
a(l,1),ap(2) and ap(3) contain a(1, 2) and a (2, 2) respectively, and so
on.

Before entry with uplo = 'L' or '1', the array ap must contain the lower
triangular part of the symmetric matrix packed sequentially,
column-by-column, so that ap (1) contains a (1,1), ap(2)and
ap(3)contain a(2,1) and a (3, 1) respectively, and so on.

BLAS and Sparse BLAS Routines 2

Output Parameters

ap With uplo = 'U' or 'u', overwritten by the upper triangular part of the
updated matrix.

With uplo = 'L' or '1', overwritten by the lower triangular part of the
updated matrix.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine spr interface are the following:

a Holds the array 4 of size (n* (n+1) /2).
x Holds the vector of length (n).
uplo Must be 'U! or 'L'. The default value is 'U".
alpha The default value is 1.
?spr2
Performs a rank-2 update of a symmetric packed
matrix.
Syntax
Fortran 77:

call sspr2(uplo, n, alpha, x, incx, y, incy, ap)

call dspr2(uplo, n, alpha, x, incx, y, incy, ap)

Fortran 95:
call spr2(a, x, y [,uplo]l [,alphal)

Description

The ?spr2 routines perform a matrix-vector operation defined as

a:= alpha*x*y' + alpha*y*x' + a,

2-71

2 Intel® Math Kernel Library Reference Manual

2-72

where:
alpha is a scalar,
x and y are n-element vectors,

a is an n-by-n symmetric matrix, supplied in packed form.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
matrix a is supplied in the packed array ap, as follows:

uplo value Part of Matrix a Supplied
voru The upper triangular part of matrix a is supplied in
ap.
Lorl The lower triangular part of matrix a is supplied in
ap.
n INTEGER. Specifies the order of the matrix a. The value of n must be at least
ZET0.
alpha REAL for sspr2

DOUBLE PRECISION for dspr2
Specifies the scalar alpha.

x REAL for sspr2
DOUBLE PRECISION for dspr2

Array, DIMENSION at least (1 + (n - 1) *abs (incx)). Before entry, the
incremented array x must contain the n-element vector x.

incx INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

v REAL for sspr2
DOUBLE PRECISION for dspr2

Array, DIMENSION at least (1 + (n - 1) *abs (incy)). Before entry, the
incremented array y must contain the n-element vector y.

incy INTEGER. Specifies the increment for the elements of y. The value of incy
must not be zero.

BLAS and Sparse BLAS Routines 2

ap

REAL for sspr2
DOUBLE PRECISION for dspr2

Array, DIMENSION at least ((n* (n+ 1)) /2). Before entry with uplo = 'U'
or 'u', the array ap must contain the upper triangular part of the symmetric
matrix packed sequentially, column-by-column, so that ap (1) contains
a(l,1),ap(2) and ap(3) contain a(1,2) and a (2, 2) respectively, and so
on.

Before entry with uplo = 'L' or '1', the array ap must contain the lower
triangular part of the symmetric matrix packed sequentially,
column-by-column, so that ap (1) contains a(1,1), ap(2) and ap (3)
contain a(2,1) and a(3, 1) respectively, and so on.

Output Parameters

ap

With uplo = 'U' or 'u', overwritten by the upper triangular part of the
updated matrix.

With uplo = 'L' or '1', overwritten by the lower triangular part of the
updated matrix.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine spr2 interface are the following:

a
X
y
uplo

alpha

Holds the array 4 of size (n* (n+1) /2).
Holds the vector of length (n).

Holds the vector of length (n).

Must be 'U" or 'L'. The default value is 'U"'.

The default value is 1.

2-73

2 Intel® Math Kernel Library Reference Manual

?symv

Computes a matrix-vector product
for a symmetric matrix.

2-74

Syntax
Fortran 77:

all ssymv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)

call dsymv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)
Fortran 95:

call symv(a, x, y [,uplo]l [,alphal I[,betal)

Description

The ?symv routines perform a matrix-vector operation defined as

y := alpha*a*x + beta*y,
where:

alpha and beta are scalars,
xand y are n-element vectors,

a is an n-by-n symmetric matrix.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
array a is to be referenced, as follows:

uplo value Part of Array a To Be Referenced
voru The upper triangular part of array a is to be
referenced.
Lorl The lower triangular part of array a is to be
referenced.
n INTEGER. Specifies the order of the matrix a. The value of n must be at least
ZET0.

BLAS and Sparse BLAS Routines 2

alpha

lda

incx

beta

incy

REAL for ssymv
DOUBLE PRECISION for dsymv

Specifies the scalar alpha.

REAL for ssymv
DOUBLE PRECISION for dsymv

Array, DIMENSION (lda, n). Before entry with

uplo = 'U"' or 'u', the leading n-by-n upper triangular part of the array a
must contain the upper triangular part of the symmetric matrix and the strictly
lower triangular part of a is not referenced. Before entry with

uplo='L' or '1', the leading n-by-n lower triangular part of the array a
must contain the lower triangular part of the symmetric matrix and the strictly
upper triangular part of a is not referenced.

INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of 1da must be at least max (1, n).

REAL for ssymv
DOUBLE PRECISION for dsymv

Array, DIMENSION at least (1 + (n - 1) *abs (incx)). Before entry, the
incremented array x must contain the n-element vector x.

INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

REAL for ssymv
DOUBLE PRECISION for dsymv

Specifies the scalar beta. When beta is supplied as zero, then y need not be
set on input.

REAL for ssymv
DOUBLE PRECISION for dsymv

Array, DIMENSION at least (1 + (n - 1) *abs (incy)). Before entry, the
incremented array y must contain the n-element vector y.

INTEGER. Specifies the increment for the elements of y. The value of incy
must not be zero.

Output Parameters

Yy

Overwritten by the updated vector y.

2-75

2 Intel® Math Kernel Library Reference Manual

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine symv interface are the following:

a Holds the matrix 4 of size (n1, n).

x Holds the vector of length (n).

v Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U".
alpha The default value is 1.

beta The default value is 1.

?syr

Performs a rank-1 update of a symmetric matrix.

Syntax
Fortran 77:

call ssyr(uplo, n, alpha, x, incx, a, lda)

call dsyr(uplo, n, alpha, x, incx, a, lda)
Fortran 95:

call syr(a, x [,uplo]l [,alphal)

Description

The ?syr routines perform a matrix-vector operation defined as
a := alpha*x*x' + a,

where:

alpha is a real scalar,

x 18 an n-element vector,

2-76

BLAS and Sparse BLAS Routines 2

a is an n-by-n symmetric matrix.

Input Parameters

uplo

alpha

incx

lda

CHARACTER*1. Specifies whether the upper or lower triangular part of the
array a is to be referenced, as follows:

uplo value Part of Array a To Be Referenced

Uoru The upper triangular part of array a is to be
referenced.

Lorl The lower triangular part of array a is to be
referenced.

INTEGER. Specifies the order of the matrix a. The value of n must be at least
zero.

REAL for ssyr
DOUBLE PRECISION for dsyr

Specifies the scalar alpha.

REAL for ssyr
DOUBLE PRECISION for dsyr

Array, DIMENSION at least (1 + (n - 1) *abs (incx)). Before entry, the
incremented array x must contain the n-element vector x.

INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

REAL for ssyr
DOUBLE PRECISION for dsyr

Array, DIMENSION (lda, n). Before entry with

uplo = 'U"' or 'u', the leading n-by-n upper triangular part of the array a
must contain the upper triangular part of the symmetric matrix and the strictly
lower triangular part of a is not referenced.

Before entry with uplo= 'L or '1', the leading n-by-n lower triangular part
of the array a must contain the lower triangular part of the symmetric matrix
and the strictly upper triangular part of a is not referenced.

INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of 1da must be at least max (1, n) .

2-77

2 Intel® Math Kernel Library Reference Manual

Output Parameters

a With uplo= 'U' or 'u', the upper triangular part of the array a is overwritten
by the upper triangular part of the updated matrix.

With uplo= 'L' or '1', the lower triangular part of the array a is overwritten
by the lower triangular part of the updated matrix.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine syr interface are the following:

a Holds the matrix 4 of size (n1, n).
x Holds the vector of length (n).
uplo Must be 'U! or 'L'. The default value is 'U".
alpha The default value is 1.
?syr2

Performs a rank-2 update of symmetric matrix.

Syntax
Fortran 77:

call ssyr2(uplo, n, alpha, x, incx, y, incy, a, lda)

call dsyr2(uplo, n, alpha, x, incx, y, incy, a, lda)
Fortran 95:

call syr2(a, x, y [,uplo]l [,alphal)

Description

The ?syr2 routines perform a matrix-vector operation defined as

a := alpha*x*y' + alpha*y*x' + a,

2-78

BLAS and Sparse BLAS Routines 2

where:
alpha is a scalar,
x and y are n-element vectors,

a is an n-by-n symmetric matrix.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
array a is to be referenced, as follows:

uplo value Part of Array a To Be Referenced
voru The upper triangular part of array a is to be
referenced.
Lorl The lower triangular part of array a is to be
referenced.
n INTEGER. Specifies the order of the matrix a. The value of n must be at least
ZET0.
alpha REAL for ssyr2

DOUBLE PRECISION for dsyr2
Specifies the scalar alpha.

x REAL for ssyr2
DOUBLE PRECISION for dsyr2

Array, DIMENSION at least (1 + (n - 1) *abs (incx)). Before entry, the
incremented array x must contain the n-element vector x.

incx INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

v REAL for ssyr2
DOUBLE PRECISION for dsyr2

Array, DIMENSION at least (1 + (n - 1) *abs (incy)). Before entry, the
incremented array y must contain the n-element vector y.

incy INTEGER. Specifies the increment for the elements of y. The value of incy
must not be zero.

2-79

2 Intel® Math Kernel Library Reference Manual

2-80

1da

REAL for ssyr2
DOUBLE PRECISION for dsyr2

Array, DIMENSION (lda, n). Before entry with

uplo='U"' or 'u', the leading n-by-n upper triangular part of the array a
must contain the upper triangular part of the symmetric matrix and the strictly
lower triangular part of a is not referenced.

Before entry with uplo='L' or '1', the leading n-by-n lower triangular part
of the array a must contain the lower triangular part of the symmetric matrix
and the strictly upper triangular part of a is not referenced.

INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of 1da must be at least max (1, n).

Output Parameters

a

With uplo= 'U' or 'u', the upper triangular part of the array a is overwritten
by the upper triangular part of the updated matrix.

With uplo= 'L' or '1', the lower triangular part of the array a is overwritten
by the lower triangular part of the updated matrix.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine syr2 interface are the following:

a
X
y
uplo

alpha

Holds the matrix 4 of size (n1, nn).

Holds the vector of length (n).

Holds the vector of length (n).

Must be 'U" or 'L'. The default value is 'U"'.

The default value is 1.

BLAS and Sparse BLAS Routines 2

?tbmv

Computes a matrix-vector product
using a triangular band matrix.

Syntax

Fortran 77:

call stbmv(uplo, trans, diag, n, k, a, lda, x, incx)
call dtbmv(uplo, trans, diag, n, k, a, lda, x, incx)
call ctbmv(uplo, trans, diag, n, k, a, lda, x, incx)
call ztbmv(uplo, trans, diag, n, k, a, lda, x, incx)
Fortran 95:

call tbmv(a, x [,uplo] [,trans] [,diag])

Description

The ?tbmv routines perform one of the matrix-vector operations defined as
X := a*x,0rx := a'*x,0orx := conjg(a') *x,

where:

x 18 an n-element vector,

a is an n-by-n unit, or non-unit, upper or lower triangular band matrix, with (k + 1) diagonals.

Input Parameters

uplo CHARACTER*1. Specifies whether the matrix is an upper or lower triangular
matrix, as follows:

uplo value Matrix a
Uoru An upper triangular matrix.
Lorl A lower triangular matrix.

2-81

2 Intel® Math Kernel Library Reference Manual

2-82

trans

diag

CHARACTER*1. Specifies the operation to be performed, as follows:

trans value Operation to be Performed
Norn X 1= a*x

Tort X = a'*x

Corc X := conjgl(a')*x

CHARACTER*1. Specifies whether or not a is unit triangular, as follows:

diag value Matrix a
Uoru Matrix a is assumed to be unit triangular.
Norn Matrix a is not assumed to be unit triangular.

INTEGER. Specifies the order of the matrix a. The value of n must be at least
Zero.

INTEGER. On entry with uplo = 'U' or 'u', k specifies the number of
super-diagonals of the matrix a. On entry with uplo= 'L' or '1', k specifies
the number of sub-diagonals of the matrix a. The value of k must satisfy 0 < k.

REAL for stbmv

DOUBLE PRECISION for dtbmv
COMPLEX for ctbmv

DOUBLE COMPLEX for ztbmv

Array, DIMENSION (lda, n). Before entry with
uplo = 'U' or 'u', the leading (k + 1) by n part of the array a must contain
the upper triangular band part of the matrix of coefficients, supplied
column-by-column, with the leading diagonal of the matrix in row (k + 1) of
the array, the first super-diagonal starting at position 2 in row k, and so on. The
top left k by k triangle of the array a is not referenced. The following program
segment transfers an upper triangular band matrix from conventional full
matrix storage to band storage:
do 20, j =1, n

m=5%kx+ 1 -3
do 10, 1 = max(1, j - k), J

a(m + i, j) = matrix(i, jJ)
10 continue
20 continue

BLAS and Sparse BLAS Routines 2

lda

incx

Before entry with uplo= 'L' or '1', the leading

(k + 1) by n part of the array a must contain the lower triangular band part of
the matrix of coefficients, supplied column-by-column, with the leading
diagonal of the matrix in row1 of the array, the first sub-diagonal starting at
position 1 in row 2, and so on. The bottom right k by k triangle of the array a is
not referenced. The following program segment transfers a lower triangular
band matrix from conventional full matrix storage to band storage:

do 20, j =1, n
m=1-73
do 10, i = 7§,
a(m + i, j) = matrix (i, J)
10 continue

min(n, j + k)

20 continue

Note that when diag= 'U"' or 'u', the elements of the array a corresponding
to the diagonal elements of the matrix are not referenced, but are assumed to be
unity.

INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of 1da must be at least (k + 1).

REAL for stbmv

DOUBLE PRECISION for dtbmv
COMPLEX for ctbmv

DOUBLE COMPLEX for ztbmv

Array, DIMENSION at least (1 + (n - 1) *abs (incx)). Before entry, the
incremented array x must contain the n-element vector x.

INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

Output Parameters

X

Overwritten with the transformed vector x.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine tbmv interface are the following:

2-83

2 Intel® Math Kernel Library Reference Manual

a Holds the array 4 of size (k+1, n).

x Holds the vector of length (n).

uplo Mustbe 'U' or 'L'. The default value is 'U".

trans Must be 'N', 'c', or 'T'. The default value is 'N'.

diag Must be 'N' or 'U'. The default value is 'N'.
?tbsv

Solves a system of linear equations whose coefficients
are in a triangular band matrix.

Syntax

Fortran 77:

call stbsv(uplo, trans, diag, n, k, a, lda, x, incx)
call dtbsv(uplo, trans, diag, n, k, a, lda, x, incx)
call ctbsv(uplo, trans, diag, n, k, a, lda, x, incx)
call ztbsv(uplo, trans, diag, n, k, a, lda, x, incx)

Fortran 95:

call tbsv(a, x [,uplo] [,trans] [,diagl)

Description

The ?tbsv routines solve one of the following systems of equations:

a*x = b,ora'*x = b,or conjg(a')*x = b,

where:

b and x are n-element vectors,

a is an n-by-n unit, or non-unit, upper or lower triangular band matrix, with (k + 1) diagonals.

The routine does not test for singularity or near-singularity. Such tests must be performed before
calling this routine.

2-84

BLAS and Sparse BLAS Routines 2

Input Parameters

uplo

trans

diag

CHARACTER*1. Specifies whether the matrix is an upper or lower triangular
matrix, as follows:

uplo value Matrix a
Uoru An upper triangular matrix.
Lorl A lower triangular matrix.

CHARACTER*1. Specifies the operation to be performed, as follows:

trans value Operation to be Performed
Norn a*x = b

Tort a'*x = b

Corc conjg(a')*x = b

CHARACTER*1. Specifies whether or not a is unit triangular, as follows:

diag value Matrix a
Uoru Matrix a is assumed to be unit triangular.
Norn Matrix a is not assumed to be unit triangular.

INTEGER. Specifies the order of the matrix a. The value of n must be at least
Zero.

INTEGER. On entry with uplo = 'U' or 'u', k specifies the number of
super-diagonals of the matrix a. On entry with uplo= 'L' or '1', k specifies
the number of sub-diagonals of the matrix a. The value of k must satisfy 0 < k.

REAL for stbsv

DOUBLE PRECISION for dtbsv
COMPLEX for ctbsv

DOUBLE COMPLEX for ztbsv

Array, DIMENSION (lda, n). Before entry with

uplo='U"' or 'u', the leading (k + 1) by n part of the array a must contain
the upper triangular band part of the matrix of coefficients, supplied
column-by-column, with the leading diagonal of the matrix in row (k + 1) of
the array, the first super-diagonal starting at position 2 in row k, and so on. The
top left k by k triangle of the array a is not referenced.

2-85

2 Intel® Math Kernel Library Reference Manual

2-86

lda

incx

The following program segment transfers an upper triangular band matrix from
conventional full matrix storage to band storage:

do 20, j =1, n

m=%k + 1 -3

do 10, i = max(1, j - k), jJ
a(m + i, j) = matrix (i, J)

10 continue
20 continue

Before entry with uplo='L' or '1', the leading

(k + 1) by n part of the array a must contain the lower triangular band part of
the matrix of coefficients, supplied column-by-column, with the leading
diagonal of the matrix in row 1 of the array, the first sub-diagonal starting at
position 1 in row 2, and so on. The bottom right k by k triangle of the array a is
not referenced.

The following program segment transfers a lower triangular band matrix from
conventional full matrix storage to band storage:
do 20, j =1, n
m=1 -3
do 10, i = j, min(n, j + k)
a(m + 1, j) = matrix (i, 3J)
10 continue
20 continue

When diag = 'U' or 'u', the elements of the array a corresponding to the
diagonal elements of the matrix are not referenced, but are assumed to be unity.

INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of 1da must be at least (k + 1).

REAL for stbsv

DOUBLE PRECISION for dtbsv
COMPLEX for ctbsv

DOUBLE COMPLEX for ztbsv

Array, DIMENSION at least (1 + (n - 1) *abs (incx)) . Before entry, the
incremented array x must contain the n-element right-hand side vector b.

INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

Output Parameters

X

Overwritten with the solution vector x.

BLAS and Sparse BLAS Routines 2

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine tbsv interface are the following:

a Holds the array A4 of size (k+1, n).

x Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U".

trans Must be 'N', 'c', or 'T'. The default value is 'N'.

diag Must be 'N' or 'U'. The default value is 'N'.
?tpmv

Computes a matrix-vector product
using a triangular packed matrix.

Syntax

Fortran 77:

call stpmv(uplo, trans, diag, n, ap, x, 1lncx
call dtpmv(uplo, trans, diag, n, ap, X, incx

call ctpmv(uplo, trans, diag, n, ap, X, 1lncx

—_ = o~ —

call ztpmv(uplo, trans, diag, n, ap, x, 1lncx
Fortran 95:

call tpmv(a, x [,uplo]l I[,trans] [,diagl)
Description

The ?tpmv routines perform one of the matrix-vector operations defined as
X := a*x,0rx := a'*x,0orx := conjg(a') *x,

where:

2-87

2 Intel® Math Kernel Library Reference Manual

x 18 an n-element vector,

a is an n-by-n unit, or non-unit, upper or lower triangular matrix, supplied in packed form.

Input Parameters

uplo

trans

diag

ap

2-88

CHARACTER*1. Specifies whether the matrix a is an upper or lower triangular
matrix, as follows:

uplo value Matrix a
voru An upper triangular matrix.
Lorl A lower triangular matrix.

CHARACTER*1. Specifies the operation to be performed, as follows:

trans value Operation To Be Performed
Norn X 1= ar*x

Tort X 1= a'*x

Corc X := conjg(a')*x

CHARACTER*1. Specifies whether or not a is unit triangular, as follows:

diag value Matrix a
voru Matrix a is assumed to be unit triangular.
Norn Matrix a is not assumed to be unit triangular.

INTEGER. Specifies the order of the matrix a. The value of n must be at least
Zero.

REAL for stpmv

DOUBLE PRECISION for dtpmv
COMPLEX for ctpmv

DOUBLE COMPLEX for ztpmv

Array, DIMENSION at least ((n* (n+ 1)) /2). Before entry with uplo= 'U'
or 'u', the array ap must contain the upper triangular matrix packed
sequentially, column-by-column, so that ap (1) contains a(1,1), ap(2) and
ap(3) contain a(1,2) and a (2, 2) respectively, and so on. Before entry with
uplo='L" or '1', the array ap must contain the lower triangular matrix
packed sequentially, column-by-column, so that ap (1) contains a(1,1),

BLAS and Sparse BLAS Routines 2

incx

ap(2) and ap(3) contain a(2,1) and a (3, 1) respectively, and so on. When
diag="'U"' or 'u', the diagonal elements of a are not referenced, but are
assumed to be unity.

REAL for stpmv

DOUBLE PRECISION for dtpmv
COMPLEX for ctpmv

DOUBLE COMPLEX for ztpmv

Array, DIMENSION at least (1 + (n - 1) *abs (incx)). Before entry, the
incremented array x must contain the n-element vector x.

INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

Output Parameters

X

Overwritten with the transformed vector x.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine tpmv interface are the following:

a
X
uplo
trans

diag

Holds the array 4 of size (n* (n+1) /2).

Holds the vector of length (n).

Must be 'U" or 'L'. The default value is 'U"'.
Must be 'N', 'c', or 'T'. The default value is 'N'.

Must be 'N' or 'U'. The default value is 'N'.

2-89

2 Intel® Math Kernel Library Reference Manual

?tpsv

Solves a system of linear equations whose coefficients
are in a triangular packed matrix.

2-90

Syntax

Fortran 77:

call stpsv(uplo, trans, diag, n, ap, x, 1lncx
call dtpsv(uplo, trans, diag, n, ap, X, incx

call ctpsv(uplo, trans, diag, n, ap, x, 1lncx

—_— = ~— ~—

call ztpsv(uplo, trans, diag, n, ap, X, incx
Fortran 95:

call tpsv(a, x [,uplo] [,trans] [,diagl)
Description

The ?tpsv routines solve one of the following systems of equations

a*x = b,ora'*x = b,orconjg(a')*x = b,

where:

b and x are n-element vectors,

a is an n-by-n unit, or non-unit, upper or lower triangular matrix, supplied in packed form.

This routine does not test for singularity or near-singularity. Such tests must be performed before
calling this routine.
Input Parameters

uplo CHARACTER*1. Specifies whether the matrix a is an upper or lower triangular
matrix, as follows:

uplo value Matrix a
Uoru An upper triangular matrix.
Lorl A lower triangular matrix.

BLAS and Sparse BLAS Routines 2

trans

diag

ap

incx

CHARACTER*1. Specifies the operation to be performed, as follows:

trans value Operation To Be Performed
Norn a*x = b

Tort a'*x = b

Corc conjg(a')*x = b

CHARACTER*1. Specifies whether or not a is unit triangular, as follows:

diag value Matrix a
Uoru Matrix a is assumed to be unit triangular.
Norn Matrix a is not assumed to be unit triangular.

INTEGER. Specifies the order of the matrix a. The value of n must be at least
Zero.

REAL for stpsv

DOUBLE PRECISION for dtpsv
COMPLEX for ctpsv

DOUBLE COMPLEX for ztpsv

Array, DIMENSION at least ((n* (n+ 1)) /2). Before entry with uplo = 'U"
or 'u', the array ap must contain the upper triangular matrix packed
sequentially, column-by-column, so that ap (1) contains a(1, 1), ap(2) and
ap(3) contain a (1, 2) and a (2, 2) respectively, and so on. Before entry
with uplo= 'L' or '1', the array ap must contain the lower triangular matrix
packed sequentially, column-by-column, so that ap (1) contains a(1, 1),
ap(2) and ap(3) contain a (2, 1) and a (3, 1) respectively, and so on. When
diag="'U"' or 'u', the diagonal elements of a are not referenced, but are
assumed to be unity.

REAL for stpsv

DOUBLE PRECISION for dtpsv
COMPLEX for ctpsv

DOUBLE COMPLEX for ztpsv

Array, DIMENSION at least (1 + (n - 1) *abs (incx)). Before entry, the
incremented array x must contain the n-element right-hand side vector b.

INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

2-91

2 Intel® Math Kernel Library Reference Manual

Output Parameters

x Overwritten with the solution vector x.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine tpsv interface are the following:

a Holds the array A4 of size (n* (n+1) /2).

x Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U".

trans Must be 'N', 'c', or 'T'. The default value is 'N'.

diag Must be 'N' or 'U'. The default value is 'N'.
?trmv

Computes a matrix-vector product
using a triangular matrix.

Syntax
Fortran 77:

call strmv(uplo, trans, diag, n, a, lda, x, incx)
call dtrmv(uplo, trans, diag, n, a, lda, x, incx)
call ctrmv(uplo, trans, diag, n, a, lda, x, incx)
call ztrmv(uplo, trans, diag, n, a, lda, x, incx)
Fortran 95:

call trmv(a, x [,uplo]l [,trans] [,diagl)
Description

The ?trmv routines perform one of the following matrix-vector operations defined as

2-92

BLAS and Sparse BLAS Routines 2

X :=

where:

:= a'*x Oorx := conjg(a')*x,

x 18 an n-element vector,

a is an n-by-n unit, or non-unit, upper or lower triangular matrix.

Input Parameters

uplo

trans

diag

CHARACTER*1. Specifies whether the matrix a is an upper or lower triangular
matrix, as follows:

uplo value Matrix a
voru An upper triangular matrix.
Lorl A lower triangular matrix.

CHARACTER*1. Specifies the operation to be performed, as follows:

trans value Operation To Be Performed
Norn X 1= ar*x

Tort X = a'*x

Corc X := conjgl(a')*x

CHARACTER*1. Specifies whether or not a is unit triangular, as follows:

diag value Matrix a
Uoru Matrix a is assumed to be unit triangular.
Norn Matrix a is not assumed to be unit triangular.

INTEGER. Specifies the order of the matrix a. The value of n must be at least
zZero.

REAL for strmv

DOUBLE PRECISION for dtrmv
COMPLEX for ctrmv

DOUBLE COMPLEX for ztrmv

Array, DIMENSION (lda, n). Before entry with
uplo = 'U"' or 'u', the leading n-by-n upper triangular part of the array a
must contain the upper triangular matrix and the strictly lower triangular part

2-93

2 Intel® Math Kernel Library Reference Manual

2-94

lda

incx

of a is not referenced. Before entry with uplo = 'L' or '1', the leading
n-by-n lower triangular part of the array a must contain the lower triangular
matrix and the strictly upper triangular part of a is not referenced. When
diag= 'U' or 'u', the diagonal elements of a are not referenced either, but
are assumed to be unity.

INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of 1da must be at least max (1, n).

REAL for strmv

DOUBLE PRECISION for dtrmv
COMPLEX for ctrmv

DOUBLE COMPLEX for ztrmv

Array, DIMENSION at least (1 + (n - 1) *abs (incx)) . Before entry, the
incremented array x must contain the n-element vector x.

INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

Output Parameters

X

Overwritten with the transformed vector x.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine trmv interface are the following:

a
X
uplo
trans

diag

Holds the matrix 4 of size (n1, n).

Holds the vector of length (n).

Must be 'U" or 'L'. The default value is 'U"'.
Must be 'N', 'C', or 'T'. The default value is 'N'.

Must be 'N' or 'U'. The default value is 'N'.

BLAS and Sparse BLAS Routines 2

?trsv

Solves a system of linear equations whose coefficients
are in a triangular matrix.

Syntax
Fortran 77:

call strsv(uplo, trans, diag, n, a, lda, x, incx
call dtrsv(uplo, trans, diag, n, a, lda, x, incx
call ctrsv(uplo, trans, diag, n, a, lda, x, incx

call ztrsv(uplo, trans, diag, n, a, lda, x, incx
Fortran 95:

call trsv(a, x [,uplo] [,trans] [,diag])
Description

The ?trsv routines solve one of the systems of equations:

a*x = bora'*x = b,0rconjg(a')*x = b,

where:

b and x are n-element vectors,

a is an n-by-n unit, or non-unit, upper or lower triangular matrix.

The routine does not test for singularity or near-singularity. Such tests must be performed before
calling this routine.
Input Parameters

uplo CHARACTER*1. Specifies whether the matrix is an upper or lower triangular
matrix, as follows:

uplo value Matrix a
Uoru An upper triangular matrix.
Lorl A lower triangular matrix.

2-95

2 Intel® Math Kernel Library Reference Manual

2-96

trans

diag

lda

CHARACTER*1. Specifies the operation to be performed, as follows:

trans value Operation To Be Performed
Norn a*x = b

Tort a'*x = b

Corc conjg(a')*x = b

CHARACTER*1. Specifies whether or not a is unit triangular, as follows:

diag value Matrix a
Uoru Matrix a is assumed to be unit triangular.
Norn Matrix a is not assumed to be unit triangular.

INTEGER. Specifies the order of the matrix a. The value of n must be at least
Zero.

REAL for strsv

DOUBLE PRECISION for dtrsv
COMPLEX for ctrsv

DOUBLE COMPLEX for ztrsv

Array, DIMENSION (lda, n). Before entry with

uplo = 'U"' or 'u', the leading n-by-n upper triangular part of the array a
must contain the upper triangular matrix and the strictly lower triangular part
of a is not referenced. Before entry with uplo= 'L' or '1', the leading
n-by-n lower triangular part of the array a must contain the lower triangular
matrix and the strictly upper triangular part of a is not referenced. When diag
= 'U' or 'u', the diagonal elements of a are not referenced either, but are
assumed to be unity.

INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of 1da must be at least max (1, n).

REAL for strsv

DOUBLE PRECISION for dtrsv
COMPLEX for ctrsv

DOUBLE COMPLEX for ztrsv

Array, DIMENSION at least (1 + (n - 1) *abs (incx)). Before entry, the
incremented array x must contain the n-element right-hand side vector b.

BLAS and Sparse BLAS Routines 2

inecx INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

Output Parameters

x Overwritten with the solution vector x.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine trsv interface are the following:

a Holds the matrix 4 of size (n1, nn).

x Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U".
trans Must be 'N', 'C', or 'T'. The default value is 'N'.
diag Must be 'N' or 'U'. The default value is 'N'.

2-97

2 Intel® Math Kernel Library Reference Manual

BLAS Level 3 Routines

BLAS Level 3 routines perform matrix-matrix operations. Table 2-3 lists the BLAS Level 3
routine groups and the data types associated with them.

Table 2-3 BLAS Level 3 Routine Groups and Their Data Types
Routine Data
Group Types Description
?gemm s,d,cz Matrix-matrix product of general matrices
?hemm c z Matrix-matrix product of Hermitian matrices
?herk c z Rank-k update of Hermitian matrices
?her2k c z Rank-2k update of Hermitian matrices
?symm s,d,c,z Matrix-matrix product of symmetric matrices
?syrk s,d,cz Rank-k update of symmetric matrices
?syr2k s,d,c,z Rank-2k update of symmetric matrices
2trmm s,d,c z Matrix-matrix product of triangular matrices
?trsm s,d,cz Linear matrix-matrix solution for triangular

matrices

Symmetric Multiprocessing Version of Intel® MKL

Many applications spend considerable time for executing BLAS level 3 routines. This time can be
scaled by the number of processors available on the system through using the symmetric
multiprocessing (SMP) feature built into the Intel MKL Library. The performance enhancements
based on the parallel use of the processors are available without any programming effort on your
part.

To enhance performance, the library uses the following methods:

® The operation of BLAS level 3 matrix-matrix functions permits the code to be restructured in
a way that increases the localization of data reference, enhances cache memory use, and
reduces the dependency on the memory bus.

® Once the code has been effectively blocked as described above, one of the matrices is
distributed across the processors to be multiplied by the second matrix. Such distribution
ensures effective cache management, which reduces the dependency on the memory bus
performance and brings good scaling results.

2-98

BLAS and Sparse BLAS Routines 2

?gemm

Computes a scalar-matrix-matrix product and adds the
result to a scalar-matrix product.

Syntax

Fortran 77:

call sgemm(transa, transb, m, n, k, alpha, a, lda, b, 1ldb, beta, c, 1ldc)
call dgemm(transa, transb, m, n, k, alpha, a, lda, b, 1ldb, beta, c, 1ldc)
call cgemm(transa, transb, m, n, k, alpha, a, lda, b, 1ldb, beta, c, ldc)
call zgemm(transa, transb, m, n, k, alpha, a, lda, b, 1db, beta, c, 1ldc)
Fortran 95:

call gemm(a, b, c [,transal [,transb] [,alphal [,betal)

Description

The ?gemm routines perform a matrix-matrix operation with general matrices. The operation is
defined as

c := alpha*op(a) *op(b) + beta*c,

where:

op(x) isone of op(x) = x orop(x) = x'orop(x) = conjg(x'),

alpha and beta are scalars,

a, b, and ¢ are matrices:
op (&) is an m-by-k matrix,
op (b) is a k-by-n matrix,

¢ is an m-by-n matrix.

2-99

2 Intel® Math Kernel Library Reference Manual

Input Parameters

transa CHARACTER*1. Specifies the form of op (a) to be used in the matrix
multiplication as follows:

transa value Form of op (a)
Norn op(a) = a
Tort op(a) = a'
Corc op(a) = conjg(a')
transb CHARACTER*1. Specifies the form of op (b) to be used in the matrix

multiplication as follows:

transb value Form of op (b)
Norn op(b) = b
Tort op(b) = b!'
Corc op(b) = conjg(b')
m INTEGER. Specifies the number of rows of the matrix op (a) and of the matrix

c. The value of m must be at least zero.

n INTEGER. Specifies the number of columns of the matrix op (b) and the
number of columns of the matrix c. The value of n must be at least zero.

k INTEGER. Specifies the number of columns of the matrix op (a) and the
number of rows of the matrix op (b) . The value of k must be at least zero.

alpha REAL for sgemm
DOUBLE PRECISION for dgemm
COMPLEX for cgemm
DOUBLE COMPLEX for zgemm

Specifies the scalar alpha.

a REAL for sgemm
DOUBLE PRECISION for dgemm
COMPLEX for cgemm
DOUBLE COMPLEX for zgemm

2-100

BLAS and Sparse BLAS Routines 2

lda

1db

beta

ldc

Array, DIMENSION (1da, ka), where ka is k when transa = 'N' or 'n',
and is m otherwise. Before entry with transa = 'N' or 'n', the leading
m-by-k part of the array a must contain the matrix a, otherwise the leading
k-by-m part of the array a must contain the matrix a.

INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. When transa = 'N' or 'n', then 1da must be at least max (1,
m) , otherwise 1da must be at least max (1, k).

REAL for sgemm

DOUBLE PRECISION for dgemm
COMPLEX for cgemm

DOUBLE COMPLEX for zgemm

Array, DIMENSION (1db, kb), where kb is n when transb = 'N' or 'n"',
and is k otherwise. Before entry with transb = 'N' or 'n', the leading
k-by-n part of the array b must contain the matrix b, otherwise the leading
n-by-k part of the array b must contain the matrix b.

INTEGER. Specifies the first dimension of b as declared in the calling
(sub)program. When transb= 'N' or 'n', then 1db must be at least max (1,
k), otherwise 1db must be at least max (1, n).

REAL for sgemm

DOUBLE PRECISION for dgemm
COMPLEX for cgemm

DOUBLE COMPLEX for zgemm

Specifies the scalar beta. When beta is supplied as zero, then ¢ need not be
set on input.

REAL for sgemm

DOUBLE PRECISION for dgemm
COMPLEX for cgemm

DOUBLE COMPLEX for zgemm

Array, DIMENSION (ldc, n). Before entry, the leading m-by-n part of the
array c must contain the matrix c, except when beta is zero, in which case c
need not be set on entry.

INTEGER. Specifies the first dimension of c as declared in the calling
(sub)program. The value of 1dc must be at least max (1, m).

Output Parameters

(e}

Overwritten by the m-by-n matrix (alpha*op (a) *op (b) + beta*c).

2-101

2 Intel® Math Kernel Library Reference Manual

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine gemm interface are the following:

a Holds the matrix 4 of size (ma, ka), where
ka=kif transa= 'N",
ka = m otherwise,
ma=mif transa= 'N',
ma = k otherwise.

b Holds the matrix B of size (mb, kb), where
kb=nif transb='N',
kb = k otherwise,
mb =k if transb= 'N"',
mb = n otherwise.

c Holds the matrix C of size (m, n).
transa Must be 'N', 'C', or 'T'. The default value is 'N'.
transb Must be 'N', 'C', or 'T'. The default value is 'N'.
alpha The default value is 1.
beta The default value is 1.

?hemm

Computes a scalar-matrix-matrix product (either one of
the matrices is Hermitian) and adds the result to
scalar-matrix product.

Syntax

Fortran 77:
call chemm(side, uplo, m, n, alpha, a, lda, b, 1ldb, beta, c, 1dc)
call zhemm(side, uplo, m, n, alpha, a, lda, b, 1ldb, beta, c, ldc)

2-102

BLAS and Sparse BLAS Routines 2

Fortran 95:
call hemm(a, b, c¢ [,sidel [,uplo]l [,alphal I[,betal)
Description

The ?hemm routines perform a matrix-matrix operation using Hermitian matrices. The operation is
defined as

c := alpha*a*b + beta*c
or

c := alpha*b*a + beta*c,
where:

alpha and beta are scalars,
a is an Hermitian matrix,
b and c are m-by-n matrices.

Input Parameters

side CHARACTER*1. Specifies whether the Hermitian matrix a appears on the left or
right in the operation as follows:

side value Operation To Be Performed
Lorl ¢ := alpha*a*b + beta*c
Rorr c := alpha*b*a + beta*c
uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the

Hermitian matrix a is to be referenced as follows:

uplo value Part of Matrix a To Be Referenced

voru Only the upper triangular part of the Hermitian
matrix is to be referenced.

Lorl Only the lower triangular part of the Hermitian
matrix is to be referenced.

m INTEGER. Specifies the number of rows of the matrix c. The value of m must
be at least zero.

2-103

2 Intel® Math Kernel Library Reference Manual

2-104

alpha

lda

1db

INTEGER. Specifies the number of columns of the matrix c. The value of n
must be at least zero.

COMPLEX for chemm
DOUBLE COMPLEX for zhemm

Specifies the scalar alpha.

COMPLEX for chemm
DOUBLE COMPLEX for zhemm

Array, DIMENSION (lda, ka), where ka is mwhen side="'L' or '1' and is
n otherwise.

Before entry with side = 'L' or '1', the m-by-m part of the array a must
contain the Hermitian matrix, such that when

uplo = 'U"' or 'u', the leading m-by-m upper triangular part of the array a
must contain the upper triangular part of the Hermitian matrix and the strictly
lower triangular part of a is not referenced, and when

uplo='L' or '1', the leading m-by-m lower triangular part of the array a
must contain the lower triangular part of the Hermitian matrix, and the strictly
upper triangular part of a is not referenced.

Before entry with side = 'R' or 'r', the n-by-n part of the array a must
contain the Hermitian matrix, such that when

uplo = 'U" or 'u', the leading n-by-n upper triangular part of the array a
must contain the upper triangular part of the Hermitian matrix and the strictly
lower triangular part of a is not referenced, and when

uplo="'L'or '1',the leading n-by-n lower triangular part of the array a must
contain the lower triangular part of the Hermitian matrix, and the strictly upper
triangular part of a is not referenced. The imaginary parts of the diagonal
elements need not be set, they are assumed to be zero.

INTEGER. Specifies the first dimension of a as declared in the calling (sub)
program. When side = 'L' or '1' then 1da must be at least max (1, m),
otherwise 1da must be at least max (1, n).

COMPLEX for chemm
DOUBLE COMPLEX for zhemm

Array, DIMENSION (1db, n). Before entry, the leading m-by-n part of the array
b must contain the matrix b.

INTEGER. Specifies the first dimension of b as declared in the calling
(sub)program. The value of 1db must be at least max (1, m).

BLAS and Sparse BLAS Routines 2

beta

1dc

COMPLEX for chemm
DOUBLE COMPLEX for zhemm

Specifies the scalar beta. When beta is supplied as zero, then ¢ need not be
set on input.

COMPLEX for chemm
DOUBLE COMPLEX for zhemm

Array, DIMENSION (c, n).Before entry, the leading m-by-n part of the array ¢
must contain the matrix c, except when beta is zero, in which case c need not
be set on entry.

INTEGER. Specifies the first dimension of ¢ as declared in the calling
(sub)program. The value of 1dc must be at least max (1, m) .

Output Parameters

C

Overwritten by the m-by-n updated matrix.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine hemm interface are the following:

a

side
uplo
alpha

beta

Holds the matrix 4 of size (k, k), where
k=mif side='L",
k = n otherwise.

Holds the matrix B of size (m, n).

Holds the matrix C of size (m, n).

Must be 'L' or 'R'. The default value is 'L'.
Must be 'U" or 'L'. The default value is 'U"'.
The default value is 1.

The default value is 1.

2-105

2 Intel® Math Kernel Library Reference Manual

?herk

Performs a rank-n update of a Hermitian matrix.

2-106

Syntax

Fortran 77:
call cherk(uplo, trans, n, k, alpha, a, lda, beta, c, 1ldc)
call zherk(uplo, trans, n, k, alpha, a, lda, beta, c, 1ldc)

Fortran 95:
call herk(a, ¢ [,uplo]l [,trans] [,alphal [,betal)
Description

The ?herk routines perform a matrix-matrix operation using Hermitian matrices. The operation is
defined as

c := alpha*a*conjg(a') + beta*c,
or
c := alpha*conijg(a')*a + beta*c,

where:
alpha and beta are real scalars,
c is an n-by-n Hermitian matrix,

a is an n-by-k matrix in the first case and a k-by-n matrix in the second case.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
array c is to be referenced as follows:

uplo value Part of Array c To Be Referenced

Uoru Only the upper triangular part of Cis to be
referenced.

Lorl Only the lower triangular part of Cis to be
referenced.

BLAS and Sparse BLAS Routines 2

trans

alpha

lda

beta

CHARACTER*1. Specifies the operation to be performed as follows:

trans value Operation to be Performed
Norn c:= alpha*a*conjg(a')+beta*c
Corc c:= alpha*conjg(a') *a+beta*c

INTEGER. Specifies the order of the matrix c. The value of n must be at least
ZEero.

INTEGER. With trans = 'N' or 'n', k specifies the number of columns of the
matrix a, and with

trans="'C' or 'c', k specifies the number of rows of the matrix a. The value
of k must be at least zero.

REAL for cherk
DOUBLE PRECISION for zherk

Specifies the scalar alpha.

COMPLEX for cherk
DOUBLE COMPLEX for zherk

Array, DIMENSION (lda, ka), where ka is k when trans = 'N' or 'n', and
is n otherwise. Before entry with trans = 'N' or 'n', the leading n-by-k part
of the array a must contain the matrix a, otherwise the leading k-by-n part of
the array a must contain the matrix a.

INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. When trans = 'N' or 'n', then 1da must be at least max (1,
n), otherwise 1da must be at least max (1, k).

REAL for cherk
DOUBLE PRECISION for zherk

Specifies the scalar beta.

COMPLEX for cherk
DOUBLE COMPLEX for zherk

Array, DIMENSION (ldc, n). Before entry with

uplo='U"' or 'u', the leading n-by-n upper triangular part of the array ¢
must contain the upper triangular part of the Hermitian matrix and the strictly
lower triangular part of c is not referenced.

2-107

2 Intel® Math Kernel Library Reference Manual

ldc

Before entry with uplo= 'L or '1', the leading n-by-n lower triangular part
of the array ¢ must contain the lower triangular part of the Hermitian matrix
and the strictly upper triangular part of c is not referenced.

The imaginary parts of the diagonal elements need not be set, they are assumed
to be zero.

INTEGER. Specifies the first dimension of ¢ as declared in the calling
(sub)program. The value of 1dc must be at least max (1, n).

Output Parameters

C

With uplo= 'U' or 'u', the upper triangular part of the array c is overwritten
by the upper triangular part of the updated matrix.

With uplo= 'L' or '1', the lower triangular part of the array c is overwritten
by the lower triangular part of the updated matrix.

The imaginary parts of the diagonal elements are set to zero.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine herk interface are the following:

a

uplo
trans
alpha

beta

2-108

Holds the matrix 4 of size (ma, ka), where
ka=kif transa= 'N',

ka = n otherwise,

ma=nif transa= 'N',

ma = k otherwise.

Holds the matrix C of size (n, n).

Must be 'U" or 'L'. The default value is 'U"'.
Must be 'N' or 'C'. The default value is 'N'.
The default value is 1.

The default value is 1.

BLAS and Sparse BLAS Routines 2

?her2k

Performs a rank-2k update of a Hermitian matrix.

Syntax

Fortran 77:
call cher2k(uplo, trans, n, k, alpha, a, lda, b, 1ldb, beta, c, 1ldc)
call zher2k(uplo, trans, n, k, alpha, a, lda, b, 1db, beta, c¢, 1ldc)

Fortran 95:
call her2k(a, b, c [,uplo]l [,trans] [,alphal [,betal)
Description

The ?her2k routines perform a rank-2k matrix-matrix operation using Hermitian matrices. The
operation is defined as

c :=alpha*a*conjg(b') + conjg(alpha) *b*conjg(a') + beta*c
or

c :=alpha*conjg(b')*a + conjg(alpha)*conjg(a') *b + beta*c,
where:

alpha is a scalar and beta is a real scalar,
c is an n-by-n Hermitian matrix,

a and b are n-by-k matrices in the first case and k-by-n matrices in the second case.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
array c is to be referenced as follows:

uplo value Part of Array c To Be Referenced

Uoru Only the upper triangular part of Cis to be
referenced.

Lorl Only the lower triangular part of Cis to be
referenced.

2-109

2 Intel® Math Kernel Library Reference Manual

trans

alpha

1da

beta

2-110

CHARACTER*1. Specifies the operation to be performed as follows:

trans value Operation to be Performed

Norn c:=alpha*a*conjg(b')
+alpha*b*conjg(a') +beta*c

Corc c:=alpha*conjg(a') *b

+alpha*conjg(b') *a+beta*c

INTEGER. Specifies the order of the matrix c. The value of n must be at least
zero.

INTEGER. With trans = 'N' or 'n', k specifies the number of columns of the
matrix a, and with

trans="'C' or 'c', k specifies the number of rows of the matrix a. The value
of k must be at least zero.

COMPLEX for cher2k
DOUBLE COMPLEX for zher2k

Specifies the scalar alpha.

COMPLEX for cher2k
DOUBLE COMPLEX for zher2k

Array, DIMENSION (lda, ka), where ka is k when trans = 'N' or 'n', and
is n otherwise. Before entry with trans = 'N' or 'n', the leading n-by-k part
of the array a must contain the matrix a, otherwise the leading k-by-n part of
the array a must contain the matrix a.

INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. When trans = 'N' or 'n', then 1da must be at least
max (1, n), otherwise 1da must be at least max (1, k).

REAL for cher2k
DOUBLE PRECISION for zher2k

Specifies the scalar beta.

COMPLEX for cher2k
DOUBLE COMPLEX for zher2k

Array, DIMENSION (1db, kb), where kb is k when trans = 'N' or 'n', and
is n otherwise. Before entry with trans = 'N' or 'n', the leading n-by-k part
of the array b must contain the matrix b, otherwise the leading k-by-n part of
the array b must contain the matrix b.

BLAS and Sparse BLAS Routines 2

1db

ldc

INTEGER. Specifies the first dimension of b as declared in the calling
(sub)program. When trans = 'N' or 'n', then 1db must be at least
max (1, n), otherwise 1db must be at least max (1, k).

COMPLEX for cher2k
DOUBLE COMPLEX for zher2k

Array, DIMENSION (ldc, n). Before entry with

uplo='U"' or 'u', the leading n-by-n upper triangular part of the array c
must contain the upper triangular part of the Hermitian matrix and the strictly
lower triangular part of c is not referenced.

Before entry with uplo= 'L or '1', the leading n-by-n lower triangular part
of the array ¢ must contain the lower triangular part of the Hermitian matrix
and the strictly upper triangular part of c is not referenced.

The imaginary parts of the diagonal elements need not be set, they are assumed
to be zero.

INTEGER. Specifies the first dimension of ¢ as declared in the calling
(sub)program. The value of 1dc must be at least max (1, n).

Output Parameters

(e}

With uplo= 'U' or 'u', the upper triangular part of the array c is overwritten
by the upper triangular part of the updated matrix.

With uplo='L' or '1', the lower triangular part of the array c is overwritten
by the lower triangular part of the updated matrix.

The imaginary parts of the diagonal elements are set to zero.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine her2k interface are the following:

a

Holds the matrix 4 of size (ma, ka), where
ka=kif trans= 'N"',

ka = n otherwise,

ma=nif trans= 'N',

ma = k otherwise.

2-111

2 Intel® Math Kernel Library Reference Manual

b Holds the matrix B of size (mb, kb), where
kb=kif trans= 'N"',
kb = n otherwise,
mb=nif trans= 'N',
mb = k otherwise.

c Holds the matrix C of size (n, n).
uplo Must be 'U' or 'L'. The default value is 'U".
trans Must be 'N' or 'C'. The default value is 'N'.
alpha The default value is 1.
beta The default value is 1.

?symm

Performs a scalar-matrix-matrix product (one matrix
operand is symmetric) and adds the result to a
scalar-matrix product.

Syntax
Fortran 77:

call ssymm(side, uplo, m, n, alpha, a, lda, b, 1ldb, beta, c, ldc)
call dsymm(side, uplo, m, n, alpha, a, lda, b, 1ldb, beta, c, 1ldc)
call csymm(side, uplo, m, n, alpha, a, lda, b, 1ldb, beta, c, ldc)
call zsymm(side, uplo, m, n, alpha, a, lda, b, 1ldb, beta, c, 1ldc)
Fortran 95:

call symm(a, b, c¢ [,side]l [,uplo]l I[,alphal I[,betal)

Description

The ? symm routines perform a matrix-matrix operation using symmetric matrices. The operation is
defined as

c := alpha*a*b + beta*c

or

2-112

BLAS and Sparse BLAS Routines 2

c := alpha*b*a + beta*c,
where:

alpha and beta are scalars,

a is a symmetric matrix,

b and c are m-by-n matrices.

Input Parameters

side CHARACTER*1. Specifies whether the symmetric matrix a appears on the left
or right in the operation as follows:

side value Operation to be Performed
Lorl ¢ := alpha*a*b + beta*c
Rorr c := alpha*b*a + beta*c

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
symmetric matrix a is to be referenced as follows:

uplo value Part of Array a To Be Referenced

voru Only the upper triangular part of the symmetric
matrix is to be referenced.

Lorl Only the lower triangular part of the symmetric
matrix is to be referenced.

m INTEGER. Specifies the number of rows of the matrix c. The value of m must
be at least zero.

n INTEGER. Specifies the number of columns of the matrix c. The value of n
must be at least zero.

alpha REAL for ssymm
DOUBLE PRECISION for dsymm
COMPLEX for csymm
DOUBLE COMPLEX for zsymm

Specifies the scalar alpha.

2-113

2 Intel® Math Kernel Library Reference Manual

lda

1db

beta

2-114

REAL for ssymm

DOUBLE PRECISION for dsymm
COMPLEX for csymm

DOUBLE COMPLEX for zsymm

Array, DIMENSION (1da, ka), where ka is mwhen side="L' or '1' and is
n otherwise. Before entry with side = 'L' or '1', the m-by-mpart of the array
a must contain the symmetric matrix, such that when uplo= 'U' or 'u', the
leading m-by-m upper triangular part of the array a must contain the upper
triangular part of the symmetric matrix and the strictly lower triangular part of
a is not referenced, and when uplo= 'L' or '1', the leading m-by-m lower
triangular part of the array a must contain the lower triangular part of the
symmetric matrix and the strictly upper triangular part of a is not referenced.

Before entry with side = 'R' or 'r', the n-by-n part of the array a must
contain the symmetric matrix, such that when uplo = 'U' or 'u’, the leading
n-by-n upper triangular part of the array a must contain the upper triangular
part of the symmetric matrix and the strictly lower triangular part of a is not
referenced, and when uplo= 'L' or '1', the leading n-by-n lower triangular
part of the array a must contain the lower triangular part of the symmetric
matrix and the strictly upper triangular part of a is not referenced.

INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. When side = 'L' or '1' then 1da must be at least max (1, m),
otherwise 1da must be at least max (1, n).

REAL for ssymm

DOUBLE PRECISION for dsymm
COMPLEX for csymm

DOUBLE COMPLEX for zsymm

Array, DIMENSION (1db, n). Before entry, the leading m-by-n part of the array
b must contain the matrix b.

INTEGER. Specifies the first dimension of b as declared in the calling
(sub)program. The value of 1db must be at least max (1, m).

REAL for ssymm

DOUBLE PRECISION for dsymm
COMPLEX for csymm

DOUBLE COMPLEX for zsymm

Specifies the scalar beta. When beta is supplied as zero, then ¢ need not be
set on input.

BLAS and Sparse BLAS Routines 2

c REAL for ssymm
DOUBLE PRECISION for dsymm
COMPLEX for csymm
DOUBLE COMPLEX for zsymm

Array, DIMENSION (ldc,n). Before entry, the leading m-by-n part of the
array c must contain the matrix c, except when beta is zero, in which case ¢
need not be set on entry.

ldc INTEGER. Specifies the first dimension of c as declared in the calling
(sub)program. The value of 1dc must be at least max (1, m).

Output Parameters

c Overwritten by the m-by-n updated matrix.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine symm interface are the following:
a Holds the matrix 4 of size (k, k), where
k=mif side="L",
k = n otherwise.

b Holds the matrix B of size (m, n).

c Holds the matrix C of size (m, n).

side Must be 'L or 'R'. The default value is 'L'.
uplo Must be 'U' or 'L'. The default value is 'U".
alpha The default value is 1.

beta The default value is 1.

2-115

2 Intel® Math Kernel Library Reference Manual

?syrk

Performs a rank-n update of a symmetric matrix.

Syntax

Fortran 77:

call ssyrk(uplo, trans, n, k, alpha, a, lda, beta, c, 1ldc)
call dsyrk(uplo, trans, n, k, alpha, a, lda, beta, c, 1ldc)
call csyrk(uplo, trans, n, k, alpha, a, lda, beta, c, 1ldc)
call zsyrk(uplo, trans, n, k, alpha, a, lda, beta, c, 1dc)
Fortran 95:

call syrk(a, c [,uplo]l [,trans] [,alphal [,betal)
Description

The ?syrk routines perform a matrix-matrix operation using symmetric matrices. The operation is
defined as

c := alpha*a*a' + beta*c

or

c := alpha*a'*a + beta*c,

where:

alpha and beta are scalars,
¢ 18 an n-by-n symmetric matrix,

a is an n-by-k matrix in the first case and a k-by-n matrix in the second case.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
array c is to be referenced as follows:

uplo value Part of Array c To Be Referenced
Uoru Only the upper triangular part of c is to be
referenced.

2-116

BLAS and Sparse BLAS Routines 2

trans

alpha

1da

uplo value Part of Array c To Be Referenced
Lorl Only the lower triangular part of c is to be
referenced.

CHARACTER*1. Specifies the operation to be performed as follows:

trans value Operation to be Performed

Norn c:= alpha*a*a' + beta*c
Tort c:= alpha*a'*a + beta*c
Corc c:= alpha*a'*a + beta*c

INTEGER. Specifies the order of the matrix c. The value of n must be at least
zZero.

INTEGER. On entry with trans = 'N' or 'n', k specifies the number of
columns of the matrix a, and on entry with trans='T'or 't' or 'C'or 'c"',
k specifies the number of rows of the matrix a. The value of k must be at least
zero.

REAL for ssyrk

DOUBLE PRECISION for dsyrk
COMPLEX for csyrk

DOUBLE COMPLEX for zsyrk

Specifies the scalar alpha.

REAL for ssyrk

DOUBLE PRECISION for dsyrk
COMPLEX for csyrk

DOUBLE COMPLEX for zsyrk

Array, DIMENSION (lda, ka), where ka is k when trans = 'N' or 'n', and
is n otherwise. Before entry with trans = 'N' or 'n', the leading n-by-k part
of the array a must contain the matrix a, otherwise the leading k-by-n part of
the array a must contain the matrix a.

INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. When trans = 'N' or 'n', then 1da must be at least
max (1, n), otherwise 1da must be at least max (1, k).

2-117

2 Intel® Math Kernel Library Reference Manual

2-118

beta

ldc

REAL for ssyrk

DOUBLE PRECISION for dsyrk
COMPLEX for csyrk

DOUBLE COMPLEX for zsyrk

Specifies the scalar beta.

REAL for ssyrk

DOUBLE PRECISION for dsyrk
COMPLEX for csyrk

DOUBLE COMPLEX for zsyrk

Array, DIMENSION (Idc, n). Before entry with

uplo = 'U"' or 'u', the leading n-by-n upper triangular part of the array c
must contain the upper triangular part of the symmetric matrix and the strictly
lower triangular part of ¢ is not referenced.

Before entry with uplo = 'L' or '1', the leading n-by-n lower triangular part
of the array ¢ must contain the lower triangular part of the symmetric matrix
and the strictly upper triangular part of c is not referenced.

INTEGER. Specifies the first dimension of ¢ as declared in the calling
(sub)program. The value of 1dc must be at least max (1, n).

Output Parameters

(e}

With uplo= 'U' or 'u', the upper triangular part of the array c is overwritten
by the upper triangular part of the updated matrix.

With uplo= 'L' or '1', the lower triangular part of the array c is overwritten
by the lower triangular part of the updated matrix.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine syrk interface are the following:

a

Holds the matrix 4 of size (ma, ka), where
ka=kif transa= 'N",

ka = n otherwise,

ma=nif transa= 'N',

ma = k otherwise.

BLAS and Sparse BLAS Routines 2

c Holds the matrix C of size (n, n).

uplo Mustbe 'U' or 'L'. The default value is 'U".
trans Mustbe 'N', 'C', or 'T'. The default value is 'N'.
alpha The default value is 1.

beta The default value is 1.

?syr2k

Performs a rank-2k update of a symmetric matrix.

Syntax

Fortran 77:

call ssyr2k(uplo, trans, n, k, alpha, a, lda, b, 1ldb, beta, c, 1ldc)
call dsyr2k(uplo, trans, n, k, alpha, a, lda, b, 1db, beta, c¢, 1ldc)
call csyr2k(uplo, trans, n, k, alpha, a, lda, b, 1ldb, beta, c, 1ldc)
call zsyr2k(uplo, trans, n, k, alpha, a, lda, b, 1ldb, beta, c, 1ldc)
Fortran 95:

call syr2k(a, b, c [,uplo]l [,trans] [,alphal [,betal)

Description

The ?syr2k routines perform a rank-2k matrix-matrix operation using symmetric matrices. The
operation is defined as

c := alpha*a*b' + alpha*b*a' + beta*c
or

c := alpha*a'*b + alpha*b'*a + beta*c,
where:

alpha and beta are scalars,
¢ 18 an n-by-n symmetric matrix,

a and b are n-by-k matrices in the first case and k-by-n matrices in the second case.

2-119

2 Intel® Math Kernel Library Reference Manual

2-120

Input Parameters

uplo

trans

alpha

CHARACTER*1. Specifies whether the upper or lower triangular part of the
array c is to be referenced as follows:

uplo value Part of Array c To Be Referenced

Uoru Only the upper triangular part of c is to be
referenced.

Lorl Only the lower triangular part of cis to be
referenced.

CHARACTER*1. Specifies the operation to be performed as follows:

trans value Operation to be Performed

Norn c:= alpha*a*b'+alpha*b*a'+beta*c
Tort c:= alpha*a'*b+alpha*b'*a+beta*c
Corc c:= alpha*a'*b+alpha*b'*a+beta*c

INTEGER. Specifies the order of the matrix c. The value of n must be at least
ZEero.

INTEGER. On entry with trans = 'N' or 'n', k specifies the number of
columns of the matrices a and b, and on entry with trans="'T' or 't' or
'C'or 'c', k specifies the number of rows of the matrices a and b. The value
of k must be at least zero.

REAL for ssyr2k

DOUBLE PRECISION for dsyr2k
COMPLEX for csyr2k

DOUBLE COMPLEX for zsyr2k

Specifies the scalar alpha.

REAL for ssyr2k

DOUBLE PRECISION for dsyr2k
COMPLEX for csyr2k

DOUBLE COMPLEX for zsyr2k

Array, DIMENSION (lda, ka), where ka is k when trans = 'N' or 'n', and
is n otherwise. Before entry with trans = 'N' or 'n', the leading n-by-k part
of the array a must contain the matrix a, otherwise the leading k-by-n part of
the array a must contain the matrix a.

BLAS and Sparse BLAS Routines 2

1da

1db

beta

ldc

INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. When trans = 'N' or 'n', then 1da must be at least
max (1, n), otherwise 1da must be at least max (1, k).

REAL for ssyr2k

DOUBLE PRECISION for dsyr2k
COMPLEX for csyr2k

DOUBLE COMPLEX for zsyr2k

Array, DIMENSION (1db, kb) where kb is k when trans = 'N' or 'n' and
is 'n' otherwise. Before entry with trans = 'N' or 'n', the leading n-by-k
part of the array b must contain the matrix b, otherwise the leading k-by-n part
of the array b must contain the matrix b.

INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. When trans = 'N' or 'n', then 1db must be at least
max (1, n), otherwise 1db must be at least max (1, k).

REAL for ssyr2k

DOUBLE PRECISION for dsyr2k
COMPLEX for csyr2k

DOUBLE COMPLEX for zsyr2k

Specifies the scalar beta.

REAL for ssyr2k

DOUBLE PRECISION for dsyr2k
COMPLEX for csyr2k

DOUBLE COMPLEX for zsyr2k

Array, DIMENSION (Idc, n). Before entry with

uplo= 'U' or 'u', the leading n-by-n upper triangular part of the array c
must contain the upper triangular part of the symmetric matrix and the strictly
lower triangular part of ¢ is not referenced.

Before entry with uplo='L' or '1', the leading n-by-n lower triangular part
of the array ¢ must contain the lower triangular part of the symmetric matrix
and the strictly upper triangular part of c is not referenced.

INTEGER. Specifies the first dimension of c as declared in the calling
(sub)program. The value of 1dc must be at least max (1, n).

Output Parameters

(e}

With uplo= 'U' or 'u', the upper triangular part of the array c is overwritten
by the upper triangular part of the updated matrix.

2-121

2 Intel® Math Kernel Library Reference Manual

With uplo= 'L' or '1', the lower triangular part of the array c is overwritten
by the lower triangular part of the updated matrix.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine syr2k interface are the following:

a Holds the matrix 4 of size (ma, ka), where
ka=kif trans= 'N',
ka = n otherwise,
ma=nif trans= 'N',
ma = k otherwise.

b Holds the matrix B of size (mb, kb), where
kb=kif trans= 'N"',
kb = n otherwise,
mb=nif trans= 'N',
mb = k otherwise.

c Holds the matrix C of size (n, n).

uplo Mustbe 'U' or 'L'. The default value is 'U".
trans Must be 'N', 'c', or 'T'. The default value is 'N'.
alpha The default value is 1.

beta The default value is 1.

2-122

BLAS and Sparse BLAS Routines 2

2trmm

Computes a scalar-matrix-matrix product (one matrix
operand is triangular).

Syntax

Fortran 77:

call strmm(side, uplo, transa, diag, m, n, alpha, a, lda, b, 1db)
call dtrmm(side, uplo, transa, diag, m, n, alpha, a, lda, b, 1db)
call ctrmm(side, uplo, transa, diag, m, n, alpha, a, lda, b, 1db)
call ztrmm(side, uplo, transa, diag, m, n, alpha, a, lda, b, 1db)
Fortran 95:

call trmm(a, b [,sidel [,uplo] [,transal [,diag]l [,alphal)
Description

The ? t rmm routines perform a matrix-matrix operation using triangular matrices. The operation is
defined as

b := alpha*op(a)*b

or

b := alpha*b*op(a),

where:

alpha is a scalar,
b is an m-by-n matrix,
a is a unit, or non-unit, upper or lower triangular matrix

op(a) isone of op(a) =a orop(a) =a' orop(a) = conjg(a').

2-123

2 Intel® Math Kernel Library Reference Manual

Input Parameters

side

uplo

transa

diag

alpha

2-124

CHARACTER*1. Specifies whether op (a) multiplies b from the left or right in
the operation as follows:

side value Operation To Be Performed
Lorl b := alpha*op(a)*b
Rorr b := alpha*b*op (a)

CHARACTER*1. Specifies whether the matrix a is an upper or lower triangular
matrix as follows:

uplo value Matrix a
Uoru Matrix a is an upper triangular matrix.
Lorl Matrix a is a lower triangular matrix.

CHARACTER*1. Specifies the form of op (a) to be used in the matrix
multiplication as follows:

transa value Form of op (a)

Norn op(a) = a

Tort op(a) = a'

Corc op(a) = conjg(a')

CHARACTER*1. Specifies whether or not a is unit triangular as follows:

diag value Matrix a
Uoru Matrix a is assumed to be unit triangular.
Norn Matrix a is not assumed to be unit triangular.

INTEGER. Specifies the number of rows of b. The value of m must be at least
zero.

INTEGER. Specifies the number of columns of b. The value of n must be at
least zero.

REAL for strmm

DOUBLE PRECISION for dtrmm
COMPLEX for ctrmm

DOUBLE COMPLEX for ztrmm

BLAS and Sparse BLAS Routines 2

lda

1db

Specifies the scalar alpha. When alpha is zero, then a is not referenced and b
need not be set before entry.

REAL for strmm

DOUBLE PRECISION for dtrmm
COMPLEX for ctrmm

DOUBLE COMPLEX for ztrmm

Array, DIMENSION (lda, k), where kis mwhen side='L' or '1' andis n
when side = 'R' or 'r"'.

Before entry with uplo = 'U' or 'u', the leading k-by-k upper triangular part
of the array a must contain the upper triangular matrix and the strictly lower
triangular part of a is not referenced.

Before entry with uplo= 'L or '1', the leading k-by-k lower triangular part
of the array a must contain the lower triangular matrix and the strictly upper
triangular part of a is not referenced.

When diag="'U' or 'u', the diagonal elements of a are not referenced either,
but are assumed to be unity.

INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. When side = 'L' or '1', then 1da must be at least max (1,
m) , when side = 'R' or 'r', then 1da must be at least max (1, n).

REAL for st rmm

DOUBLE PRECISION for dtrmm
COMPLEX for ctrmm

DOUBLE COMPLEX for ztrmm

Array, DIMENSION (1db, n). Before entry, the leading
m-by-n part of the array b must contain the matrix b.

INTEGER. Specifies the first dimension of b as declared in the calling
(sub)program. The value of 1db must be at least max (1, m).

Output Parameters

b

Overwritten by the transformed matrix.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

2-125

2 Intel® Math Kernel Library Reference Manual

Specific details for the routine t rmm interface are the following:
a Holds the matrix 4 of size (k, k), where
k=mif side="L",
k = n otherwise.

b Holds the matrix B of size (m, n).
side Mustbe 'L or 'R'. The default valueis 'L".
uplo Must be 'U' or 'L'. The default value is 'U".
transa Must be 'N', 'C', or 'T'. The default value is 'N'.
diag Must be 'N' or 'U'. The default value is 'N'.
alpha The default value is 1.

?trsm

Solves a matrix equation (one matrix operand is

triangular).
Syntax
Fortran 77:
call strsm(side, uplo, transa, diag, m, n, alpha, a, lda, b, 1db)
call dtrsm(side, uplo, transa, diag, m, n, alpha, a, lda, b, 1db)
call ctrsm(side, uplo, transa, diag, m, n, alpha, a, lda, b, 1db)
call ztrsm(side, uplo, transa, diag, m, n, alpha, a, lda, b, 1db)
Fortran 95:
call trsm(a, b [,side]l [,uplo] I[,transal [,diag]l [,alphal)
Description

2-126

The ?trsm routines solve one of the following matrix equations:

op(a)*x = alpha*b

or

x*op(a) = alpha*b,

BLAS and Sparse BLAS Routines 2

where:

alpha is a scalar,

x and b are m-by-n matrices,

a 1s a unit, or non-unit, upper or lower triangular matrix

op(a) isone of op(a) = a orop(a) = a' or
op(a) = conjg(a').

The matrix x is overwritten on b.

Input Parameters

side CHARACTER* 1. Specifies whether op (a) appears on the left or right of x for
the operation to be performed as follows:

side value Operation To Be Performed
Lorl op(a)*x = alpha*b
Rorr x*op (a) = alpha*b
uplo CHARACTER*1. Specifies whether the matrix a is an upper or lower triangular

matrix as follows:

uplo value Matrix a

Uoru Matrix a is an upper triangular matrix.

Lorl Matrix a is a lower triangular matrix.
transa CHARACTER*1. Specifies the form of op (a) to be used in the matrix

multiplication as follows:

transa value Form of op (a)

Norn op(a) = a

Tort op(a) = a'

Corc op(a) = conjg(a')

2-127

2 Intel® Math Kernel Library Reference Manual

2-128

diag

alpha

lda

CHARACTER*1. Specifies whether or not a is unit triangular as follows:

diag value Matrix a
Uoru Matrix a is assumed to be unit triangular.
Norn Matrix a is not assumed to be unit triangular.

INTEGER. Specifies the number of rows of b. The value of m must be at least
zero.

INTEGER. Specifies the number of columns of b. The value of n must be at
least zero.

REAL for strsm

DOUBLE PRECISION for dtrsm
COMPLEX for ctrsm

DOUBLE COMPLEX for ztrsm

Specifies the scalar alpha. When alpha is zero, then a is not referenced and b
need not be set before entry.

REAL for strsm

DOUBLE PRECISION for dtrsm
COMPLEX for ctrsm

DOUBLE COMPLEX for ztrsm

Array, DIMENSION (lda, k), where kis mwhen side="'L'or '1' andis n
when side= 'R' or 'r'.

Before entry with uplo = 'U' or 'u', the leading k by k upper triangular part
of the array a must contain the upper triangular matrix and the strictly lower
triangular part of a is not referenced.

Before entry with uplo= 'L or '1', the leading k by k lower triangular part
of the array a must contain the lower triangular matrix and the strictly upper
triangular part of a is not referenced.

When diag="'U" or 'u', the diagonal elements of a are not referenced either,
but are assumed to be unity.

INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. When side = 'L' or '1', then 1da must be at least max (1,
m) , when side = 'R' or 'r', then 1da must be at least max (1, n).

BLAS and Sparse BLAS Routines 2

1db

REAL for strsm

DOUBLE PRECISION for dtrsm
COMPLEX for ctrsm

DOUBLE COMPLEX for ztrsm

Array, DIMENSION (1db, n). Before entry, the leading m-by-n part of the array
b must contain the right-hand side matrix b.

INTEGER. Specifies the first dimension of b as declared in the calling
(sub)program. The value of 1db must be at least max (1, m).

Output Parameters

b

Overwritten by the solution matrix x.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine trsm interface are the following:

a

b

side
uplo
transa
diag

alpha

Holds the matrix 4 of size (k, k), where
k=mif side="L",
k = n otherwise.

Holds the matrix B of size (m, n).

Must be 'L or 'R'. The default value is 'L'.
Must be 'U" or 'L'. The default value is 'U"'.
Must be 'N', 'c', or 'T'. The default value is 'N'.
Must be 'N' or 'U'. The default value is 'N'.

The default value is 1.

2-129

2 Intel® Math Kernel Library Reference Manual

Sparse BLAS Level 1 Routines and Functions

2-130

This section describes Sparse BLAS Level 1, an extension of BLAS Level 1 included in Intel®
Math Kernel Library beginning with Intel MKL release 2.1. Sparse BLAS Level 1 is a group of
routines and functions that perform a number of common vector operations on sparse vectors
stored in compressed form.

Sparse vectors are those in which the majority of elements are zeros. Sparse BLAS routines and
functions are specially implemented to take advantage of vector sparsity. This allows you to
achieve large savings in computer time and memory. If nz is the number of non-zero vector
elements, the computer time taken by Sparse BLAS operations will be O(niz).

Vector Arguments

Compressed sparse vectors. Let a be a vector stored in an array, and assume that the only
non-zero elements of a are the following:

a(k;),alky),alksy) ...alk

HZ)5

where nz is the total number of non-zero elements in a.

In Sparse BLAS, this vector can be represented in compressed form by two FORTRAN arrays, x
(values) and indx (indices). Each array has nz elements:

x(1l)=a(k;), x(2)=alky), ...x(nz)=a(k,,),
indx (1) =k;, indx(2)=k,, ... indx(nz) =k,,.

Thus, a sparse vector is fully determined by the triple (nz, x, 1ndx). If you pass a negative or zero
value of nz to Sparse BLAS, the subroutines do not modify any arrays or variables.

Full-storage vectors. Sparse BLAS routines can also use a vector argument fully stored in a
single FORTRAN array (a full-storage vector). If y is a full-storage vector, its elements must be
stored contiguously: the first element in y (1), the second in y (2), and so on. This corresponds to
an increment incy =1 in BLAS Level 1. No increment value for full-storage vectors is passed as
an argument to Sparse BLAS routines or functions.

Naming Conventions

Similar to BLAS, the names of Sparse BLAS subprograms have prefixes that determine the data
type involved: s and d for single- and double- precision real; ¢ and z for single- and
double-precision complex respectively.

BLAS and Sparse BLAS Routines 2

If a Sparse BLAS routine is an extension of a “dense” one, the subprogram name is formed by
appending the suffix i (standing for indexed) to the name of the corresponding “dense”
subprogram. For example, the Sparse BLAS routine saxpyi corresponds to the BLAS routine
saxpy, and the Sparse BLAS function cdotci corresponds to the BLAS function cdotc.

Routines and Data Types

Routines and data types supported in the Intel MKL implementation of Sparse BLAS are listed in
Table 2-4.

Table 2-4 Sparse BLAS Routines and Their Data Types

Routine/ Data

Function Types Description

?axpyi s, d, ¢,z Scalar-vector product plus vector (routines)
?doti s, d Dot product (functions)

?dotci c, z Complex dot product conjugated (functions)
?dotui cz Complex dot product unconjugated (functions)
?gthr s,d,cz Gathering a full-storage sparse vector into

compressed form: nz, x, indx (routines)

?gthrz s, d, ¢,z Gathering a full-storage sparse vector into
compressed form and assigning zeros to
gathered elements in the full-storage vector

(routines)
?roti s, d Givens rotation (routines)
?sctr s, d, ¢,z Scattering a vector from compressed form to

full-storage form (routines)

BLAS Level 1 Routines That Can Work With Sparse Vectors

The following BLAS Level 1 routines will give correct results when you pass to them a
compressed-form array x (with the increment incx = 1):
2asum sum of absolute values of vector elements
?copy copying a vector
2nrm2 Buclidean norm of a vector
?scal scaling a vector
i?amax index of the element with the largest absolute value or,
for complex flavors, the largest sum [Rex (1) |+ [Imx (1) |.
i?amin index of the element with the smallest absolute value or,
for complex flavors, the smallest sum [Rex (1) | + |Imx (1) |.

2-131

2 Intel® Math Kernel Library Reference Manual

The result i returned by i?amax and i?amin should be interpreted as index in the
compressed-form array, so that the largest (smallest) value is x (1) ; the corresponding index in
full-storage array is indx (1) .

You can also call 2rotg to compute the parameters of Givens rotation and then pass these
parameters to the Sparse BLAS routines ?roti.

?axpyi

Adds a scalar multiple of compressed sparse vector to a
full-storage vector.

Syntax
Fortran 77:

call saxpyi(nz, a, x, indx,

call daxpyi(nz, a, x, indx,

NONONON

(
(

call caxpyi(nz, a, x, indx,
(

call zaxpyi(nz, a, x, indx,

Fortran 95:
call axpyi(x, indx, y [,al)
Description

The ?axpyi routines perform a vector-vector operation defined as

y 1= a*x + y

where:

a is a scalar,

(nz, x, indx) is a sparse vector stored in compressed form,
vy is a vector in full storage form.

The ?axpyi routines reference or modify only the elements of y whose indices are listed in the
array indx. The values in indx must be distinct.

2-132

BLAS and Sparse BLAS Routines 2

Input Parameters
nz INTEGER. The number of elements in x and indx.

a REAL for saxpyi
DOUBLE PRECISION for daxpyi
COMPLEX for caxpyi
DOUBLE COMPLEX for zaxpyi

Specifies the scalar a.

x REAL for saxpyi
DOUBLE PRECISION for daxpyi
COMPLEX for caxpyi
DOUBLE COMPLEX for zaxpyi
Array, DIMENSION at least nz.

indx INTEGER. Specifies the indices for the elements of x.
Array, DIMENSION at least nz.

v REAL for saxpyi
DOUBLE PRECISION for daxpyi
COMPLEX for caxpyi
DOUBLE COMPLEX for zaxpyi

Array, DIMENSION at least max; (indx(1)).

Output Parameters

v Contains the updated vector y

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine axpyi interface are the following:

x Holds the vector of length (nz).
indx Holds the vector of length (nz).
v Holds the vector of length (nz).
a The default value is 1.

2-133

2 Intel® Math Kernel Library Reference Manual

?doti

Computes the dot product of a compressed sparse real
vector by a full-storage real vector.

Syntax
Fortran 77:

res = sdoti(nz, x, indx, y)

res = ddoti(nz, x, indx, y)

Fortran 95:

res = doti(x, indx, y)

Description

2-134

The ?doti functions return the dot product of x and y defined as

x(1)*y(indx (1)) + x(2)*y(indx(2)) +..

where the triple (nz, x, indx) defines a sparse real vector stored in compressed form, and y is a
real vector in full storage form. The functions reference only the elements of y whose indices are

.+ x(nz) *y(indx(nz))

listed in the array indx. The values in indx must be distinct.

Input Parameters

INTEGER. The number of elements in x and indx.

nz

x REAL for sdoti
DOUBLE PRECISION for ddoti
Array, DIMENSION at least nz.

indx INTEGER. Specifies the indices for the elements of x.
Array, DIMENSION at least nz.

v REAL for sdoti

DOUBLE PRECISION for ddoti
Array, DIMENSION at least max; (indx(1)).

BLAS and Sparse BLAS Routines 2

Output Parameters

res REAL for sdoti
DOUBLE PRECISION for ddoti

Contains the dot product of x and y; if nz is positive. Otherwise, res contains
0.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine doti interface are the following:

x Holds the vector of length (nz).

indx Holds the vector of length (nz).

v Holds the vector of length (nz).
?dotci

Computes the conjugated dot product of a compressed
sparse complex vector with a full-storage complex
vector.

Syntax
Fortran 77:

res = cdotci(nz, x, indx, y)

res = zdotci(nz, x, indx, y)
Fortran 95:

res = dotci(x, indx, y)
Description

The ?dotci functions return the dot product of x and y defined as

conjg(x(1l))*y(indx(1l)) + ... + conjg(x(nz))*y(indx(nz))

2-135

2 Intel® Math Kernel Library Reference Manual

2-136

where the triple (nz, x, indx) defines a sparse complex vector stored in compressed form, and y
is a real vector in full storage form. The functions reference only the elements of y whose indices

are listed in the array indx. The values in indx must be distinct.

Input Parameters

nz

X

indx

INTEGER. The number of elements in x and indx .

COMPLEX for cdotci
DOUBLE COMPLEX for zdotci
Array, DIMENSION at least nz.

INTEGER. Specifies the indices for the elements of x.
Array, DIMENSION at least nz.

COMPLEX for cdotci
DOUBLE COMPLEX for zdotci
Array, DIMENSION at least max; (indx(1)).

Output Parameters

res

COMPLEX for cdotci
DOUBLE COMPLEX for zdotci

Contains the conjugated dot product of x and y;
if nz is positive. Otherwise, res contains 0.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see

Fortran-95 Interface Conventions.

Specific details for the routine dotci interface are the following:

X

indx

Holds the vector of length (nz).
Holds the vector of length (nz).
Holds the vector of length (nz).

BLAS and Sparse BLAS Routines 2

?dotui

Computes the dot product of a compressed sparse
complex vector by a full-storage complex vector.

Syntax
Fortran 77:

res = cdotui(nz, x, indx, y)

res = zdotui(nz, x, indx, y)

Fortran 95:

res = dotui (x, indx, y)

Description
The ?dotui functions return the dot product of x and y defined as
X (1) *y(indx (1)) + x(2)*y(indx(2)) +...+ x(nz) *y(indx(nz))

where the triple (nz, x, indx) defines a sparse complex vector stored in compressed form, and y
is a real vector in full storage form. The functions reference only the elements of y whose indices
are listed in the array indx. The values in indx must be distinct.

Input Parameters

nz INTEGER. The number of elements in x and indx.

x COMPLEX for cdotui
DOUBLE COMPLEX for zdotui
Array, DIMENSION at least nz.

indx INTEGER. Specifies the indices for the elements of x.
Array, DIMENSION at least nz.

v COMPLEX for cdotui
DOUBLE COMPLEX for zdotui
Array, DIMENSION at least max; (indx(1)).

2-137

2 Intel® Math Kernel Library Reference Manual

Output Parameters

res COMPLEX for cdotui
DOUBLE COMPLEX for zdotui
Contains the dot product of x and y; if nz is positive. Otherwise, res
contains 0.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine dotui interface are the following:

x Holds the vector of length (nz).
indx Holds the vector of length (nz).
v Holds the vector of length (nz).

?gthr
Gathers a full-storage sparse vector’s elements into
compressed form.

Syntax
Fortran 77:

call sgthr(nz, y, x, indx)
call dgthr(nz, y, x, indx)
call cgthr(nz, y, x, indx)
call zgthr(nz, y, x, indx)
Fortran 95:

res = gthr(x, indx, y)

2-138

BLAS and Sparse BLAS Routines 2

Description

The ?gthr routines gather the specified elements of a full-storage sparse vector y into
compressed form (nz, x, indx). The routines reference only the elements of y whose indices are
listed in the array indx:

x (i) = y(indx(i)), fori=1,2,...nz.

Input Parameters
nz INTEGER. The number of elements of y to be gathered.

indx INTEGER. Specifies indices of elements to be gathered.
Array, DIMENSION at least nz.

y REAL for sgthr
DOUBLE PRECISION for dgthr
COMPLEX for cgthr
DOUBLE COMPLEX for zgthr
Array, DIMENSION at least max; (indx (1)).

Output Parameters

x REAL for sgthr
DOUBLE PRECISION for dgthr
COMPLEX for cgthr
DOUBLE COMPLEX for zgthr
Array, DIMENSION at least nz.

Contains the vector converted to the compressed form.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine gthr interface are the following:

x Holds the vector of length (nz).
indx Holds the vector of length (nz).
v Holds the vector of length (nz).

2-139

2 Intel® Math Kernel Library Reference Manual

?gthrz

Gathers a sparse vector’s elements into compressed form,
replacing them by zeros.

Syntax

Fortran 77:
call sgthrz(nz, y, x, indx
call dgthrz(nz, y, x, indx

call cgthrz(nz, y, x, indx

(
(
(
call zgthrz(nz, y, x, indx
Fortran 95:

res = gthrz(x, indx, y)

Description

The ?gthrz routines gather the elements with indices specified by the array indx from a
full-storage vector y into compressed form (nz, x, indx) and overwrite the gathered elements of
v by zeros. Other elements of y are not referenced or modified (see also ?gthr).

Input Parameters

nz INTEGER. The number of elements of y to be gathered.

indx INTEGER. Specifies indices of elements to be gathered.Array, DIMENSTION at
least nz.

v REAL for sgthrz

DOUBLE PRECISION for dgthrz

COMPLEX for cgthrz

DOUBLE COMPLEX for zgthrz

Array, DIMENSION at least max; (indx(1)).

Output Parameters

x REAL for sgthrz
DOUBLE PRECISION for dgthrz
COMPLEX for cgthrz

2-140

BLAS and Sparse BLAS Routines 2

DOUBLE COMPLEX for zgthrz
Array, DIMENSION at least nz.
Contains the vector converted to the compressed form.

y The updated vector y.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine gthrz interface are the following:

x Holds the vector of length (nz).
indx Holds the vector of length (nz).
v Holds the vector of length (nz).

?roti

Applies Givens rotation to sparse vectors one of which is
in compressed form.

Syntax
Fortran 77:

call sroti(nz, x, indx, y, c, S)

call droti(nz, x, indx, y, c, S)
Fortran 95:

call roti(x, indx, y [,cl [,s])
Description

The ?roti routines apply the Givens rotation to elements of two real vectors, x (in compressed
form nz, x, indx) and y (in full storage form):

x(1) = c*x(1i) + s*y(indx(1i))
y(indx(i)) = c*y(indx(i)) - s*x(1)

2-141

2 Intel® Math Kernel Library Reference Manual

2-142

The routines reference only the elements of y whose indices are listed in the array indx. The
values in indx must be distinct.

Input Parameters

nz INTEGER. The number of elements in x and indx.

x REAL for sroti
DOUBLE PRECISION for droti
Array, DIMENSION at least nz.

indx INTEGER. Specifies the indices for the elements of x.
Array, DIMENSION at least nz.

v REAL for sroti
DOUBLE PRECISION for droti
Array, DIMENSION at least max; (indx(1)).

c A scalar: REAL for sroti
DOUBLE PRECISION for droti.

s A scalar: REAL for sroti
DOUBLE PRECISION for droti.
Output Parameters

x and y The updated arrays.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine roti interface are the following:

x Holds the vector of length (nz).
indx Holds the vector of length (nz).
v Holds the vector of length (nz).
c The default value is 1.
s The default value is 1.

BLAS and Sparse BLAS Routines 2

?sctr

Converts compressed sparse vectors into full storage

form.

Syntax

Fortran 77:

call ssctr(nz, x, indx, y)
call dsctr(nz, x, indx, y)
call csctr(nz, x, indx, y)

call zsctr(nz, x, indx, y)
Fortran 95:

call sctr(x, indx, y)
Description

The ?sctr routines scatter the elements of the compressed sparse vector (nz, x, 1ndx) to a
full-storage vector y. The routines modify only the elements of y» whose indices are listed in the
array indx:

y(indx(i)) = x(i), fori=1,2,...nz.

Input Parameters

nz INTEGER. The number of elements of x to be scattered.

indx INTEGER. Specifies indices of elements to be scattered.Array, DIMENSION at
least nz.

x REAL for ssctr

DOUBLE PRECISION for dsctr

COMPLEX for csctr

DOUBLE COMPLEX for zsctr

Array, DIMENSION at least nz.

Contains the vector to be converted to full-storage form.

2-143

2 Intel® Math Kernel Library Reference Manual

2-144

Output Parameters

v REAL for ssctr
DOUBLE PRECISION for dsctr
COMPLEX for csctr
DOUBLE COMPLEX for zsctr
Array, DIMENSION at least max; (indx(1)).
Contains the vector y with updated elements.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine sctr interface are the following:

x Holds the vector of length (nz).
indx Holds the vector of length (nz).
v Holds the vector of length (nz).

BLAS and Sparse BLAS Routines 2

Sparse BLAS Level 2 and Level 3

This section describes Sparse BLAS Level 2 and Level 3 included in Inte]® Math Kernel Library.
Sparse BLAS Level 2 is a group of routines and functions that perform operations on a sparse
matrix and dense vectors. Sparse BLAS Level 3 is a group of routines and functions that perform
operations on a sparse matrix and a dense matrices.

Sparse matrix is a matrix in which the majority of elements are zeros. Intel MKL sparse BLAS
routines and functions are specially implemented to take advantage of matrix sparsity. This allows
to achieve large savings in computer time and memory. The sparse BLAS routines can be
considered as building blocks for “Iterative Sparse Solvers based on Reverse Communication
Interface (RCI ISS)” in Chapter 8 of the manual.

Naming Conventions in Sparse BLAS Level 2 and Level 3

Each Sparse BLAS routine has a six- or eight-characters base name preceding with the prefix
mk1l . The routines with standard interfaces have six-characters base names, the routines with
simplified interfaces have eight-characters base names in accordance with the templates:

mkl <character code> <data> <operations()

mkl <character code> <data> <mtype> <operation>()
The <character codes is a character that indicates the data type:

s real, single precision ¢ complex, single precision

d real, double precision z complex, double precision

: NOTE. Current version of the Intel MKL Sparse BLAS supports only real
_ data with double precision.

13

The <data> field indicates the data structure of the sparse matrix (see section “Sparse Matrix
Data Structures”):

coo coordinate format

csr compressed sparse row format and its variations
csc compressed sparse column format and its variations
dia diagonal format

sky skyline storage format

The <operation> field indicates the type of operation.

2-145

2 Intel® Math Kernel Library Reference Manual

mv matrix-vector product (Level 2)

mm matrix-matrix product (Level 3)

sm solving a single triangular system (Level 2)

sm solving triangular systems with multiple right-hand sides (Level 3)

An optional field <mtype> indicates a matrix type and used in the routines with simplified
interfaces:

ge sparse representation of a general matrix
sy sparse representation of the upper or lower triangle of a symmetric matrix
tr sparse representation of a triangular matrix

Sparse Matrix Data Structures

In the current version of Intel MKL sparse BLAS Level 2 and Level 3 the following point entry
[Duff86] sparse matrix data structures are supported:

® compressed sparse row format (CSR) and its variation;
® compressed sparse column format (CSC);

® coordinate format;

* diagonal format;

® skyline storage format.

For more information on matrix storage schemes, see Sparse Storage Formats for Sparse BLAS

Levels 2-3 in the Appendix A.

Routines and Supported Operations

This section describes two main types of routines and supported operations. The following
notations are used here:

A - 1s a sparse matrix;

B and C - are dense matrices;

D - is a diagonal scaling matrix;
x and y - are dense vectors;
alpha and beta - are scalars;

op (A4) is one of the possible operations:
op(A4) =4;
op(A4) = A’-transpose of 4;
op(4) = conj(A4’) - conjugated transpose of 4.

2-146

BLAS and Sparse BLAS Routines 2

Complete list of all routines is given in the Table 2-9.

Routines with Standard Interface

Intel MKL Sparse BIAS routines support the following operations:
Level 2.

® computing a sparse matrix-dense vector product:
y := alphaxop (A) *x + beta*y
* solving a single triangular system:
y := alpha*inv (op(4)) *x
Level 3.
®* computing a sparse matrix-dense matrix product:
C := alpha*op(A) *B + beta*C
® solving a sparse triangular system with multiple right-hand sides:
C := alpha*inv(op(A4))*B

These routines have native interface that differs from the interface used in the NIST Sparse BLAS
library [Rem05]. Detailed consideration of these differences can be found in the section “Interface
Consideration”.

Routines with Simplified Interface

Some software packages and libraries (PARDISO package used in the Intel MKL, Sparskit 2
[Saad94], Compaq Extended Math Library (CXML)[CXMLO1]) use different (early) variation of
the CSR format and support only level 2 operations with simplified interfaces. Intel MKL provides
a set of level 2 routines with similar simplified interfaces. Each of these routines operates on a
matrix of the fixed type. The following operations are supported:

y := op(A)*x (general and symmetric matrices)
y := inv(op(4))*x (triangular matrices)

3

Matrix type is indicated by the field <mtype> in the routine name (see section ‘“‘Naming
Conventions in Sparse BLAS Level 2 and Level 3”).

The detail consideration of interfaces for these routines is given in the “Interface Consideration”
section.

These routines can operate only with three sparse data storage formats, specifically:

2-147

2 Intel® Math Kernel Library Reference Manual

CSR format in variation accepted in PARDISO and CXML;
DIA format accepted in CXML;
COO format.

Note that routines in both groups described above use the same computational kernel routines that
work with certain internal data structures.

Interface Consideration

2-148

Differences Between Intel MKL and NIST Interfaces

The Intel MKL Sparse BLAS Level 3 routines have the following interfaces:

mkl xyyymm(transa, m, n, k, alpha, matdescra, arg(4), b, 1db, beta,
c, 1ldc), for matrix-matrix product;

mkl xyyysm(transa, m, n, alpha, matdescra, arg(4), b, 1db, c, 1dc),for
triangular solvers with multiple right-hand sides.

The analogous NIST Sparse BLAS (NSB) library routines have the following interfaces:

xyyymm (transa, m, n, k, alpha, descra, arg(A), b, 1db, beta, c, ldc,
work, lwork), for matrix-matrix product;

xyyysm(transa, m, n, unitd, dv, alpha, descra, arg(A), b, 1db, beta,
c, ldc, work, lwork), for triangular solvers with multiple right-hand sides.

Some similar arguments are used in both libraries. The argument t ransa indicates how to operate
with the matrix and is slightly different in the NSB library (see Table 2-5). The arguments m and k
are the number of rows and column in the matrix 4, respectively, nn is the number of columns in the
matrix C. The arguments alpha and beta are scalar alpha and beta respectively. (beta is not
used in the Intel MKL triangular solvers.) The arguments b and c are rectangular arrays with the
first dimension 1db and 1dc, respectively.The symbol arg (4) denotes the list of arguments that
describe the sparse representation of 4.

Table 2-5 Parameter transa
MKL interface NSB interface Operation
data type CHARACTER*1 INTEGER
value N or n 0 op(4) =4
Tort 1 op(4d) =4’
Corc 2 op(4) =4’

BLAS and Sparse BLAS Routines 2

The argument matdescra describes the relevant characteristics of the matrix 4. It corresponds to
the argument descra from NSB library (see Table 2-6 for more details).

Table 2-6 Possible Values of the Parameter matdescra (descra)
MKL interface NSB interface Matrix characteristics
data type CHARACTER INTEGER
1st element matdescra(l) descra (1) matrix structure
value G 0 general
S 1 symmetric (A=A")
H 2 Hermitian (A=conjg (4’))
T 3 triangular
A 4 skew(anti)-symmetric (4=-A4")
D 5 diagonal
2nd element matdescra(2) descra (2) upper/lower triangular indicator
value L 1 lower
U 2 upper
3rd element matdescra(3) descra (3) main diagonal type
value N 0 non-unit
U 1 unit

Note that matdescra has some specifics in the Intel MKL routines.
In particular, for routines that perform matrix-matrix and matrix-vector multiplication, they are as

follows:

for general matrices (matdescra (1) ='G"), values of matdescra (2) and matdescra(3)

are ignored,

for skew-symmetrical matrices (matdescra (1) ='A"), values of matdescra(3) are

ignored,;

for diagonal matrices (matdescra (1) ='D’), values of matdescra (2) are ignored;

if matdescra (1) isnotsetto ’G’ or ' T’, and matdescra (2) and matdescra (3) are not
defined, then the following default values are assigned: matdescra(2)='L’ and
matdescra(3)='N’;

matdescra (1) ='G’ is not supported for the routines operating with the skyline storage

format.

For triangular solvers if matdescra (1) ='D’, then matdescra (2) is ignored.

2-149

2 Intel® Math Kernel Library Reference Manual

2-150

For triangular solvers Intel MKL supports only matdescra (1) =T, D;

For both multiplication routines and triangular solvers when matdescra (3) =’ U’, and the sparse
matrix is not in the skyline format, then non-zero diagonal elements can be stored in the sparse
representation even if they are non-unit; when the sparse matrix is in the skyline format, the
diagonal elements must be stored in the sparse representation even if they are zero.

The current version of NSB library supports only descra (1) for matrix-matrix multiplication;
descra(2), descra(3) are supported for triangular solvers only if descra (1) =3.

The argument work is a work array, and Iwork is its dimension. These arguments are not used in
the Intel MKL.

The arguments unitd and dv are used only in NSB triangular solvers. First of them indicates
whether or not the diagonal matrix D is unitary. If unitd=1, D is the identity matrix. The linear
array dv contains the diagonal scaling matrix D if the argument unitd =2 (the rows of 4 are
scaled) or unitd =3 (the columns of 4 are scaled)

Simplified Interfaces

The Intel MKL Sparse BLAS Level 2 routines with simplified interfaces have the following
interfaces:

mkl xyyygemv (transa, m, arg(4), x, y),matrix-vector product for general sparse
matrices;

mkl xyyysymv(uplo, transa, m, arg(d4), x, y),matrix-vector product for
symmetrical sparse matrix;

mkl xyyytrsv(uplo, tranmsa, diag, m, arg(A4), x, y) solution of the systems of
equations with a sparse triangular matrix.

The argument transa indicates how to operate with the matrix (see Table 2-5). The argument
uplo specifies whether an upper or low triangle of the sparse matrix will be considered. The
argument diag specifies whether 4 is a unit triangular or not. The arguments m is the number of
rows in the matrix 4. The arg (4) denotes the list of arguments that describe the sparse
representation of 4. The array x contains the input vector, and the array y contains the result of the
performed operation.

Note that all routines for matrix-vector multiplication are able to extract triangles and/or a main
diagonal from a sparse representation of the matrix 4.

BLAS and Sparse BLAS Routines 2

Operations with Partial Matrices

One of the distinctive feature of the Intel MKL Sparse BLAS routines is a possibility to perform
operations only on certain parts (triangles and main diagonal) of the input sparse matrix specifying
the parameter matdescra. Assume that the sparse matrix 4 can be decomposed as

A=L+D+U
where L is the strict lower triangle of A, U is the strict upper triangle of 4, D is the main diagonal.

Table 2-7 shows correspondence between the output matrix for matrix-matrix multiplication
routines and values of matdescra for real sparse matrix 4. Analogous correspondence exists for
matrix-vector multiplication routines.

Table 2-7 Correspondence Between Output Matrix and Values of matdescra (Routines for
Matrix-Matrix Multiplication)
matdescra(1) matdescra(2) matdescra(3) Output Matrix
G ignored ignored alpha*op (A) *B + betaxC
SorH L N alpha*op (L+D+L’) *B + betaxC
SorH L U alpha*op (L+I+L’) *B + beta*C
SorH u N alpha*op (U+D+U) *B + betaxC
SorH U U alpha*op (U’+I+U) *B + beta*C
T L u alpha*op (L+I) *B + betaxC
T L N alpha*op (L+D) *B + betaxC
T u u alpha*op (U+I) *B + beta*C
T u N alpha*op (U+D) *B + beta*C
A L ignored alpha*op (L-L’) *B + betaxC
A u ignored alpha*op (U-U’) *B + beta*C
D ignored N alpha*D+*B + beta*C
D ignored u alpha*B + betaxC

2-151

2 Intel® Math Kernel Library Reference Manual

Table 2-8 shows correspondence between the output matrix for triangular solvers and values of
matdescra for real sparse matrix 4.

Table 2-8 Correspondence Between Output Matrix and Values of matdescra (Triangular
Solvers)
matdescra(1) matdescra(2) matdescra(3) Output Matrix
T L N alpha*inv (op (L+D)) *B
T L] alpha*inv (op (L+I)) *B
T u N alpha*inv (op (U+D)) *B
T]] alpha*inv (op (U+I)) *B
D ignored N alpha*inv (D) *B
D ignored u alpha*B

Restrictions for Triangular Solver Routines

There are important restrictions for all Intel MKL triangular solvers, specifically:

Column indices for the compressed sparse row format must be sorted in increasing order for
each row;

Row indices for the compressed sparse column format must be sorted in increasing order for
each column;

For the diagonal format, elements of the array containing the diagonal numbers of the
non-zero diagonals of a sparse matrix must be sorted in increasing order.
Sparse BLAS Level 2 and Level 3 Routines.

Table 2-9 lists the sparse BLAS Level 2 and Level 3 routines described in more detail later in this
section.

Table 2-9 Sparse BLAS Level 2 and Level 3 Routines

Routine/Function Description
Level 2
mkl dcsrmv Computes matrix - vector product of a sparse matrix stored in the
CSR format.
mkl dcsrgemv Computes matrix - vector product of a sparse general matrix stored
in the CSR format (PARDISO variation)
mkl dcsrsymv Computes matrix - vector product of a sparse symmetrical matrix

stored in the CSR format (PARDISO variation)

2-152

BLAS and Sparse BLAS Routines 2

Table 2-9 Sparse BLAS Level 2 and Level 3 Routines (continued)

Routine/Function Description

mkl dcscmv Computes matrix - vector product for a sparse matrix in CSC format.

mkl dcoomv Computes matrix - vector product for a sparse matrix in the
coordinate format.

mkl dcoogemv Computes matrix - vector product of a sparse general matrix stored
in the coordinate format.

mkl dcoosymv Computes matrix - vector product of a sparse symmetrical matrix
stored in the coordinate format.

mkl ddiamv Computes matrix - vector product of a sparse matrix stored in the
diagonal format.

mkl ddiagemv Computes matrix - vector product of a sparse general matrix stored
in the diagonal format.

mkl ddiasymv Computes matrix - vector product of a sparse symmetrical matrix
stored in the diagonal format.

mkl dskymv Computes matrix - vector product for a sparse matrix in the skyline
storage format.

mkl dcsrsv Solves a system of linear equations for a sparse matrix in the CSR
format.

mkl dcsrtrsv Triangular solvers with simplified interface for a sparse matrix in the
CSR format (PARDISO variation).

mkl dcscsv Solves a system of linear equations for a sparse matrix in the
compressed sparse column format.

mkl dcoosv Solves a system of linear equations for a sparse matrix in the
coordinate format.

mkl dcootrsv Triangular solvers with simplified interface for a sparse matrix in the
coordinate format.

mkl ddiasv Solves a system of linear equations for a sparse matrix in the
diagonal format.

mkl ddiatrsv Triangular solvers with simplified interface for a sparse matrix in the
diagonal format.

mkl dskysv Solves a system of linear equations for a sparse matrix in the
skyline format.

Level 3

mkl dcsrmm Computes matrix - matrix product of a sparse matrix stored in the
compressed sparse row format

mkl dcscmm Computes matrix - matrix product of a sparse matrix stored in the

compressed sparse column format

2-153

2 Intel® Math Kernel Library Reference Manual

Table 2-9 Sparse BLAS Level 2 and Level 3 Routines (continued)

Routine/Function Description

mkl dcoomm Computes matrix - matrix product of a sparse matrix stored in the
coordinate format.

mkl ddiamm Computes matrix - matrix product of a sparse matrix stored in the
diagonal format.

mkl dskymm Computes matrix - matrix product of a sparse matrix stored in the
skyline storage format.

mkl dcsrsm Solves a system of linear matrix equations for a sparse matrix in the
CSR format.

mkl dcscsm Solves a system of linear matrix equations for a sparse matrix in the
CSC format.

mkl dcoosm Solves a system of linear matrix equations for a sparse matrix in the

coordinate format.

mkl ddiasm Solves a system of linear matrix equations for a sparse matrix in the
diagonal format.

mkl dskysm Solves a system of linear matrix equations for a sparse matrix
stored in the skyline storage format.

mkl_dcsrmv

Computes matrix - vector product of a sparse matrix
stored in the CSR format.

2-154

Syntax

Fortran:

call mkl dcsrmv(transa, m, k, alpha, matdescra, val, indx, pntrb, pntre,
x, beta, y)

C:

mkl dcsrmv(&transa, &m, &k, &alpha, matdescra, val, indx, pntrb, pntre,
x, &beta, y);

BLAS and Sparse BLAS Routines 2

Description

The mkl dcsrmv routine performs a matrix-vector operation defined as
y := alpha*A*x + betaxy

or
y := alpha*A’*x + beta*y,

where:

alpha and beta are scalars,

x and y are vectors,

A is an m-by-k sparse matrix in the CSR format, 4’ is the transpose of 4.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

transa CHARACTER*1. Specifies the operation to be performed.

If transa= 'N’ or ’n’,the matrix-vector product is computed as
y := alpha*A*x + betaxy

If transa= 'T’ or’t’ or’C’or ‘'c’,the matrix-vector product is
computed as
y := alpha*A’*x + beta*y,

m INTEGER. Number of rows of the matrix A.

k INTEGER. Number of columns of the matrix A.

alpha REAL~*8. Specifies the scalar alpha.

matdescra CHARACTER. Array of six elements, specifies properties of the matrix used for

operation. Only first three array elements are used, their possible values are
given in the Table 2-6.

val REAL*8. Array containing non-zero elements of the matrix 4. Its length is
pntre(m) - pntrb(l).Referto values array description in CSR Format
for more details.

indx INTEGER. Array containing the column indices for each non-zero element of
the matrix 4. Its length is equal to length of the val array. Refer to columns
array description in CSR Format for more details.

2-155

2 Intel® Math Kernel Library Reference Manual

pntrb INTEGER. Array of length m, contains row indices, such that pntrb (i)
pntrb (1) +1 is the first index of row i in the arrays val and indx. Refer to
pointerB array description in CSR Format for more details.

pntre INTEGER. Array of length m, contains row indices, such that pntre (i)
pntrb(1) isthe last index of row i in the arrays val and indx. Refer to
pointerkE array description in CSR Format for more details.

x REAL*8. Array, DIMENSION at least k if transa = 'N' or 'n' and at least m
otherwise. Before entry, the array x must contain the vector x.

beta REAL*8. Specifies the scalar beta.

v REAL*8. Array, DIMENSION at least mif transa = 'N' or 'n' and at least k

otherwise. Before entry, the array y must contain the vector y.

Output Parameters

v Overwritten by the updated vector y.
Interfaces
Fortran 77:
SUBROUTINE mkl dcsrmv(transa, m, k, alpha, matdescra, val, indx, pntrb,
pntre, x, Dbeta, y)
CHARACTER*1 transa
CHARACTER matdescra (*)
INTEGER m, k
INTEGER indx(*), pntrb(m), pntre(m)
REAL*8 alpha, beta
REAL*8 val(*), x(*), y(*)
Fortran 95:
SUBROUTINE mkl dcsrmv(transa, m, k, alpha, matdescra, val, indx,
pntre, x, beta, y)
CHARACTER (LEN=1), INTENT (IN):: transa
INTEGER, INTENT (IN) m, k
CHARACTER, INTENT (IN) matdescra (*)
INTEGER, INTENT (IN) indx (*), pntrb(*), pntre(*)
REAL (KIND (1.0D0)), INTENT (IN) alpha, beta
REAL (KIND(1.0D0)), INTENT (IN) val(*), x(*)
REAL (KIND(1.0D0)), INTENT (INOUT) v (*)

2-156

BLAS and Sparse BLAS Routines 2

C:

void mkl decsrmv(char *transa, int *m, int *k, double *alpha, char
*matdescra, double *val, int #*indx, int #*pntrb, int *pntre, double
*x, double *beta, double *y);

mkl_dcsrgemv

Computes matrix - vector product of a sparse general
matrix stored in the CSR format (PARDISO variation).

Syntax

Fortran:

call mkl dcsrgemv(transa, m, a, ia, ja, X, Yy)

C:

mkl dcsrgemv (&transa, &m, a, ia, ja, x, y)i;

Description

The mkl dcsrgemv routine performs a matrix-vector operation defined as

y = A*x
or

y = A'*x,

where:

x and y are vectors,
A is an m-by-m sparse square matrix in the CSR format (PARDISO variation), A’ is the transpose of
A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

transa CHARACTER*1. Specifies the operation to be performed.

If transa= "N’ or ’n’,the matrix-vector product is computed as
y = A*x

2-157

2 Intel® Math Kernel Library

Reference Manual

ia

If transa= 'T’ or’t’ or'C’or’c’,the matrix-vector product is
computed as
y = A’*x,

INTEGER. Number of rows of the matrix 4.

REAL*8. Array containing non-zero elements of the matrix 4. Its length is
equal to the number of non-zero elements in the matrix 4. Refer to values
array description in Sparse Matrix Storage Formats for more details

INTEGER. Array of length m+ 1, containing indices of elements in the array a,
such that ia (i) is the index in the array a of the first non-zero element from
the row i. The value of the last element ia (m+ 1) -1 is equal to the number of
non-zeros plus one. Refer to rowIndex array description in Sparse Matrix
Storage Formats for more details.

REAL*8. Array containing the column indices for each non-zero element of the
matrix A. Its length is equal to the length of the array a. Refer to columns
array description in Sparse Matrix Storage Formats for more details.

REAL*8. Array, DIMENSION is m. Before entry, the array x must contain the
vector x.

Output Parameters

REAL*8. Array, DIMENSION at least m. On exit, the array y must contain the

y
vector y.
Interfaces
Fortran 77:
SUBROUTINE mkl dcsrgemv(transa, m, a, ia, ja, x, y)
CHARACTER*1 transa
INTEGER m
INTEGER ia(*), ja(*)
REAL*8 a(*), x(*), y(*)
Fortran 95:
SUBROUTINE mkl dcsrgemv(transa, m, a, ia, ja, x, y)
CHARACTER (LEN=1) , INTENT(IN):: transa
INTEGER, INTENT (IN) m
INTEGER, INTENT (IN) ia(*), ja(*)
REAL (KIND(1.0D0)), INTENT(IN) :: af(*), x(*)
REAL (KIND(1.0D0)), INTENT (OUT) y(*)

2-158

BLAS and Sparse BLAS Routines 2

C:

void mkl dcsrgemv (char *transa, int *m,

double *x, double *y);

double *a, int *ia, int *ja,

mkl_dcsrsymv

Computes matrix - vector product of a sparse
symmetrical matrix stored in the CSR format
(PARDISO variation).

Syntax

Fortran:

call mkl decsrsymv(uplo, m, a, ia, ja,

C:

mkl dcsrsymv(&uplo, &m, a, ia, ja, x,

Description

X, ¥)

v) i

The mkl dcsrsymv routine performs a matrix-vector operation defined as

y = A*x
or

y = A'*x,

where:

x and y are vectors,

A is an upper or lower triangle of the symmetrical sparse matrix in the CSR format (PARDISO

variation), 4'is the transpose of 4.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces

are described in the section “Interfaces” below.

2-159

2 Intel® Math Kernel Library Reference Manual

uplo

ia

CHARACTER*1. Specifies whether the upper or low triangle of the matrix 4 is
considered.

Ifuplo = 'U’ or ’u’,the upper triangle of the matrix A4 is used.

If uplio 'L’ or '1’,the low triangle of the matrix 4 is used.

INTEGER. Number of rows of the matrix 4.

REAL*8. Array containing non-zero elements of the matrix 4. Its length is
equal to the number of non-zero elements in the matrix A. Refer to values
array description in Sparse Matrix Storage Formats for more details

INTEGER. Array of length m+ 1, containing indices of elements in the array a,
such that ia (i) is the index in the array a of the first non-zero element from
the row i. The value of the last element ia (m+ 1) -1 is equal to the number of
non-zeros plus one. Refer to rowIndex array description in Sparse Matrix
Storage Formats for more details.

REAL*8. Array containing the column indices for each non-zero element of the
matrix A. Its length is equal to the length of the array a. Refer to columns
array description in Sparse Matrix Storage Formats for more details.

REAL*8. Array, DIMENSION is m. Before entry, the array x must contain the
vector x.

Output Parameters

v REAL*8. Array, DIMENSION at least m. On exit, the array y must contain the
vector y.
Interfaces
Fortran 77:
SUBROUTINE mkl dcsrsymv(uplo, m, a, ia, ja, x, y)
CHARACTER*1 uplo
INTEGER m
INTEGER ia(*), jal(x)
REAL*8 a(*), x(*), y(*)
Fortran 95:
SUBROUTINE mkl dcsrsymv(uplo, m, a, ia, ja, x, y)
CHARACTER (LEN=1) , INTENT (IN):: uplo
INTEGER, INTENT (IN) m
INTEGER, INTENT (IN) ia(*), ja(*)

2-160

BLAS and Sparse BLAS Routines 2

REAL (KIND(1.0D0)), INTENT(IN) :: a(*), x(*)
REAL (KIND (1.0D0)), INTENT (OUT) :: y(*)
C:

void mkl decsrsymv(char *uplo, int *m, double *a, int *ia, int *ja, double
*x, double *y);

mkl _dcscmv

Computes matrix - vector product for a sparse matrix in
the compressed sparse column format.

Syntax

Fortran:

call mkl decscmv(transa, m, k, alpha, matdescra, val, indx, pntrb, pntre,
x, beta, y)

C:

mkl dcscmv (&transa, &m, &k, &alpha, matdescra, val, indx, pntrb, pntre,
x, &beta, y);

Description

The mk1l dcscmv routine performs a matrix-vector operation defined as
y := alpha*A*x + betaxy

or
y := alpha*A’*x + beta*y,

where:

alpha and beta are scalars,

x and y are vectors,

A is an m-by-k sparse matrix in compressed sparse column format, 4’ is the transpose of 4.

2-161

2 Intel® Math Kernel Library Reference Manual

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

transa

m
k
alpha

matdescra

val

indx

pntrb

pntre

beta

CHARACTER*1. Specifies the operation to be performed.

If transa= 'N’ or ’'n’,the matrix-vector product is computed as
y := alpha*A*x + beta*y

If transa= 'T’ or’'t’ or'C’or’c’,the matrix-vector product is
computed as
y := alpha*A’*x + beta*y,

INTEGER. Number of rows of the matrix 4.
INTEGER. Number of columns of the matrix 4.
REAL*8. Specifies the scalar alpha.

CHARACTER. Array of six elements, specifies properties of the matrix used for
operation. Only first three array elements are used, their possible values are
given in the Table 2-6.

REAL*8. Array containing non-zero elements of the matrix A4. Its length is
pntre(k) - pntrb(l).Referto values array description in CSC Format
for more details.

INTEGER. Array containing the row indices for each non-zero element of the
matrix 4. Its length is equal to length of the val array. Refer to rows array
description in CSC Format for more details.

INTEGER. Array of length k, contains row indices, such that pntrb (i) -
pntrb(1)+1 is the starting index of column 7 in the arrays val and indx.
Refer to pointerB array description in CSC Format for more details.

INTEGER. Array of length k, contains row indices, such that pntre (i) -
pntrb(1) is the last index of column i in the arrays val and indx. Refer to
pointerE array description in CSC Format for more details.

REAL*8. Array, DIMENSION at least k if transa = 'N' or 'n' and at least m
otherwise. Before entry, the array x must contain the vector x.

REAL*8. Specifies the scalar beta.

REAL*8. Array, DIMENSION at least mif transa = 'N' or 'n' and at least k
otherwise. Before entry, the array y must contain the vector y.

BLAS and Sparse BLAS Routines 2

Output Parameters

v Overwritten by the updated vector y.
Interfaces
Fortran 77:
SUBROUTINE mkl dcscmv (transa, m, k, alpha, matdescra, val, indx, pntrb,
pntre, x, Dbeta, vy)
CHARACTER*1 transa
CHARACTER matdescra (*)
INTEGER m, k, 1ldb, 1ldc
INTEGER indx(*), pntrb(m), pntre(m)
REAL*8 alpha, beta
REAL*8 val(*), x(*), y(*)
Fortran 95:
SUBROUTINE mkl dcscmv(transa, m, k, alpha, matdescra, val, indx, pntrb,
pntre, x, beta, y)
CHARACTER (LEN=1), INTENT (IN):: transa
INTEGER, INTENT (IN) m, k
CHARACTER, INTENT (IN) matdescra (*)
INTEGER, INTENT (IN) indx (*), pntrb(*), pntre(*)
REAL (KIND (1.0D0)), INTENT (IN) alpha, beta
REAL (KIND(1.0D0)), INTENT (IN) val(*), x(*)
REAL (KIND(1.0D0)), INTENT (INOUT) v (*)
C:
void mkl dcscmv (char #*transa, int *m, int #*k, double *alpha, char
*matdescra, double *val, int *indx, int *pntrb, int *pntre, double

*X,

double *beta,

double *y);

2-163

2 Intel® Math Kernel Library Reference Manual

mkl _dcoomv

Computes matrix - vector product for a sparse matrix in
the coordinate format.

2-164

Syntax

Fortran:

call mkl dcoomv(transa, m, k, alpha, matdescra, val, rowind, colind, nnz,
x, beta, y)

C:

mkl dcoomv (&transa, &m, &k, &alpha, matdescra, val, rowind, colind, &nnz,
x, &beta, y);

Description

The mk1l dcoomv routine performs a matrix-vector operation defined as
y := alpha*A*x + beta*y
or
y := alpha*A’*x + beta*y,
where:
alpha and beta are scalars,

x and y are vectors,
A is an m-by-k sparse matrix in compressed coordinate format, A’ is the transpose of 4.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

transa CHARACTER*1. Specifies the operation to be performed.

If transa= "N’ or ’n’,the matrix-vector product is computed as
y := alpha*A*x + betaxy

If transa= 'T’ or’t’ or'C’or ’c’,the matrix-vector product is
computed as
y := alpha*A’*x + beta*y,

BLAS and Sparse BLAS Routines 2

m
k
alpha

matdescra

val

rowind

colind

nnz

beta

INTEGER. Number of rows of the matrix 4.
INTEGER. Number of columns of the matrix A4.
REAL*8. Specifies the scalar alpha.

CHARACTER. Array of six elements, specifies properties of the matrix used for
operation. Only first three array elements are used, their possible values are
given in the Table 2-6.

REAL*8. Array of length nnz, contains non-zero elements of the matrix 4 in
the arbitrary order. Refer to values array description in Coordinate Format for
more details.

INTEGER. Array of length nnz, contains the row indices for each non-zero
element of the matrix 4. Refer to rows array description in Coordinate Format
for more details.

INTEGER. Array of length nnz, contains the column indices for each non-zero
element of the matrix 4. Refer to columns array description in Coordinate
Format for more details.

INTEGER. Specifies the number of non-zero element of the matrix 4. Refer to
nnz description in Coordinate Format for more details.

REAL*8. Array, DIMENSION at least k if transa = 'N' or 'n' and at least m
otherwise. Before entry, the array x must contain the vector x.

REAL*8. Specifies the scalar beta.

REAL*8. Array, DIMENSION at least mif transa = 'N' or 'n' and at least k
otherwise. Before entry, the array y must contain the vector y.

Output Parameters

v
Interfaces

Fortran 77:

Overwritten by the updated vector y.

SUBROUTINE mkl dcoomv(transa, m, k, alpha, matdescra, wval, rowind,
colind, nnz, x, beta, y)

CHARACTER*1
CHARACTER
INTEGER
INTEGER
REAL*8

transa

matdescra (*)

m, k, nnz

rowind(*), colind(*)
alpha, beta

2-165

2 Intel® Math Kernel Library Reference Manual

REAL*8 val(*), x(*), y(*)

Fortran 95:

SUBROUTINE mkl dcoomv(transa, m, k, alpha, matdescra, val, rowind,
colind, nnz, x, beta, vy)

CHARACTER (LEN=1) , INTENT(IN) :: transa
INTEGER, INTENT(IN) :: m, k, nnz

CHARACTER, INTENT(IN) :: matdescra(*)
INTEGER, INTENT(IN) :: rowind(*), colind(¥*)
REAL (KIND(1.0D0)), INTENT(IN) :: alpha, beta
REAL (KIND(1.0DO)), INTENT(IN) :: val(*), x(*)
REAL (KIND(1.0D0)), INTENT (INOUT) :: y(*)

C:

void mkl dcoomv (char #*transa, int #*m, int #*k, double *alpha, char
*matdescra, double *val, int *rowind, int *colind, int *nnz, double
*x, double *beta, double *y);

mkl_dcoogemv

Computes matrix - vector product of a sparse general
matrix stored in the coordinate format.

Syntax

Fortran:

call mkl dcoogemv(transa, m, val, rowind, colind, nnz, x, y)
C:

mkl dcoogemv (&transa, &m, val, rowind, colind, &nnz, x, y);

Description

The mkl dcoogemv routine performs a matrix-vector operation defined as

y = A*x
or

y = A'*x,

where:

2-166

BLAS and Sparse BLAS Routines 2

x and y are vectors,

A is an m-by-m sparse square matrix in the coordinate format, 4'is the transpose of 4.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

transa

val

rowind

colind

nnz

CHARACTER*1. Specifies the operation to be performed.

If transa= 'N’ or ’'n’,the matrix-vector product is computed as
y = A*x

If transa= 'T’ or’t’ or'C’or ’c’,the matrix-vector product is
computed as
y = A’*x,

INTEGER. Number of rows of the matrix 4.

REAL*8. Array of length nnz, contains non-zero elements of the matrix 4 in
the arbitrary order. Refer to values array description in Coordinate Format for
more details.

INTEGER. Array of length nnz, contains the row indices for each non-zero
element of the matrix 4. Refer to rows array description in Coordinate Format
for more details.

INTEGER. Array of length nnz, contains the column indices for each non-zero
element of the matrix A. Refer to columns array description in Coordinate
Format for more details.

INTEGER. Specifies the number of non-zero element of the matrix 4. Refer to
nnz description in Coordinate Format for more details.

REAL*8. Array, DIMENSION is m. Before entry, the array x must contain the
vector x.

Output Parameters

Yy

REAL*8. Array, DIMENSION at least m. On exit, the array y must contain the
vector y.

2-167

2 Intel® Math Kernel Library Reference Manual

Interfaces

Fortran 77:

SUBROUTINE mkl dcoogemv(transa, m, val, rowind, colind, nnz, x, y)
CHARACTER*1 transa

INTEGER m, nnz
INTEGER rowind (*), colind(*)
REAL*8 val(*), x(*), y(¥)
Fortran 95:
SUBROUTINE mkl dcoogemv(transa, m, val, rowind, colind, nnz, x, y)
CHARACTER (LEN=1) , INTENT(IN) :: transa
INTEGER, INTENT(IN) :: m, nnz
INTEGER, INTENT(IN) :: rowind(*), colind(*)
REAL (KIND(1.0D0)), INTENT(IN) :: val(*), x(*)
REAL (KIND(1.0D0)), INTENT (INOUT) :: y(¥*)

C:

void mkl dcoogemv (char #*transa, int #*m, double *val, int *rowind, int
*colind, int *nnz, double *x, double *y);

mkl_dcoosymv

Computes matrix - vector product of a sparse
symmetrical matrix stored in the coordinate format.

Syntax

Fortran:

call mkl dcoosymv(uplo, m, val, rowind, colind, nnz, x, y)

C:

mkl dcoosymv (&uplo, &m, val, rowind, colind, &nnz, x, y);

Description

The mkl dcoosymv routine performs a matrix-vector operation defined as

y = A*x

2-168

BLAS and Sparse BLAS Routines 2

or

y = A'*x,

where:

x and y are vectors,

A is an upper or lower triangle of the symmetrical sparse matrix in the coordinate format, 4’ is the

transpose of 4.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

uplo

val

rowind

colind

nnz

CHARACTER*1. Specifies whether the upper or low triangle of the matrix 4 is
considered.

Ifuplo = 'U’ or ’u’,the upper triangle of the matrix A4 is used.
If uplo = 'L’ or’1’,the low triangle of the matrix 4 is used.
INTEGER. Number of rows of the matrix A4.

REAL*8. Array of length nnz, contains non-zero elements of the matrix 4 in
the arbitrary order. Refer to values array description in Coordinate Format for
more details.

INTEGER. Array of length nnz, contains the row indices for each non-zero
element of the matrix 4. Refer to rows array description in Coordinate Format
for more details.

INTEGER. Array of length nnz, contains the column indices for each non-zero
element of the matrix 4. Refer to columns array description in Coordinate
Format for more details.

INTEGER. Specifies the number of non-zero element of the matrix 4. Refer to
nnz description in Coordinate Format for more details.

REAL*8. Array, DIMENSION is m. Before entry, the array x must contain the
vector x.

Output Parameters

y

REAL*8. Array, DIMENSION at least m. On exit, the array y must contain the
vector y.

2-169

2 Intel® Math Kernel Library Reference Manual

Interfaces

Fortran 77:

SUBROUTINE mkl dcoosymv(uplo, m, val, rowind, colind, nnz, x, Yy)
CHARACTER*1 uplo

INTEGER m, nnz
INTEGER rowind (*), colind(*)
REAL*8 val(*), x(*), y(¥)
Fortran 95:
SUBROUTINE mkl dcoosymv(uplo, m, val, rowind, colind, nnz, x, Yy)
CHARACTER (LEN=1) , INTENT (IN) :: uplo
INTEGER, INTENT(IN) :: m, nnz
INTEGER, INTENT(IN) :: rowind(*), colind(*)
REAL (KIND(1.0D0)), INTENT(IN) :: val(*), x(*)
REAL (KIND(1.0D0)), INTENT (INOUT) :: y(¥*)

C:

void mkl dcoosymv (char #*uplo, int #*m, double #*val, int *rowind, int
*colind, int *nnz, double *x, double *y);

mkl_ddiamv

Computes matrix - vector product for a sparse matrix in
the diagonal format.

2-170

Syntax

Fortran:

call mkl ddiamv(transa, m, k, alpha, matdescra, val, lval, idiag, ndiag,
x, beta, y)

C:

mkl ddiamv(&transa, &m, &k, &alpha, matdescra, val, &lval, idiag, &ndiag,
x, &beta, y);

Description

The mk1l ddiamv routine performs a matrix-vector operation defined as

BLAS and Sparse BLAS Routines 2

y := alpha*A*x + betaxy
or
y := alpha*A’*x + beta*y,

where:

alpha and beta are scalars,

x and y are vectors,

A is an m-by-k sparse matrix stored in the diagonal format, 4'is the transpose of 4.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

transa CHARACTER*1. Specifies the operation to be performed.

If transa= 'N’ or ’n’,the matrix-vector product is computed as
y := alpha*A*x + betaxy

If transa= 'T’ or’t’ or'C’or’c’,the matrix-vector product is
computed as
y := alpha*A’*x + beta*y,

m INTEGER. Number of rows of the matrix A4.

k INTEGER. Number of columns of the matrix A.

alpha REAL*8. Specifies the scalar alpha.

matdescra CHARACTER. Array of six elements, specifies properties of the matrix used for

operation. Only first three array elements are used, their possible values are
given in the Table 2-6.

val REAL*8. Two-dimensional array of size 1val by ndiag, contains non-zero
diagonals of the matrix 4. Refer to values array description in Diagonal
Storage Scheme for more details.

lval INTEGER. Leading dimension of val, 1val=min(m k) .Referto Ival
description in Diagonal Storage Scheme for more details.

idiag INTEGER. Array of length ndiag, contains the distances between main
diagonal and each non-zero diagonals in the matrix 4. Refer to distance
array description in Diagonal Storage Scheme for more details.

ndiag INTEGER. Specifies the number of non-zero diagonals of the matrix 4.

2-171

2 Intel® Math Kernel Library Reference Manual

beta

REAL*8. Array, DIMENSION at least k if transa = 'N' or 'n' and at least m
otherwise. Before entry, the array x must contain the vector x.

REAL*8. Specifies the scalar beta.

REAL*8. Array, DIMENSION at least mif transa = 'N' or 'n' and at least k
otherwise. Before entry, the array y must contain the vector y.

Output Parameters

v Overwritten by the updated vector y.
Interfaces
Fortran 77:
SUBROUTINE mkl ddiamv(transa, m, k, alpha, matdescra, val, lval, idiag,
ndiag, x, beta, vy)
CHARACTER*1 transa
CHARACTER matdescra (*)
INTEGER m, k, lval, ndiag
INTEGER idiag(¥*)
REAL*8 alpha, beta
REAL*8 val (lval,*), x(*), y(*)
Fortran 95:
SUBROUTINE mkl ddiamv(transa, m, k, alpha, matdescra, val, lval, idiag,
ndiag, x, beta, vy)
CHARACTER (LEN=1), INTENT (IN) transa
INTEGER, INTENT (IN) m, k, lval, ndiag
CHARACTER, INTENT (IN) matdescra (*)
INTEGER, INTENT (IN) idiag(¥*)
REAL(KIND(1.0D0)), INTENT (IN) alpha, beta
REAL (KIND(1.0D0)), INTENT (IN) val (1lval, *), x(*)
REAL (KIND(1.0D0)), INTENT (INOUT) y (%)
C:
void mkl ddiamv (char *transa, int *m, int *k, double *alpha, char
*matdescra, double *val, int *I1val, int *idiag, int #*ndiag, double
*x, double #*beta, double *y);

2-172

BLAS and Sparse BLAS Routines 2

mkl_ddiagemv

Computes matrix - vector product of a sparse general
matrix stored in the diagonal format.

Syntax

Fortran:

call mkl ddiagemv(transa, m, val, lval, idiag, ndiag, x, y)

C:

mkl ddiagemv (&transa, &m, val, &lval, idiag, &ndiag, x, Y);

Description

The mk1l ddiagemv routine performs a matrix-vector operation defined as

y = A*x
or

y = A'*x,

where:

x and y are vectors,
A is an m-by-m sparse square matrix in the diagonal storage format, A" is the transpose of 4.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

transa CHARACTER*1. Specifies the operation to be performed.

If transa= "N’ or ’n’,the matrix-vector product is computed as
y = A*x

If transa= 'T’ or’t’ or'C’or’c’,the matrix-vector product is
computed as
y = A’*x,

m INTEGER. Number of rows of the matrix 4.

2-173

2 Intel® Math Kernel Library Reference Manual

val REAL*8. Two-dimensional array of size 1val by ndiag, contains non-zero
diagonals of the matrix 4. Refer to values array description in Diagonal
Storage Scheme for more details.

lval INTEGER. Leading dimension of val, 1val=>m. Refer to 1val description in
Diagonal Storage Scheme for more details.

idiag INTEGER. Array of length ndiag, contains the distances between main
diagonal and each non-zero diagonals in the matrix A. Refer to distance
array description in Diagonal Storage Scheme for more details.

ndiag INTEGER. Specifies the number of non-zero diagonals of the matrix A.
x REAL*8. Array, DIMENSION is m. Before entry, the array x must contain the
vector x.

Output Parameters

v REAL*8. Array, DIMENSION at least m. On exit, the array y must contain the
vector y.

Interfaces

Fortran 77:

SUBROUTINE mkl ddiagemv (transa, m, val, lval, idiag, ndiag, x, y)
CHARACTER*1 transa

INTEGER m, lval, ndiag
INTEGER idiag (*)
REAL*8 val (1lval,*), x(*), y(*)
Fortran 95:
SUBROUTINE mkl ddiagemv(transa, m, val, lval, idiag, ndiag, x, y)
CHARACTER (LEN=1) , INTENT(IN) :: transa
INTEGER, INTENT(IN) :: m, lval, ndiag
INTEGER, INTENT (IN) :: idiag(*)
REAL (KIND(1.0DO)), INTENT(IN) :: val(lval,*), x(*)
REAL (KIND(1.0D0)), INTENT (OUT) :: y(*)
C:
void mkl ddiagemv (char #*transa, int #*m, double *val, int *Ival, int

*idiag, int #*ndiag, double #*x, double *y);

BLAS and Sparse BLAS Routines 2

mkl_ddiasymv

Computes matrix - vector product of a sparse
symmetrical matrix stored in the diagonal format.

Syntax

Fortran:

call mkl ddiasymv(uplo, m, val, I1val, idiag, ndiag, x, y)

C:

mkl ddiasymv (&uplo, &m, val, &lval, idiag, &ndiag, x, y);

Description

The mk1l ddiasymv routine performs a matrix-vector operation defined as

y = A*x
or

y = A'*x,

where:

x and y are vectors,

A is an upper or lower triangle of the symmetrical sparse matrix, 4’ is the transpose of 4.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

uplo

val

CHARACTER*1. Specifies whether the upper or low triangle of the matrix A4 is
considered.

Ifuplo = 'U’ or ’u’,the upper triangle of the matrix A4 is used.
If uplo = 'L’ or’1’,the low triangle of the matrix A4 is used.
INTEGER. Number of rows of the matrix A.

REAL*8. Two-dimensional array of size Ival by ndiag, contains non-zero
diagonals of the matrix 4. Refer to values array description in Diagonal
Storage Scheme for more details.

2-175

2 Intel® Math Kernel Library Reference Manual

2-176

lval INTEGER. Leading dimension of val, 1val>m. Refer to Ival description in

Diagonal Storage Scheme for more details.

idiag INTEGER. Array of length ndiag, contains the distances between main

diagonal and each non-zero diagonals in the matrix 4. Refer to distance
array description in Diagonal Storage Scheme for more details.

ndiag INTEGER. Specifies the number of non-zero diagonals of the matrix 4.
x REAL*8. Array, DIMENSION is m. Before entry, the array x must contain the
vector x.

Output Parameters

v REAL*8. Array, DIMENSION at least m. On exit, the array y must contain the
vector).

Interfaces

Fortran 77:

SUBROUTINE mkl ddiasymv(uplo, m, val, lval, idiag, ndiag, x, Vy)
CHARACTER*1 uplo

INTEGER m, lval, ndiag
INTEGER idiag(*)
REAL*8 val(lval,*), x(*), y(*)
Fortran 95:
SUBROUTINE mkl ddiasymv(uplo, m, val, lval, idiag, ndiag, x, y)
CHARACTER (LEN=1) , INTENT (IN) :: uplo
INTEGER, INTENT(IN) :: m, lval, ndiag
INTEGER, INTENT (IN) :: idiag(*)
REAL (KIND(1.0DO)), INTENT(IN) :: val(lval,=*), x(*)
REAL (KIND(1.0D0)), INTENT (OUT) :: y(*)
C:
void mkl ddiasymv(char #*uplo, int #*m, double #*val, int *lval, int

*idiag, int #*ndiag, double *x, double *y);

BLAS and Sparse BLAS Routines 2

mkl_dskymv

Computes matrix - vector product for a sparse matrix in
the skyline storage format.

Syntax

Fortran:

call mkl dskymv(transa, m, k, alpha, matdescra, val, pntr, x, beta, y)

C:
mkl dskymv(&transa, &m, &k, &alpha, matdescra, val, pntr, x, &beta, y);

Description

The mk1 dskymv routine performs a matrix-vector operation defined as
y := alpha*A*x + beta*y

or
y := alpha*A’*x + beta*y,

where:

alpha and beta are scalars,

x and y are vectors,

A is an m-by-k sparse matrix stored using the skyline storage scheme, 4’ is the transpose of 4.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

transa CHARACTER*1. Specifies the operation to be performed.

If transa= 'N’ or ’'n’,the matrix-vector product is computed as
y := alpha*A*x + beta*y

If transa= 'T’ or’t’ or'C’or’c’,the matrix-vector product is
computed as
y := alpha*A’*x + beta*y,

m INTEGER. Number of rows of the matrix 4.

2-177

2 Intel® Math Kernel Library Reference Manual

2-178

k
alpha

matdescra

val

pntr

beta

INTEGER. Number of columns of the matrix A4.
REAL*8. Specifies the scalar alpha.

CHARACTER. Array of six elements, specifies properties of the matrix used for
operation. Only first three array elements are used, their possible values are
given in the Table 2-6.

REAL*8. Array containing the set of elements of the matrix 4 in the skyline
profile form.

If matdescrsa(2)= 'L’, then val contains elements from the low triangle
of the matrix 4.
If matdescrsa(2) = 'U’,then val contains elements from the upper triangle

of the matrix 4.
Refer to values array description in Skyline Storage Scheme for more details.

INTEGER. Array of length (m+1) for lower triangle, and (k+1) for upper
triangle. It contains the indices specifying in the val the positions of the first
element in each row (column) of the matrix 4. Refer to pointers array
description in Skyline Storage Scheme for more details.

REAL*8. Array, DIMENSION at least k if transa = 'N' or 'n' and at least m
otherwise. Before entry, the array x must contain the vector x.

REAL*8. Specifies the scalar beta.

REAL*8. Array, DIMENSION at least mif transa = 'N' or 'n' and at least k
otherwise. Before entry, the array y must contain the vector y.

Output Parameters

Overwritten by the updated vector y.

SUBROUTINE mkl dskymv (transa, m, k, alpha, matdescra, val, pntr, x, beta,

y

Interfaces

Fortran 77:

y)
CHARACTER*1
CHARACTER
INTEGER
INTEGER
REAL*8
REAL*8

transa
matdescra (*)

m, k

pntr (*)

alpha, beta
val(*), x(*), y(¥)

BLAS and Sparse BLAS Routines 2

Fortran 95:
SUBROUTINE mkl dskymv(transa, m, k, alpha, matdescra, val, pntr, x, beta,
y)

CHARACTER (LEN=1) , INTENT (IN) :: transa

INTEGER, INTENT(IN) :: m, k

CHARACTER, INTENT (IN) :: matdescra (*)

INTEGER, INTENT (IN) :: pntr(*)

REAL (KIND(1.0D0)), INTENT(IN) :: alpha, beta

REAL (KIND(1.0D0)), INTENT(IN) :: val(*), x(*)

REAL (KIND(1.0D0)), INTENT (INOUT) :: y(*)

C:

void mkl dskymv (char *transa, int *m, int *k, double *alpha, char
*matdescra, double *val, int *pntr, double *x, double #*beta, double
*y) i

mkl_dcsrsv

Solves a system of linear equations for a sparse matrix
in the CSR format.

Syntax

Fortran:

call mkl dcsrsv(transa, m, alpha, matdescra, val, indx, pntrb, pntre, x, y)

C:

mkl dcsrsv(&transa, &m, &alpha, matdescra, val, indx, pntrb, pntre, x, y);

Description
The mk1l dcsrsv routine solves a system of linear equations with matrix-vector operations for a
sparse matrix in the CSR format:
y := alpha*inv (4) *x
or
y := alpha*inv(4’) *x,

where:

2-179

2 Intel® Math Kernel Library Reference Manual

alpha is scalar,

x and y are vectors,

A is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, 4’ is the
transpose of 4.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

transa CHARACTER*1. Specifies the operation to be performed.
If transa= 'N’ or 'n’, y := alpha*inv (4)*x
If transa= 'T" or’t’ or’C’or’'c’, y := alphaxinv(4’)*x,
m INTEGER. Number of columns of the matrix A.
alpha REAL*8. Specifies the scalar alpha.
matdescra CHARACTER. Array of six elements, specifies properties of the matrix used for

operation. Only first three array elements are used, their possible values are
given in the Table 2-6.

val REAL*8. Array containing non-zero elements of the matrix A4. Its length is
pntre(m) - pntrb(l).Refer to values array description in CSR Format
for more details.

indx INTEGER. Array containing the column indices for each non-zero element of
the matrix 4. Its length is equal to length of the val array. Refer to columns
array description in CSR Format for more details.

pntrb INTEGER. Array of length m, contains row indices, such that pntrb (i) -
pntrb (1) +1 is the starting index of row i in the arrays val and indx. Refer to
pointerB array description in CSR Format for more details.

pntre INTEGER. Array of length m, contains row indices, such that pntre (i) -
pntrb(1) is the last index of row i in the arrays val and indx. Refer to
pointerE array description in CSR Format for more details.

x REAL*8. Array, DIMENSION at least m. Before entry, the array x must contain
the vector x. The elements are accessed with unit increment.

v REAL*8. Array, DIMENSION at least m. Before entry, the array y must contain
the vector y. The elements are accessed with unit increment.

2-180

BLAS and Sparse BLAS Routines 2

Output Parameters

y

Contains solution vector x.

Interfaces

Fortran 77:

SUBROUTINE mkl dcsrsv(transa, m, alpha, matdescra, val, indx, pntrb,
pntre, x, V)

CHARACTER*1 transa

CHARACTER matdescra (*)
INTEGER m
INTEGER indx (*), pntrb(m), pntre(m)
REAL*8 alpha
REAL*8 val (*)
REAL*8 x(*), y(*)
Fortran 95:

SUBROUTINE mkl dcsrsv(transa, m, alpha, matdescra, val, indx, pntrb,
pntre, x, V)

C:

CHARACTER (LEN=1) , INTENT (IN):: transa

INTEGER, INTENT(IN) :: m

CHARACTER, INTENT(IN) :: matdescra(*)

INTEGER, INTENT (IN) :: indx(¥*), pntrb(*), pntre(*)
REAL (KIND(1.0D0)), INTENT(IN) :: alpha

REAL (KIND(1.0DO)), INTENT(IN) :: val(*), x(%*)

REAL (KIND(1.0D0)), INTENT (INOUT) :: y(*)

void mkl _dcsrsv(char #*transa, int *m, double #*alpha, char *matdescra,

double *val, int *indx, 1int *pntrb, int #*pntre, double #*x, double
*y) i

2-181

2 Intel® Math Kernel Library Reference Manual

mkl_dcsrtrsv

Triangular solvers with simplified interface for a sparse
matrix in the CSR format (PARDISO variation).

2-182

Syntax

Fortran:

call mkl desrtrsv(uplo, transa, diag, m, a, ilia, ja, x, Yy)

C:

mkl dcsrtrsv(&uplo, &transa, &diag, &m, a, la, ja, %X, y)i

Description
The mk1l desrtrsv routine solves a system of linear equations with matrix-vector operations for
a sparse matrix stored in the CSR format accepted in PARDISO:
A*y = x
or
A *y = x,
where:
x and y are vectors,

A is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, 4"is the
transpose of A4.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

uplo CHARACTER*1. Specifies whether the upper or low triangle of the matrix 4 is
considered.
Ifuplo = 'U’ or ’u’,the upper triangle of the matrix A4 is used.
If uplo = 'L’ or’1’, the low triangle of the matrix 4 is used.
transa CHARACTER*1. Specifies the operation to be performed.
If transa= 'N’ or 'n’, A*y = x

BLAS and Sparse BLAS Routines 2

diag

ia

If transa= 'T’ or’t’ or’'C’or’c’, A'*y = x,

CHARACTER*1. Specifies whether 4 is a unit triangular or not.

If diag

'U’ or 'u’, A isassumed to be a unit triangular.

If diag

"N’ or 'n’, 4 is not assumed to be a unit triangular.
INTEGER. Number of rows of the matrix A.

REAL*8. Array containing non-zero elements of the matrix A4. Its length is
equal to the number of non-zero elements in the matrix A. Refer to values
array description in Sparse Matrix Storage Formats for more details

INTEGER. Array of length m+ 1, containing indices of elements in the array a,
such that ia (i) is the index in the array a of the first non-zero element from
the row i. The value of the last element ia (m+ 1) -1 is equal to the number of
non-zeros plus one. Refer to rowIndex array description in Sparse Matrix
Storage Formats for more details.

REAL*8. Array containing the column indices for each non-zero element of the
matrix A. Its length is equal to the length of the array a. Refer to columns
array description in Sparse Matrix Storage Formats for more details.

REAL*8. Array, DIMENSION is m. Before entry, the array x must contain the
vector x.

Output Parameters

v REAL*8. Array, DIMENSION at least m. Contains the vector y.
Interfaces
Fortran 77:
SUBROUTINE mkl dcsrtrsv(uplo, transa, diag, m, a, ia, ja, x, y)
CHARACTER*1 uplo, transa, diag
INTEGER m
INTEGER ia(*), ja(*)
REAL*8 a(*), x(*), y(*)
Fortran 95:
SUBROUTINE mkl dcsrtrsv(uplo, transa, diag, m, a, ia, ja, x, y)
CHARACTER (LEN=1), INTENT(IN):: uplo, transa, diag
INTEGER, INTENT(IN) :: m
INTEGER, INTENT (IN) :: ia(*), ja(*)
REAL (KIND(1.0D0)), INTENT(IN) :: a(*), x(*)

2-183

2 Intel® Math Kernel Library Reference Manual

REAL (KIND (1.0D0)), INTENT (OUT) :: y(*)
C:
void mkl decsrtrsv(char *uplo, char *transa, char *diag, int #*m, double *a,
int *ia, 1int *ja, double *x, double *y);
mkl_dcscsv
Solves a system of linear equations for a sparse matrix
in the CSC format.
Syntax
Fortran:

2-184

call mkl dcscsv(transa, m, alpha, matdescra, val, indx, pntrb, pntre, x, y)
C:

mkl dcscsv(&transa, &m, &alpha, matdescra, val, indx, pntrb, pntre, x, y);
Description

The mkl dcsrsv routine solves a system of linear equations with matrix-vector operations for a
sparse matrix in the CSC format:

y := alpha*inverse of (A)*x
or

y := alphaxinverse of (A')*x,

where:

alpha is scalar,

x and y are vectors,

A is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, 4’ is the
transpose of 4.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

BLAS and Sparse BLAS Routines 2

transa

m
alpha

matdescra

val

indx

pntrb

pntre

CHARACTER*1. Specifies the operation to be performed.

If transa= 'N’ or 'n’, y := alpha*inv (4)*x
If transa= 'T" or’t’ or’C’or'c’, y := alphaxinv(4’)*x,
INTEGER. Number of columns of the matrix A.

REAL*8. Specifies the scalar alpha.

CHARACTER. Array of six elements, specifies properties of the matrix used for
operation. Only first three array elements are used, their possible values are
given in the Table 2-6.

REAL*8. Array containing non-zero elements of the matrix 4. Its length is
pntre(m) - pntrb(1l).Referto values array description in CSC Format
for more details.

INTEGER. Array containing the column indices for each non-zero element of
the matrix 4. Its length is equal to length of the val array. Refer to columns
array description in CSC Format for more details.

INTEGER. Array of length m, contains row indices, such that pntrb (i) -
pntrb (1) +1 is the starting index of row i in the arrays val and indx. Refer to
pointerB array description in CSC Format for more details.

INTEGER. Array of length m, contains row indices, such that pntre (i) -
pntrb(1) is the last index of row i in the arrays val and indx. Refer to
pointerkE array description in CSC Format for more details.

REAL*8. Array, DIMENSION at least m. Before entry, the array x must contain
the vector x. The elements are accessed with unit increment.

REAL*8. Array, DIMENSION at least m. Before entry, the array y must contain
the vector y. The elements are accessed with unit increment.

Output Parameters

y

Interfaces

Fortran 77:

Contains the solution vector x.

SUBROUTINE mkl dcscsv(transa, m, alpha, matdescra, val, indx, pntrb,

pntre, x, V)
CHARACTER*1
CHARACTER

transa
matdescra (*)

2-185

2 Intel® Math Kernel Library Reference Manual

INTEGER m
INTEGER indx (*), pntrb(m), pntre(m)
REAL*8 alpha
REAL*8 val (*)
REAL*8 x(*), y(*)
Fortran 95:

SUBROUTINE mkl dcscsv(transa, m, alpha, matdescra, val, indx, pntrb,
pntre, x, V)

CHARACTER (LEN=1) , INTENT (IN):: transa

INTEGER, INTENT(IN) :: m

CHARACTER, INTENT(IN) :: matdescra(*)

INTEGER, INTENT (IN) :: indx(*), pntrb(*), pntre(¥)
REAL (KIND(1.0D0)), INTENT(IN) :: alpha

REAL (KIND(1.0D0)), INTENT(IN) :: val(*), x(*)

REAL (KIND(1.0D0)), INTENT (INOUT) :: y(*)

C:

void mkl dcscsv(char *transa, int *m, double *alpha, char *matdescra,
double *val, int *indx, 1int #*pntrb, int #*pntre, double #*x, double
*y) i

mkl_dcoosv

Solves a system of linear equations for a sparse matrix
in the coordinate format.

Syntax

Fortran:

call mkl dcoosv(transa, m, k, alpha, matdescra, val, rowind, colind, nnz,

X, ¥)

C:

mkl dcoosv(&transa, &m, &k, &alpha, matdescra, val, rowind, colind, &nnz,
X, ¥)i

2-186

BLAS and Sparse BLAS Routines 2

Description

The mk1l dcoosv routine solves a system of linear equations with matrix-vector operations for a
sparse matrix in the coordinate format:

y := alpha*inverse of (A)*x
or

y := alphaxinverse of (A')*x,

where:

alpha is scalar,

x and y are vectors,

A is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, 4’ is the
transpose of 4.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

transa CHARACTER*1. Specifies the operation to be performed.
If transa= 'N’ or 'n’, y := alpha*inv (4)*x
If transa= 'T' or’t’ or’C’or’'c’, y := alphaxinv(4’)*x,
m INTEGER. Number of rows of the matrix A4.
alpha REAL*8. Specifies the scalar alpha.
matdescra CHARACTER. Array of six elements, specifies properties of the matrix used for

operation. Only first three array elements are used, their possible values are
given in the Table 2-6.

val REAL*8. Array of length nnz, contains non-zero elements of the matrix 4 in
the arbitrary order. Refer to values array description in Coordinate Format for
more details.

rowind INTEGER. Array of length nnz, contains the row indices for each non-zero
element of the matrix 4. Refer to rows array description in Coordinate Format
for more details.

colind INTEGER. Array of length nnz, contains the column indices for each non-zero
element of the matrix A. Refer to columns array description in Coordinate
Format for more details.

2-187

2 Intel® Math Kernel Library Reference Manual

nnz INTEGER. Specifies the number of non-zero element of the matrix 4. Refer to
nnz description in Coordinate Format for more details.

x REAL*8. Array, DIMENSION at least m. Before entry, the array x must contain
the vector x. The elements are accessed with unit increment.

y REAL*8. Array, DIMENSION at least m. Before entry, the array y must contain
the vector y. The elements are accessed with unit increment.
Output Parameters

v Contains solution vector x.

Interfaces

Fortran 77:
SUBROUTINE mkl dcoosv(transa, m, alpha, matdescra, val, rowind, colind,
nnz, x, y)

CHARACTER*1 transa

CHARACTER matdescra (*)
INTEGER m, nnz
INTEGER rowind (*), colind(¥*)
REAL*8 alpha
REAL*8 val (*)
REAL*8 x(*), y(*)
Fortran 95:

SUBROUTINE mkl dcoosv(transa, m, alpha, matdescra, val, rowind, colind,
nnz, x, y)

CHARACTER (LEN=1) , INTENT (IN) :: transa
INTEGER, INTENT(IN) :: m, nnz

CHARACTER, INTENT (IN) :: matdescra(*)
INTEGER, INTENT(IN) :: rowind(*), colind(*)
REAL (KIND (1.0D0)), INTENT(IN) :: alpha

REAL (KIND(1.0D0)), INTENT(IN) :: val(*), x(*)
REAL (KIND(1.0D0)), INTENT (INOUT) :: y(*)

C:

void mkl dcoosv(char *transa, int *m, double *alpha, char *matdescra,
double *val, int *rowind, int *colind, int *nnz, double *x, double *y);

2-188

BLAS and Sparse BLAS Routines 2

mkl_dcootrsv

Triangular solvers with simplified interface for a sparse
matrix in the coordinate format.

Syntax

Fortran:

call mkl dcootrsv(uplo, transa, diag, m, val, rowind, colind, nnz, X, y)

C:

mkl dcootrsv(&uplo, &transa, &diag, &m, val, rowind, colind, &nnz, x, y);

Description
The mk1l dcootrsv routine solves a system of linear equations with matrix-vector operations for
a sparse matrix stored in the coordinate format:
A*y = x
or
A *y = x,
where:
x and y are vectors,

A is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, 4" is the
transpose of A4.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

uplo CHARACTER*1. Specifies whether the upper or low triangle of the matrix 4 is
considered.
Ifuplo = 'U’ or ’u’,the upper triangle of the matrix A4 is used.
If uplo = 'L’ or’1’,the low triangle of the matrix 4 is used.
transa CHARACTER*1. Specifies the operation to be performed.
If transa= 'N’ or 'n’, A*y = x

2-189

2 Intel® Math Kernel Library Reference Manual

If transa= 'T' or’t’ or’'C’or’c’, A'*y = x,

diag CHARACTER*1. Specifies whether or not 4 is a unit triangular or not.
Ifdiag = 'U’ or 'u’, A is assumed to be a unit triangular.
Ifdiag = "N’ or 'n’, 4 is not assumed to be a unit triangular.

m INTEGER. Number of rows of the matrix A4.

val REAL*8. Array of length nnz, contains non-zero elements of the matrix 4 in

the arbitrary order. Refer to values array description in Coordinate Format for
more details.

rowind INTEGER. Array of length nnz, contains the row indices for each non-zero
element of the matrix 4. Refer to rows array description in Coordinate Format
for more details.

colind INTEGER. Array of length nnz, contains the column indices for each non-zero
element of the matrix A. Refer to columns array description in Coordinate
Format for more details.

nnz INTEGER. Specifies the number of non-zero element of the matrix 4. Refer to
nnz description in Coordinate Format for more details.

x REAL*8. Array, DIMENSION is m. Before entry, the array x must contain the
vector x.

Output Parameters

v REAL*8. Array, DIMENSION at least m. Contains the vector y.
Interfaces
Fortran 77:
SUBROUTINE mkl dcootrsv(uplo, transa, diag, m, val, rowind, colind, nnz,
X, Y)
CHARACTER*1 uplo, transa, diag
INTEGER m, nnz
INTEGER rowind (*), colind(¥*)
REAL*8 val (*), x(*), y(¥)
Fortran 95:
SUBROUTINE mkl dcootrsv(uplo, transa, diag, m, val, rowind, colind, nnz,
X, Y)
CHARACTER (LEN=1) , INTENT (IN) :: uplo, transa, diag

2-190

BLAS and Sparse BLAS Routines 2

INTEGER, INTENT(IN) :: m, nnz

INTEGER, INTENT(IN) :: rowind(*), colind(¥*)
REAL (KIND(1.0DO)), INTENT(IN) :: val(*), x(*)
REAL (KIND(1.0D0)), INTENT (INOUT) :: y(*)

C:

void mkl dcootrsv(char #*uplo, char *transa, char *diag, int #*m, double
*alpha, char #*matdescra, double *val, int #*rowind, int #*colind, int
*nnz, double #*x, double *y);

mkl_ddiasv

Solves a system of linear equations for a sparse matrix
in the diagonal format.

Syntax

Fortran:

call mkl ddiasv(transa, m, alpha, matdescra, val, lval, idiag, ndiag, X, y)
C:

mkl ddiasv(&transa, &m, &alpha, matdescra, val, &lval, idiag, &ndiag, x, Yy);
Description

The mk1l ddiasv routine solves a system of linear equations with matrix-vector operations for a
sparse matrix stored in the diagonal format:

y := alpha*inverse of (A)*x
or

v := alphaxinverse of (A’)*x,

where:

alpha is scalar,

x and y are vectors,

A is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, 4’ is the
transpose of 4.

2-191

2 Intel® Math Kernel Library Reference Manual

2-192

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

transa CHARACTER*1. Specifies the operation to be performed.
If transa= ’'N’ or 'n’, y := alpha*inv (4)*x
If transa= 'T’ or’t’ or’'C'or’'c’, y := alphaxinv(4’)*x,
m INTEGER. Number of rows of the matrix A.
alpha REAL*8. Specifies the scalar alpha.
matdescra CHARACTER. Array of six elements, specifies properties of the matrix used for

operation. Only first three array elements are used, their possible values are
given in the Table 2-6.

val REAL*8. Two-dimensional array of size 1val by ndiag, contains non-zero
diagonals of the matrix 4. Refer to values array description in Diagonal
Storage Scheme for more details.

lval INTEGER. Leading dimension of val, Ival=>m .Referto 1val description
in Diagonal Storage Scheme for more details.
idiag INTEGER. Array of length ndiag, contains the distances between main

diagonal and each non-zero diagonals in the matrix 4. Refer to distance
array description in Diagonal Storage Scheme for more details.

ndiag INTEGER. Specifies the number of non-zero diagonals of the matrix 4.

x REAL*8. Array, DIMENSION at least m. Before entry, the array x must contain
the vector x. The elements are accessed with unit increment.

y REAL*8. Array, DIMENSION at least m. Before entry, the array y must contain
the vector y. The elements are accessed with unit increment.
Output Parameters

v Contains solution vector x.

Interfaces

Fortran 77:

SUBROUTINE mkl ddiasv(transa, m, alpha, matdescra, val, lval, idiag,
ndiag, x, V)

BLAS and Sparse BLAS Routines 2

CHARACTER*1 transa

CHARACTER matdescra (*)

INTEGER m, lval, ndiag

INTEGER indiag (*)

REAL*8 alpha

REAL*8 val (1lval,*), x(*), y(*)
Fortran 95:

SUBROUTINE mkl ddiasv(transa, m, alpha, matdescra, val, lval, idiag,
ndiag, X, V)

CHARACTER (LEN=1), INTENT (IN) :: transa

INTEGER, INTENT(IN) :: m, lval, ndiag

CHARACTER, INTENT (IN) :: matdescra (%)

INTEGER, INTENT (IN) :: indiag(*)

REAL (KIND (1.0D0)), INTENT(IN) :: alpha

REAL (KIND (1.0D0)), INTENT(IN) :: val(lval,*), x(*)
REAL (KIND(1.0D0)), INTENT (INOUT) :: y(*)

C:

void mkl ddiasv(char *transa, int *m, double *alpha, char *matdescra,
double *val, int *Ival, int *idiag, int *ndiag, double #*x, double *y);

mkl_ddiatrsv

Triangular solvers with simplified interface for a sparse
matrix in the diagonal format.

Syntax

Fortran:

call mkl ddiatrsv(uplo, transa, diag, m, val, lval, idiag, ndiag, x, y)
C:

mkl ddiatrsv(&uplo, &transa, &diag, &m, val, &lval, idiag, &ndiag, x, Y);

Description

The mk1l ddiatrsv routine solves a system of linear equations with matrix-vector operations for
a sparse matrix stored in the diagonal:

2-193

2 Intel® Math Kernel Library Reference Manual

A*y = x
or
A *y = x,
where:
x and y are vectors,

A is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, 4’ is the
transpose of 4.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

uplo CHARACTER*1. Specifies whether the upper or low triangle of the matrix 4 is
considered.
Ifuplo = 'U’ or ’u’,the upper triangle of the matrix A4 is used.
If uplo = 'L’ or 1, the low triangle of the matrix A4 is used.
transa CHARACTER*1. Specifies the operation to be performed.
If transa= 'N’ or 'n’, Axy = x

If transa= 'T" or’t’ or’'C'or’c’, A'*y = x,
diag CHARACTER*1. Specifies whether 4 is a unit triangular or not.
Ifdiag = 'U’ or 'u’, A is assumed to be a unit triangular.
Ifdiag = "N’ or 'n’, 4 is not assumed to be a unit triangular.
m INTEGER. Number of rows of the matrix A.

val REAL*8. Two-dimensional array of size 1val by ndiag, contains non-zero
diagonals of the matrix 4. Refer to values array description in Diagonal
Storage Schemefor more details.

lval INTEGER. Leading dimension of val, 1val>m. Refer to 1val description in
Diagonal Storage Scheme for more details.

idiag INTEGER. Array of length ndiag, contains the distances between main
diagonal and each non-zero diagonals in the matrix 4. Refer to distance
array description in Diagonal Storage Scheme for more details.

ndiag INTEGER. Specifies the number of non-zero diagonals of the matrix A.

2-194

BLAS and Sparse BLAS Routines 2

REAL*8. Array, DIMENSION is m. Before entry, the array x must contain the
vector x.

Output Parameters

v REAL*8. Array, DIMENSION at least m. Contains the vector y.
Interfaces
Fortran 77:
SUBROUTINE mkl ddiatrsv(uplo, transa, diag, m, val, lval, idiag, ndiag,
X, Y)
CHARACTER*1 uplo, transa, diag
INTEGER m, lval, ndiag
INTEGER indiag (¥*)
REAL*8 val (1lval,*), x(*), y(*)
Fortran 95:
SUBROUTINE mkl ddiatrsv(uplo, transa, diag, m, val, lval, idiag, ndiag,
X, Y)
CHARACTER (LEN=1), INTENT (IN) :: uplo, transa, diag
INTEGER, INTENT(IN) :: m, lval, ndiag
INTEGER, INTENT (IN) :: indiag(*)
REAL (KIND(1.0D0)), INTENT(IN) :: alpha
REAL (KIND(1.0D0O)), INTENT(IN) :: val(lval,*), x(*)
REAL(KIND(1.0DO0)), INTENT (INOUT) :: y(¥*)
C:

void mkl ddiatrsv(char *uplo, char *transa, char #*diag, int #*m, double

*val, int *lval, 1int *idiag, int #*ndiag, double *x, double *y);

2-195

2 Intel® Math Kernel Library Reference Manual

mkl_dskysv

Solves a

system of linear equations for a sparse matrix

in the skyline format.

2-196

Syntax

Fortran:

call mkl dskysv(transa, m, alpha, matdescra, val, pntr, x, y)

C:

mkl dskysv(&transa, &m, &alpha, matdescra, val, pntr, x, y);

Description
The mk1 dskysv routine solves a system of linear equations with matrix-vector operations for a
sparse matrix in the skyline storage format:
y := alpha*inv (A4) *x
or
y := alpha*inv(4') *x,
where:
alpha is scalar,
x and y are vectors,

A is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, 4" is the
transpose of 4.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

transa CHARACTER*1. Specifies the operation to be performed.

If transa= ’'N’ or 'n’, y := alpha*inv (4)*x

If transa= 'T" or’t’ or’C’or’'c’, y := alphaxinv(4’)*x,
m INTEGER. Number of rows of the matrix A.
alpha REAL*8. Specifies the scalar alpha.

BLAS and Sparse BLAS Routines 2

matdescra CHARACTER. Array of six elements, specifies properties of the matrix used for
operation. Only first three array elements are used, their possible values are
given in the Table 2-6.

val REAL*8. Array containing the set of elements of the matrix 4 in the skyline
profile form.

If matdescrsa(2)= 'L’,then val contains elements from the low triangle
of the matrix 4.
If matdescrsa(2) = 'U’,then val contains elements from the upper triangle

of the matrix 4.
Refer to values array description in Skyline Storage Scheme for more details.

pntr INTEGER. Array of length (m+1) for lower triangle, and (k+1) for upper
triangle. It contains the indices specifying in the val the positions of the first
element in each row (column) of the matrix 4. Refer to pointers array
description in Diagonal Storage Scheme for more details.

x REAL*8. Array, DIMENSION at least m. Before entry, the array x must contain
the vector x. The elements are accessed with unit increment.

y REAL*8. Array, DIMENSION at least m. Before entry, the array y must contain
the vector y. The elements are accessed with unit increment.
Output Parameters

v Contains solution vector x.

Interfaces

Fortran 77:

SUBROUTINE mkl dskysv(transa, m, alpha, matdescra, val, pntr, x, y)
CHARACTER*1 transa

CHARACTER matdescra (*)
INTEGER m
INTEGER pntr (*)
REAL*8 alpha
REAL*8 val(*), x(*), y(*)
Fortran 95:
SUBROUTINE mkl dskysv(transa, m, alpha, matdescra, val, pntr, x, vy)
CHARACTER (LEN=1), INTENT(IN) :: transa
INTEGER, INTENT(IN) :: m
CHARACTER, INTENT (IN) :: matdescra(¥*)

2-197

2 Intel® Math Kernel Library Reference Manual

INTEGER, INTENT (IN) :: pntr(*)
REAL(KIND(1.0DO0)), INTENT(IN) :: alpha

REAL (KIND(1.0D0)), INTENT(IN) :: val(*), x(*)
REAL (KIND(1.0D0)), INTENT (INOUT) :: y(*)

C:

void mkl dskysv(char #*transa, int #*m, double *alpha, char *matdescra,
double *val, int *pntr, double #*x, double *y);

mkl_dcsrmm

Computes matrix - matrix product of a sparse matrix
stored in the CSR format.

Syntax

Fortran:

call mkl dcsrmm(transa, m, n, k, alpha, matdescra, val, indx, pntrb,
pntre, b, 1db, beta, c, 1dc)

C:

mkl dcsrmm(&transa, &m, &n, &k, &alpha, matdescra, val, indx, pntrb,
pntre, b, &1db, &beta, c, &ldc);

Description

The mk1l dcsrmm routine performs a matrix-matrix operation defined as
C := alpha*A*B + betaxC

or
C := alpha*A’*B + beta*C,

where:

alpha and beta are scalars,

B and C are dense matrices,

A is an m-by-k sparse matrix in compressed sparse row format, 4’ is the transpose of 4.

2-198

BLAS and Sparse BLAS Routines 2

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

transa

n
k
alpha

matdescra

val

indx

pntrb

pntre

CHARACTER*1. Specifies the operation to be performed.

If transa= ’'N’ or ’'n’,the matrix-matrix product is computed as
C := alpha*A*B + beta*C

If transa= 'T’ or’'t’ or'C’or’c’,the matrix-vector product is
computed as
C := alpha*A’*B + beta*C,

INTEGER. Number of rows of the matrix A.
INTEGER. Number of columns of the matrix C.
INTEGER. Number of columns of the matrix A.
REAL*8. Specifies the scalar alpha.

CHARACTER. Array of six elements, specifies properties of the matrix used for
operation. Only first three array elements are used, their possible values are
given in the Table 2-6.

REAL*8. Array containing non-zero elements of the matrix 4. Its length is
pntre(m) - pntrb(1l).Refer to values array description in CSR Format
for more details.

INTEGER. Array containing the column indices for each non-zero element of
the matrix 4. Its length is equal to length of the val array. Refer to columns
array description in CSR Format for more details.

INTEGER. Array of length m, contains row indices, such that pntrb (i) -
pntrb (1) +1 is the starting index of row i in the arrays val and indx. Refer to
pointerB array description in CSR Format for more details.

INTEGER. Array of length m, contains row indices, such that pntre (i) -
pntrb(1) is the last index of row i in the arrays val and indx. Refer to
pointerE array description in CSR Format for more details.

REAL*8. Array, DIMENSION (1db, n). Before entry with transa = 'N' or
'n', the leading k-by-n part of the array b must contain the matrix B,
otherwise the leading m-by-n part of the array b must contain the matrix B.

2-199

2 Intel® Math Kernel Library Reference Manual

1db INTEGER. Specifies the first dimension of b as declared in the calling
(sub)program.

beta REAL*8. Specifies the scalar beta.

c REAL*8. Array, DIMENSION (ldc, n). Before entry, the leading m-by-n part of

the array ¢ must contain the matrix C, otherwise the leading k-by-n part of the
array c must contain the matrix C.

ldc INTEGER. Specifies the first dimension of c as declared in the calling
(sub)program.

Output Parameters

c Overwritten by the matrix (alpha*A*B + beta*C) or (alpha*A’*B +
betaxC) .

Interfaces

Fortran 77:

SUBROUTINE mkl dcsrmm(transa, m, n, k, alpha, matdescra, val, indx,
pntrb, pntre, b, 1ldb, beta, ¢, 1ldc)
CHARACTER*1 transa

CHARACTER matdescra (*)

INTEGER m, n, k, 1ldb, 1ldc

INTEGER indx (*), pntrb(m), pntre(m)

REAL*8 alpha, beta

REAL*8 val(*), b(ldb,*), c(ldc,*)
Fortran 95:

SUBROUTINE mkl dcsrmm(transa, m, n, k, alpha, matdescra, val, indx,
pntrb, pntre, b, 1ldb, beta, ¢, ldc)

CHARACTER (LEN=1) , INTENT (IN) :: transa

INTEGER, INTENT(IN) :: m, n, k, 1ldb, 1ldc
CHARACTER, INTENT(IN) :: matdescra(*)

INTEGER, INTENT (IN) :: indx(*), pntrb(*), pntre(*)
REAL (KIND(1.0D0)), INTENT(IN) :: alpha, beta

REAL (KIND(1.0D0O)), INTENT(IN) :: val(*), b(ldb,*)
REAL (KIND(1.0DO)), INTENT(INOUT) :: c(ldc,*)

C:

void mkl dcsrmm(char *transa, int *m, int #*n, int *k, double *alpha, char
*matdescra, double *val, int *indx, int *pntrb, int *pntre, double
*b, int *1db, double *beta, double *c, int *1dc,);

BLAS and Sparse BLAS Routines 2

mkl_dcscmm

Computes matrix-matrix product of a sparse matrix
stored in the CSC format.

Syntax

Fortran:

call mkl decscmm(transa, m, n, k, alpha, matdescra, val, indx, pntrb,
pntre, b, 1db, beta, c, 1dc)

C:

mkl dcscmm(&transa, &m, &n, &k, &alpha, matdescra, val, indx, pntrb,
pntre, b, &ldb, &beta, c, &ldc);

Description

The mk1l dcscmm routine performs a matrix-matrix operation defined as
C := alpha*A*B + beta*C

or
C := alpha*A’*B + beta*xC,

where:

alpha and beta are scalars,

B and C are dense matrices,

A is an m-by-k sparse matrix in compressed sparse column format, 4’ is the transpose of 4.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

transa CHARACTER*1. Specifies the operation to be performed.

If transa= "N’ or ’n’,the matrix-matrix product is computed as
C := alpha*A*B + betaxC

If transa= 'T’ or’t’ or'C’or’c’,the matrix-vector product is
computed as
C := alpha*A’*B + beta*C,

2-201

2 Intel® Math Kernel Library Reference Manual

2-202

m
n
k
alpha

matdescra

val

indx

pntrb

pntre

1db

beta

ldc

INTEGER. Number of rows of the matrix 4.
INTEGER. Number of columns of the matrix C.
INTEGER. Number of columns of the matrix 4.
REAL*8. Specifies the scalar alpha.

CHARACTER. Array of six elements, specifies properties of the matrix used for
operation. Only first three array elements are used, their possible values are
given in the Table 2-6.

REAL*8. Array containing non-zero elements of the matrix A4. Its length is
pntre(k) - pntrb(1l).Referto values array description in CSC Format
for more details.

INTEGER. Array containing the row indices for each non-zero element of the
matrix 4. Its length is equal to length of the val array. Refer to rows array
description in CSC Format for more details.

INTEGER. Array of length k, contains row indices, such that pntrb (i) -
pntrb(1)+1 is the starting index of column 7 in the arrays val and indx.
Refer to pointerB array description in CSC Format for more details.

INTEGER. Array of length k, contains row indices, such that pntre (i) -
pntrb(1) is the last index of column 7 in the arrays val and indx. Refer to
pointerE array description in CSC Format for more details.

REAL*8. Array, DIMENSION (1db, n). Before entry with transa = 'N' or
'n', the leading k-by-n part of the array b must contain the matrix B,
otherwise the leading m-by-n part of the array b must contain the matrix B.

INTEGER. Specifies the first dimension of b as declared in the calling
(sub)program.

REAL*8. Specifies the scalar beta.

REAL*8. Array, DIMENSION (1dc, n) . Before entry, the leading m-by-n part of
the array ¢ must contain the matrix C, otherwise the leading k-by-n part of the
array c must contain the matrix C.

INTEGER. Specifies the first dimension of ¢ as declared in the calling
(sub)program.

Output Parameters

(e}

Overwritten by the matrix (alpha*A*B + beta*C) or (alpha*A’*B +
betaxC) .

BLAS and Sparse BLAS Routines 2

Interfaces
Fortran 77:
SUBROUTINE mkl dcscmm(transa, m, n, k, alpha, matdescra, val, indx,
pntrb, pntre, b, 1ldb, beta, ¢, ldc)
CHARACTER*1 transa
CHARACTER matdescra (*)
INTEGER m, n, k, 1ldb, 1ldc
INTEGER indx (*), pntrb(k), pntre (k)
REAL*8 alpha, beta
REAL*8 val(*), b(ldb,*), c(ldc,*)
Fortran 95:
SUBROUTINE mkl dcscmm(transa, m, n, k, alpha, matdescra, val, indx,
pntrb, pntre, b, 1ldb, beta, ¢, ldc)
CHARACTER (LEN=1) , INTENT(IN) :: transa
INTEGER, INTENT (IN) m, n, k, 1db, 1ldc
CHARACTER, INTENT (IN) matdescra (*)
INTEGER, INTENT (IN) indx (*), pntrb(*), pntre(*)
REAL (KIND (1.0D0)), INTENT (IN) alpha, beta
REAL (KIND (1.0D0)), INTENT (IN) val(*), b(ldb, *)
REAL (KIND(1.0D0)), INTENT (INOUT) c(ldc, *)
C:
void mkl dcscmm(char *tranmsa, int *m, int #*n, int *k, double *alpha, char
*matdescra, double *val, int *indx, int *pntrb, int *pntre, double
*b, int *1db, double *beta, double *c, int *1dc);
mkl_dcoomm
Computes matrix-matrix product of a sparse matrix
stored in the coordinate format.
Syntax
Fortran:
call mkl dcoomm(transa, m, n, k, alpha, matdescra, val, rowind, colind,
nnz, b, 1db, beta, c, 1ldc)

2-203

2 Intel® Math Kernel Library Reference Manual

C:

mkl dcoomm(&transa, &m, &n, &k, &alpha, matdescra, val, rowind, colind,
&nnz, b, &ldb, &beta, c, &ldc);

Description

The mk1 dcoomm routine performs a matrix-matrix operation defined as
C := alpha*A*B + betaxC
or
C := alpha*A’*B + beta*C,
where:
alpha and beta are scalars,

B and C are dense matrices,
A is an m-by-k sparse matrix in the coordinate format, 4'is the transpose of 4.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

transa CHARACTER*1. Specifies the operation to be performed.

If transa= 'N’ or ’n’,the matrix-matrix product is computed as
C := alpha*A*B + betaxC

If transa= 'T’ or’t’ or'C’or’c’,the matrix-vector product is
computed as
C := alpha*A’*B + beta*C,

m INTEGER. Number of rows of the matrix A.

n INTEGER. Number of columns of the matrix C.

k INTEGER. Number of columns of the matrix A.

alpha REAL*8. Specifies the scalar alpha.

matdescra CHARACTER. Array of six elements, specifies properties of the matrix used for

operation. Only first three array elements are used, their possible values are
given in the Table 2-6.

val REAL*8. Array of length nnz, contains non-zero elements of the matrix 4 in
the arbitrary order. Refer to values array description in Coordinate Format for
more details.

2-204

BLAS and Sparse BLAS Routines 2

rowind

colind

nnz

1db

beta

ldc

INTEGER. Array of length nnz, contains the row indices for each non-zero
element of the matrix 4. Refer to rows array description in Coordinate Format
for more details.

INTEGER. Array of length nnz, contains the column indices for each non-zero
element of the matrix A. Refer to columns array description in Coordinate
Format for more details.

INTEGER. Specifies the number of non-zero element of the matrix 4. Refer to
nnz description in Coordinate Format for more details.

REAL*8. Array, DIMENSION (1db, n). Before entry with transa = 'N' or
'n', the leading k-by-n part of the array b must contain the matrix B,
otherwise the leading m-by-n part of the array b must contain the matrix B.

INTEGER. Specifies the first dimension of b as declared in the calling
(sub)program.

REAL*8. Specifies the scalar beta.

REAL*8. Array, DIMENSION (1dc, n). Before entry, the leading m-by-n part of
the array ¢ must contain the matrix C, otherwise the leading k-by-n part of the
array c must contain the matrix C.

INTEGER. Specifies the first dimension of c as declared in the calling
(sub)program.

Output Parameters

c Overwritten by the matrix (alpha*A*B + beta*C) or (alpha*A’*B +
betaxC) .
Interfaces
Fortran 77:
SUBROUTINE mkl dcoomm(transa, m, n, k, alpha, matdescra, val, rowind,
colind, nnz, b, 1ldb, beta, ¢, 1ldc)
CHARACTER*1 transa
CHARACTER matdescra (*)
INTEGER m, n, k, 1db, 1ldc, nnz
INTEGER rowind (*), colind(*)
REAL*8 alpha, beta
REAL*8 val(*), b(ldb,*), c(ldc,*)

2-205

2 Intel® Math Kernel Library Reference Manual

Fortran 95:

SUBROUTINE mkl dcoomm(transa, m, n, k, alpha, matdescra, val, rowind,
colind, nnz, b, 1ldb, beta, c¢, 1ldc)

CHARACTER (LEN=1) , INTENT(IN):: transa

INTEGER, INTENT(IN) :: m, n, k, ldb, 1ldc, nnz
CHARACTER, INTENT (IN) :: matdescra (*)

INTEGER, INTENT (IN) :: rowind(*), colind(*)

REAL (KIND(1.0D0)), INTENT(IN) :: alpha, beta
REAL (KIND(1.0D0)), INTENT(IN) :: val(*), b(ldb,*)
REAL (KIND(1.0D0)), INTENT (INOUT) :: c(ldc,*)

C:

void mkl dcoomm(char *transa, int *m, int *n, int *k, double *alpha, char
*matdescra, double *val, int *rowind, int *colind, int *nnz, double
*b, int *1db, double *beta, double *c, int *1dc);

mkl_ddiamm

Computes matrix-matrix product of a sparse matrix
stored in the diagonal format.

Syntax

Fortran:

call mkl ddiamm(transa, m, n, k, alpha, matdescra, val, lval, idiag,
ndiag, b, 1ldb, beta, c, 1ldc)

C:
mkl ddiamm(&transa, &m, &n, &k, &alpha, matdescra, val, &lval, idiag,

&ndiag, b, &1db, &beta, c, &ldc);

Description
The mk1l ddiamm routine performs a matrix-matrix operation defined as
C := alpha*A*B + betaxC
or
C := alpha*A’*B + beta*C,

where:

2-206

BLAS and Sparse BLAS Routines 2

alpha and beta are scalars,
B and C are dense matrices,
A is an m-by-k sparse matrix in the diagonal format, 4’ is the transpose of 4.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

transa CHARACTER*1. Specifies the operation to be performed.

If transa= 'N’ or ’n’,the matrix-matrix product is computed as
C := alpha*A*B + betaxC

If transa= 'T’ or’t’ or'C’or’c’,the matrix-vector product is
computed as
C := alpha*A’*B + beta*C,

m INTEGER. Number of rows of the matrix A4.

n INTEGER. Number of columns of the matrix C.

k INTEGER. Number of columns of the matrix A.

alpha REAL*8. Specifies the scalar alpha.

matdescra CHARACTER. Array of six elements, specifies properties of the matrix used for

operation. Only first three array elements are used, their possible values are
given in the Table 2-6.

val REAL*8. Two-dimensional array of size 1val by ndiag, contains non-zero
diagonals of the matrix 4. Refer to values array description in Diagonal
Storage Scheme for more details.

lval INTEGER. Leading dimension of val, 1val>min(m k) .Referto Ival
description in Diagonal Storage Scheme for more details.

idiag INTEGER. Array of length ndiag, contains the distances between main
diagonal and each non-zero diagonals in the matrix A. Refer to distance
array description in Diagonal Storage Scheme for more details.

ndiag INTEGER. Specifies the number of non-zero diagonals of the matrix A.

b REAL*8. Array, DIMENSION (1db, n). Before entry with transa = 'N' or
'n', the leading k-by-n part of the array b must contain the matrix B,
otherwise the leading m-by-n part of the array b must contain the matrix B.

2-207

2 Intel® Math Kernel Library Reference Manual

1db INTEGER. Specifies the first dimension of b as declared in the calling
(sub)program.

beta REAL*8. Specifies the scalar beta.

c REAL*8. Array, DIMENSION (ldc, n). Before entry, the leading m-by-n part of

the array ¢ must contain the matrix C, otherwise the leading k-by-n part of the
array c must contain the matrix C.

ldc INTEGER. Specifies the first dimension of c as declared in the calling
(sub)program.

Output Parameters

c Overwritten by the matrix (alpha*A*B + beta*C) or (alpha*A’*B +
betaxC) .

Interfaces

Fortran 77:

SUBROUTINE mkl ddiamm(transa, m, n, k, alpha, matdescra, val, lval,
idiag, ndiag, b, 1ldb, beta, c¢, ldc)

CHARACTER*1 transa

CHARACTER matdescra (*)

INTEGER m, n, k, 1db, ldc, 1lval, ndiag

INTEGER idiag (*)

REAL*8 alpha, beta

REAL*8 val (lval,*), b(ldb,*), c(ldc,*)
Fortran 95:

SUBROUTINE mkl ddiamm(transa, m, n, k, alpha, matdescra, val, lval,
idiag, ndiag, b, 1ldb, beta, ¢, ldc)

CHARACTER (LEN=1) , INTENT (IN) :: transa

INTEGER, INTENT(IN) :: m, n, k, lval, ndiag, 1ldb, 1ldc
CHARACTER, INTENT(IN) :: matdescra(*)

INTEGER, INTENT (IN) :: idiag(¥*)

REAL (KIND(1.0D0)), INTENT(IN) :: alpha, beta

REAL (KIND(1.0D0O)), INTENT(IN) :: val(*), b(ldb,*)
REAL (KIND(1.0DO)), INTENT(INOUT) :: c(ldc,*)

C:

void mkl ddiamm(char *transa, int *m, int #*n, int *k, double *alpha, char
*matdescra, double *val, int #*lval, int *idiag, int #*ndiag, double
*b, int *1db, double *beta, double *c, int *1dc);

BLAS and Sparse BLAS Routines 2

mkl_dskymm

Computes matrix-matrix product of a sparse matrix
stored using the skyline storage scheme.

Syntax

Fortran:

call mkl dskymm(transa, m, n, k, alpha, matdescra, val, pntr, b, 1db,
beta, ¢, ldc)

C:

mkl dskymm(&transa, &m, &n, &k, &alpha, matdescra, val, pntr, b, &ldb,
&beta, c, &ldc);

Description

The mk1l dskymm routine performs a matrix-matrix operation defined as
C := alpha*A*B + beta*C

or
C := alpha*A’*B + beta*xC,

where:

alpha and beta are scalars,

B and C are dense matrices,

A is an m-by-k sparse matrix in the skyline storage format, A’ is the transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

transa CHARACTER*1. Specifies the operation to be performed.

If transa= "N’ or ’n’,the matrix-matrix product is computed as
C := alpha*A*B + betaxC

If transa= 'T’ or’t’ or'C’or’c’,the matrix-vector product is
computed as
C := alpha*A’*B + beta*C,

2-209

2 Intel® Math Kernel Library Reference Manual

2-210

m
n
k
alpha

matdescra

val

pntr

1db

beta

ldc

INTEGER. Number of rows of the matrix 4.
INTEGER. Number of columns of the matrix C.
INTEGER. Number of columns of the matrix 4.
REAL*8. Specifies the scalar alpha.

CHARACTER. Array of six elements, specifies properties of the matrix used for
operation. Only first three array elements are used, their possible values are
given in the Table 2-6.

REAL*8. Array containing the set of elements of the matrix 4 in the skyline
profile form.

If matdescrsa(2) = 'L, then val contains elements from the low triangle
of the matrix A4.
If matdescrsa(2) = 'U’,then val contains elements from the upper triangle

of the matrix 4.

Refer to values array description in Diagonal Storage Scheme for more
details.

INTEGER. Array of length (m+1) for lower triangle, and (k+1) for upper
triangle. It contains the indices specifying in the val the positions of the first
element in each row (column) of the matrix 4. Refer to pointers array
description in Diagonal Storage Scheme for more details.

REAL*8. Array, DIMENSION (1db, n). Before entry with transa = 'N' or
'n', the leading k-by-n part of the array b must contain the matrix B,
otherwise the leading m-by-n part of the array b must contain the matrix B.

INTEGER. Specifies the first dimension of b as declared in the calling
(sub)program.

REAL*8. Specifies the scalar beta.

REAL*8. Array, DIMENSION (1dc, n) . Before entry, the leading m-by-n part of
the array ¢ must contain the matrix C, otherwise the leading k-by-n part of the
array c must contain the matrix C.

INTEGER. Specifies the first dimension of ¢ as declared in the calling
(sub)program.

Output Parameters

(e}

Overwritten by the matrix (alpha*A*B + beta*C) or (alpha*A’*B +
betaxC) .

BLAS and Sparse BLAS Routines 2

Interfaces

Fortran 77:

SUBROUTINE mkl dskymm(transa, m, n, k, alpha, matdescra, val, pntr, b,
1db, beta, ¢, 1ldc)

CHARACTER*1 transa

CHARACTER matdescra (*)

INTEGER m, n, k, 1ldb, 1ldc

INTEGER pntr (*)

REAL*8 alpha, beta

REAL*8 val(*), b(ldb,*), c(ldc,*)
Fortran 95:

SUBROUTINE mkl dskymm(transa, m, n, k, alpha, matdescra, val, pntr, b,
1db, beta, c, 1ldc)

CHARACTER (LEN=1) , INTENT (IN) :: transa

INTEGER, INTENT(IN) :: m, n, k, 1ldb, 1ldc
CHARACTER, INTENT(IN) :: matdescra(*)

INTEGER, INTENT (IN) :: pntr(¥)

REAL (KIND(1.0D0O)), INTENT(IN) :: alpha, beta
REAL (KIND(1.0D0O)), INTENT(IN) :: val(*), b(ldb,*)
REAL (KIND(1.0DO)), INTENT(INOUT) :: c(ldc,*)

C:

void mkl dskymm(char *transa, int *m, int #*n, int *k, double *alpha, char
*matdescra, double *val, int *pntr, double *b, int #*1db, double
*beta, double *c, int *1dc);

mkl_dcsrsm

Solves a system of linear matrix equations for a sparse
matrix in the CSR format.

Syntax

Fortran:

call mkl dcsrsm(transa, m, n, alpha, matdescra, val, indx, pntrb, pntre,
b, 1db, c, ldc)

2-211

2 Intel® Math Kernel Library Reference Manual

C:

mkl dcsrsm(&transa, &m, &n, &alpha, matdescra, val, indx, pntrb, pntre,
b, &ldb, ¢, &ldc);

Description

The mk1l dcsrsmroutine solves a system of linear equations with matrix-matrix operations for a
sparse matrix in the CSR format:

C := alphaxinv(A4) *B
or
C := alpha*inv(A4’) *B,

where:

alpha is scalar,

B and C are dense matrices,

A is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, 4’ is the
transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

transa CHARACTER*1. Specifies the operation to be performed.

If transa= 'N’ or ’n’,the matrix-matrix product is computed as
C := alphaxinv (A4) *B

If transa= 'T’ or’t’ or’C’or 'c’,the matrix-vector product is
computed as
C := alphaxinv(A4’) *B,

m INTEGER. Number of columns of the matrix A.

n INTEGER. Number of columns of the matrix C.

alpha REAL~*8. Specifies the scalar alpha.

matdescra CHARACTER. Array of six elements, specifies properties of the matrix used for

operation. Only first three array elements are used, their possible values are
given in the Table 2-6.

2-212

BLAS and Sparse BLAS Routines 2

val

indx

pntrb

pntre

1db

ldc

REAL*8. Array containing non-zero elements of the matrix 4. Its length is
pntre(m) - pntrb(l).Referto values array description in CSR Format
for more details.

INTEGER. Array containing the column indices for each non-zero element of
the matrix 4. Its length is equal to length of the val array. Refer to columns
array description in CSR Format for more details.

INTEGER. Array of length m, contains row indices, such that pntrb (i)
pntrb (1) +1 is the starting index of row 7 in the arrays val and indx. Refer to
pointerB array description in CSR Format for more details.

INTEGER. Array of length m, contains row indices, such that pntre (i)
pntrb(1) is the last index of row i in the arrays val and indx. Refer to
pointerE array description in CSR Format for more details.

REAL*8. Array, DIMENSION (1db, n). Before entry the leading m-by-n part of
the array b must contain the matrix B.

INTEGER. Specifies the first dimension of b as declared in the calling
(sub)program.

INTEGER. Specifies the first dimension of ¢ as declared in the calling
(sub)program.

Output Parameters

(e}

Interfaces

Fortran 77:

SUBROUTINE mkl

pntre, b, 1db,
CHARACTER*1
CHARACTER
INTEGER
INTEGER
REAL*8
REAL*8

REAL*8. Array, DIMENSION (ldc, n). The leading m-by-n part of the array c
contains the output matrix C.

_decsrsm(transa, m, n, alpha, matdescra, val, indx, pntrb,
c, ldc)
transa
matdescra (*)
m, n, ldb, 1ldc
indx (*), pntrb(m), pntre(m)
alpha
val(*), b(ldb,*), c(ldc,*)

2-213

2 Intel® Math Kernel Library Reference Manual

Fortran 95:

SUBROUTINE mkl dcsrsm(transa, m, n, alpha, matdescra, val, indx, pntrb,
pntre, b, 1ldb, ¢, 1ldc)

CHARACTER (LEN=1), INTENT (IN):: transa

INTEGER, INTENT(IN) :: m, n, 1ldb, ldc

CHARACTER, INTENT (IN) :: matdescra (*)

INTEGER, INTENT (IN) :: indx(*), pntrb(*), pntre(*)
REAL (KIND(1.0D0)), INTENT(IN) :: alpha

REAL (KIND(1.0D0)), INTENT(IN) :: val(*), b(ldb,*)
REAL (KIND(1.0D0)), INTENT (INOUT) :: c(ldc,*)

C:

void mkl dcsrsm(char *transa, int *m, int #*n, double *alpha, char
*matdescra, double *val, int *indx, int *pntrb, int *pntre, double
*p, int #*1db, double *c, int *1dc);

mkl_dcscsm

Solves a system of linear matrix equations for a sparse
matrix in the CSC format.

2-214

Syntax

Fortran:

call mkl dcscsm(transa, m, n, alpha, matdescra, val, indx, pntrb, pntre,
b, 1db, c, 1ldc)

C:

mkl dcscsm(&transa, &m, &n, &alpha, matdescra, val, indx, pntrb, pntre,
b, &ldb, ¢, &ldc);

Description
The mk1 dcscsm routine solves a system of linear equations with matrix-matrix operations for a
sparse matrix in the CSC format:
C := alphaxinv(A4) *B
or
C := alpha*inv(A4’) *B,

BLAS and Sparse BLAS Routines 2

where:

alpha is scalar,

B and C are dense matrices,

A is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, 4’ is the
transpose of 4.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

transa CHARACTER*1. Specifies the operation to be performed.

If transa= 'N’ or ’n’,the matrix-matrix product is computed as
C := alphaxinv(A4) *B

If transa= 'T’ or’t’ or’C’or 'c’,the matrix-vector product is
computed as
C := alphaxinv(A4’) *B,

m INTEGER. Number of columns of the matrix A.

n INTEGER. Number of columns of the matrix C.

alpha REAL~*8. Specifies the scalar alpha.

matdescra CHARACTER. Array of six elements, specifies properties of the matrix used for

operation. Only first three array elements are used, their possible values are
given in the Table 2-6.

val REAL*8. Array containing non-zero elements of the matrix 4. Its length is
pntre(m) - pntrb(l).Referto values array description in CSC Format
for more details.

indx INTEGER. Array containing the row indices for each non-zero element of the
matrix 4. Its length is equal to length of the val array. Refer to rows array
description in CSC Format for more details.

pntrb INTEGER. Array of length k, contains row indices, such that pntrb (i) -
pntrb (1) +1 is the starting index of column i in the arrays val and indx.
Refer to pointerB array description in CSC Format for more details.

pntre INTEGER. Array of length k, contains row indices, such that pntre (i) -
pntrb(1) is the last index of column 7 in the arrays val and indx. Refer to
pointerkE array description in CSC Format for more details.

2-215

2 Intel® Math Kernel Library Reference Manual

b

1db

ldc

REAL*8. Array, DIMENSION (1db, n). Before entry the leading m-by-n part of
the array b must contain the matrix B.

INTEGER. Specifies the first dimension of b as declared in the calling
(sub)program.

INTEGER. Specifies the first dimension of ¢ as declared in the calling
(sub)program.

Output Parameters

REAL*8. Array, DIMENSION (ldc, n). The leading m-by-n part of the array c

c
contains the output matrix C.
Interfaces
Fortran 77:
SUBROUTINE mkl dcscsm(transa, m, n, alpha, matdescra, val, indx, pntrb,
pntre, b, 1ldb, c¢, 1ldc)
CHARACTER*1 transa
CHARACTER matdescra (*)
INTEGER m, n, 1ldb, 1ldc
INTEGER indx (*), pntrb(m), pntre(m)
REAL*8 alpha
REAL*8 val(*), b(ldb,*), c(ldc,*)
Fortran 95:
SUBROUTINE mkl dcscsm(transa, m, n, alpha, matdescra, val, indx, pntrb,
pntre, b, 1ldb, ¢, ldc)
CHARACTER (LEN=1) , INTENT (IN):: transa
INTEGER, INTENT (IN) m, n, 1ldb, 1ldc
CHARACTER, INTENT (IN) matdescra (*)
INTEGER, INTENT (IN) indx(*), pntrb(*), pntre(¥*)
REAL (KIND(1.0D0)), INTENT (IN) alpha
REAL (KIND(1.0D0)), INTENT (IN) val(*), b(ldb, *)
REAL (KIND(1.0D0)), INTENT (INOUT) c(ldc, *)
C:
void mkl dcscsm(char *transa, int *m, int *n, double *alpha, char
*matdescra, double *val, int #*indx, int #*pntrb, int *pntre, double

*b,

2-216

int *1db, double *c,

int *Idc) ;

BLAS and Sparse BLAS Routines 2

mkl _dcoosm

Solves a system of linear matrix equations for a sparse
matrix in the coordinate format.

Syntax

Fortran:

call mkl dcoosm(transa, m, n, alpha, matdescra, val, rowind, colind,
nnz, b, 1db, c, 1ldc)

C:

mkl dcoosm(&transa, &m, &n, &alpha, matdescra, val, rowind, colind,
&nnz, b, &ldb, c, &ldc);

Description
The mk1l dcoosm routine solves a system of linear equations with matrix-matrix operations for a
sparse matrix in the coordinate format:
C := alpha*inv (A) *B
or
C := alpha*xinv(4’) *B,

where:

alpha is scalar,

B and C are dense matrices,

A is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, 4" is the
transpose of A4.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

transa CHARACTER*1. Specifies the operation to be performed.

If transa= ’'N’ or ’'n’,the matrix-matrix product is computed as
C := alpha*inv (A4)*B

2-217

2 Intel® Math Kernel Library Reference Manual

2-218

m
n
alpha

matdescra

val

rowind

colind

nnz

1db

ldc

If transa= 'T’ or’t’ or'C’or’c’,the matrix-vector product is
computed as
C := alphaxinv(A4’) *B,

INTEGER. Number of rows of the matrix 4.
INTEGER. Number of columns of the matrix C.
REAL*8. Specifies the scalar alpha.

CHARACTER. Array of six elements, specifies properties of the matrix used for
operation. Only first three array elements are used, their possible values are
given in the Table 2-6.

REAL*8. Array of length nnz, contains non-zero elements of the matrix 4 in
the arbitrary order. Refer to values array description in Coordinate Format for
more details.

INTEGER. Array of length nnz, contains the row indices for each non-zero
element of the matrix 4. Refer to rows array description in Coordinate Format
for more details.

INTEGER. Array of length nnz, contains the column indices for each non-zero
element of the matrix A. Refer to columns array description in Coordinate
Format for more details.

INTEGER. Specifies the number of non-zero element of the matrix 4. Refer to
nnz description in Coordinate Format for more details.

REAL*8. Array, DIMENSION (1db, n). Before entry the leading m-by-n part of
the array b must contain the matrix B.

INTEGER. Specifies the first dimension of b as declared in the calling
(sub)program.

INTEGER. Specifies the first dimension of ¢ as declared in the calling
(sub)program.

Output Parameters

(e}

REAL*8. Array, DIMENSION (ldc, n). The leading m-by-n part of the array c
contains the output matrix C.

BLAS and Sparse BLAS Routines 2

Interfaces

Fortran 77:

SUBROUTINE mkl dcoosm(transa, m, n, alpha, matdescra, wval, rowind,
colind, nnz, b, 1ldb, ¢, 1ldc)
CHARACTER*1 transa

CHARACTER matdescra (*)

INTEGER m, n, 1ldb, 1ldc, nnz

INTEGER rowind (*), colind(*)

REAL*8 alpha

REAL*8 val(*), b(ldb,*), c(ldc,*)
Fortran 95:

SUBROUTINE mkl dcoosm(transa, m, n, alpha, matdescra, val, rowind,
colind, nnz, b, 1ldb, c, ldc)

CHARACTER (LEN=1) , INTENT (IN) :: transa

INTEGER, INTENT(IN) :: m, n, 1ldb, 1ldc, nnz
CHARACTER, INTENT(IN) :: matdescra(*)

INTEGER, INTENT (IN) :: rowind(*), colind(*)

REAL (KIND(1.0D0)), INTENT(IN) :: alpha

REAL (KIND(1.0D0O)), INTENT(IN) :: val(*), b(ldb,*)
REAL (KIND(1.0DO)), INTENT(INOUT) :: c(ldc,*)

C:
void mkl dcoosm(char *transa, int *m, int *n, double *alpha, char

*matdescra, double *val, int *rowind, int *colind, int *nnz, double
*b, int *1db, double *c¢, int #*1dc);

mkl_ddiasm

Solves a system of linear matrix equations for a sparse
matrix in the diagonal format.

Syntax

Fortran:

call mkl ddiasm(transa, m, n, alpha, matdescra, val, lval, idiag, ndiag,
b, 1db, ¢, 1ldc)

2-219

2 Intel® Math Kernel Library Reference Manual

C:

mkl ddiasm(&transa, &m, &n, &alpha, matdescra, val, &lval, idiag, &ndiag,
b, &ldb, ¢, &ldc);

Description

The mk1 ddiasm routine solves a system of linear equations with matrix-matrix operations for a
sparse matrix in the diagonal format:

C := alphaxinv(A4) *B
or
C := alpha*inv(A4’) *B,

where:

alpha is scalar,

B and C are dense matrices,

A is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, 4’ is the
transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

transa CHARACTER*1. Specifies the operation to be performed.

If transa= 'N’ or ’n’,the matrix-matrix product is computed as
C := alphaxinv (A4) *B

If transa= 'T’ or’t’ or’C’or 'c’,the matrix-vector product is
computed as
C := alphaxinv(A4’) *B,

m INTEGER. Number of rows of the matrix A.

n INTEGER. Number of columns of the matrix C.

alpha REAL~*8. Specifies the scalar alpha.

matdescra CHARACTER. Array of six elements, specifies properties of the matrix used for

operation. Only first three array elements are used, their possible values are
given in the Table 2-6.

2-220

BLAS and Sparse BLAS Routines 2

val

lval

idiag

ndiag

1db

1dc

REAL*8. Two-dimensional array of size 1val by ndiag, contains non-zero
diagonals of the matrix 4. Refer to values array description in Diagonal
Storage Scheme for more details.

INTEGER. Leading dimension of val, 1val=>m. Refer to 1val description in
Diagonal Storage Scheme for more details.

INTEGER. Array of length ndiag, contains the distances between main
diagonal and each non-zero diagonals in the matrix 4. Refer to distance
array description in Diagonal Storage Scheme for more details.

INTEGER. Specifies the number of non-zero diagonals of the matrix 4.

REAL*8. Array, DIMENSION (1db, n). Before entry the leading m-by-n part of
the array b must contain the matrix B.

INTEGER. Specifies the first dimension of b as declared in the calling
(sub)program.

INTEGER. Specifies the first dimension of ¢ as declared in the calling
(sub)program.

Output Parameters

c REAL*8. Array, DIMENSION (I1dc, n). The leading m-by-n part of the array c
contains the matrix C.
Interfaces
Fortran 77:
SUBROUTINE mkl ddiasm(transa, m, n, alpha, matdescra, val, lval, idiag,
ndiag, b, 1ldb, c¢, 1ldc)
CHARACTER*1 transa
CHARACTER matdescra (*)
INTEGER m, n, ldb, ldc, 1lval, ndiag
INTEGER idiag(¥*)
REAL*8 alpha
REAL*8 val (1val, *), b(ldb,*), c(ldc, *)
Fortran 95:
SUBROUTINE mkl ddiasm(transa, m, n, alpha, matdescra, val, lval, idiag,
ndiag, b, 1ldb, c, ldc)
CHARACTER (LEN=1) , INTENT (IN):: transa
INTEGER, INTENT (IN) m, n, lval, ndiag, 1ldb, 1ldc
CHARACTER, INTENT (IN) matdescra (*)

2-221

2 Intel® Math Kernel Library Reference Manual

INTEGER, INTENT (IN) :: idiag(¥)
REAL(KIND(1.0DO0)), INTENT(IN) :: alpha

REAL (KIND(1.0D0O)), INTENT(IN) :: val(*), b(ldb,*)
REAL (KIND(1.0D0)), INTENT (INOUT) :: c(ldc,*)

C:

void mkl ddiasm(char #*transa, int #*m, int #*n, double *alpha, char
*matdescra, double *val, int *1val, int #*idiag, int *ndiag, double
*p, int #*1db, double *c, int #*1dc);

mkl_dskysm

Solves a system of linear matrix equations for a sparse
matrix stored using the skyline storage scheme.

Syntax

Fortran:

call mkl dskysm(transa, m, n, alpha, matdescra, val, pntr, b, 1ldb, c,
1dc)

C:
mkl dskysm(&transa, &m, &n, &alpha, matdescra, val, pntr, b, &ldb, c,
&ldce) ;

Description

The mk1l dskysm routine solves a system of linear equations with matrix-matrix operations for a
sparse matrix in the skyline storage format:
C := alphaxinv(A4) *B
or
C := alphaxinv(A4’) *B,

where:

alpha is scalar,

B and C are dense matrices,

A is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, 4" is the
transpose of 4.

2-222

BLAS and Sparse BLAS Routines 2

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

transa

m
n
alpha

matdescra

val

pntr

1db

CHARACTER*1. Specifies the operation to be performed.

If transa= ’'N’ or ’'n’,the matrix-matrix product is computed as
C := alpha*inv(A4) *B

If transa= 'T’ or’t’ or'C’or’c’,the matrix-vector product is
computed as
C := alphaxinv(4’) *B,

INTEGER. Number of rows of the matrix 4.
INTEGER. Number of columns of the matrix C.
REAL*8. Specifies the scalar alpha.

CHARACTER. Array of six elements, specifies properties of the matrix used for
operation. Only first three array elements are used, their possible values are
given in the Table 2-6.

REAL*8. Array containing the set of elements of the matrix 4 in the skyline
profile form.

If matdescrsa(2) = 'L, then val contains elements from the low triangle
of the matrix 4.
If matdescrsa(2) = 'U’,then val contains elements from the upper triangle

of the matrix A4.

Refer to values array description in Diagonal Storage Scheme for more
details.

INTEGER. Array of length (m+1). It contains the indices specifying in the val
the positions of the first non-zero element of each i-row (column) of the
matrix 4 such that pointers (i) -pointers (1) +1. Refer to pointers
array description in Diagonal Storage Scheme for more details.

REAL*8. Array, DIMENSION (1db, n). Before entry the leading m-by-n part of
the array b must contain the matrix B.

INTEGER. Specifies the first dimension of b as declared in the calling
(sub)program.

2-223

2 Intel® Math Kernel Library Reference Manual

ldc INTEGER. Specifies the first dimension of ¢ as declared in the calling
(sub)program.

Output Parameters

c REAL*8. Array, DIMENSION (I1dc, n). The leading m-by-n part of the array c
contains the matrix C.

Interfaces
Fortran 77:
SUBROUTINE mkl dskysm(transa, m, n, alpha, matdescra, val, pntr, b, 1ldb,
c, 1ldc)
CHARACTER*1 transa
CHARACTER matdescra (*)
INTEGER m, n, 1ldb, 1ldc
INTEGER pntr (*)
REAL*8 alpha
REAL*8 val(*), b(ldb,*), c(ldc,*)
Fortran 95:
SUBROUTINE mkl dskysm(transa, m, n, alpha, matdescra, val, pntr, b, 1ldb,
c, 1ldc)
CHARACTER (LEN=1) , INTENT (IN):: transa
INTEGER, INTENT(IN) :: m, n, 1ldb, 1ldc
CHARACTER, INTENT(IN) :: matdescra(*)
INTEGER, INTENT (IN) :: pntr(*)
REAL (KIND(1.0D0)), INTENT(IN) :: alpha
REAL (KIND(1.0D0O)), INTENT(IN) :: val(*), b(ldb, *)
REAL (KIND(1.0DO)), INTENT(INOUT) :: c(ldc,*)

C:

void mkl dskysm(char *transa, int #*m, int #*n, double *alpha, char
*matdescra, double *val, int *pntr, double #*b, int *1db, double *c,
int #*1dc,);

2-224

LAPACK Routines:
Linear Equations

This chapter describes the Intel® Math Kernel Library implementation of routines from the
LAPACK package that are used for solving systems of linear equations and performing a number
of related computational tasks. The library includes LAPACK routines for both real and complex
data.

Routines are supported for systems of equations with the following types of matrices:

® general

®* banded

* symmetric or Hermitian positive-definite (both full and packed storage)
* symmetric or Hermitian positive-definite banded

* symmetric or Hermitian indefinite (both full and packed storage)

* symmetric or Hermitian indefinite banded

* triangular (both full and packed storage)

* triangular banded

® tridiagonal.

For each of the above matrix types, the library includes routines for performing the following
computations:

— factoring the matrix (except for triangular matrices)

— equilibrating the matrix

— solving a system of linear equations

— estimating the condition number of a matrix

— refining the solution of linear equations and computing its error bounds

— inverting the matrix.

To solve a particular problem, you can either call two or more computational routines or call a
corresponding driver routine that combines several tasks in one call, such as ?gesv for factoring
and solving. Thus, to solve a system of linear equations with a general matrix, you can first call

3-1

3 Intel® Math Kernel Library Reference Manual

?getrf (LU factorization) and then ?getrs (computing the solution). Then, you might wish to
call ?gerfs to refine the solution and get the error bounds. Alternatively, you can just use the
driver routine ?gesvx which performs all these tasks in one call.

WARNING. LAPACK routines expect that input matrices do not contain
INF or NaN values. When input data is inappropriate for LAPACK, problems
may arise, including possible hangs.

Starting from release 8.0, Intel MKL along with Fortran-77 interface to LAPACK computational
and driver routines supports also Fortran-95 interface which uses simplified routine calls with
shorter argument lists. The calling sequence for Fortran-95 interface is given in the syntax section
of the routine description immediately after Fortran-77 calls.

Routine Naming Conventions

3-2

For each routine introduced in this chapter, when calling it from the Fortran-77 program you can
use the LAPACK name.

LAPACK names are listed in Table 3-1 and Table 3-2, and have the structure ?yyzzz or
?yyzz, which is described below.

The initial symbol ? indicates the data type:

s real, single precision c complex, single precision
d real, double precision z complex, double precision

The second and third letters yy indicate the matrix type and storage scheme:
ge general

gb general band

gt general tridiagonal

po symmetric or Hermitian positive-definite

pp symmetric or Hermitian positive-definite (packed storage)
pb symmetric or Hermitian positive-definite band

pt symmetric or Hermitian positive-definite tridiagonal

sy symmetric indefinite

sp symmetric indefinite (packed storage)

he Hermitian indefinite

hp Hermitian indefinite (packed storage)

tr triangular

tp triangular (packed storage)

LAPACK Routines: Linear Equations 3

tb triangular band

For computational routines, the last three letters zzz indicate the computation performed:
trf form a triangular matrix factorization

trs solve the linear system with a factored matrix

con estimate the matrix condition number

rfs refine the solution and compute error bounds

tri compute the inverse matrix using the factorization

equ equilibrate a matrix.

For example, the routine sgetrf performs the triangular factorization of general real matrices in
single precision; the corresponding routine for complex matrices is cgetrf.

For driver routines, the names can end either with -sv (meaning a simple driver), or with -svx
(meaning an expert driver).

Names of the LAPACK computational and driver routines for Fortran-95 interface in Intel MKL
are the same as Fortran-77 names but without the first letter that indicates the data type. For
example, the name of the routine that performs triangular factorization of general real matrices in
Fortran-95 interface is get rf . Handling of different data types is done through defining a specific
internal parameter referring to a module block with named constants for single and double
precision.

Fortran-95 Interface Conventions

Fortran-95 interface to LAPACK is implemented through wrappers that call respective Fortran-77
routines. This interface uses such features of Fortran-95 as assumed-shape arrays and optional
arguments to provide simplified calls to LAPACK routines with fewer arguments.

The main conventions that are used in Fortran-95 interface are as follows:

® The names of arguments used in Fortran-95 call are typically the same as for the respective
generic (Fortran-77) interface. However, to reduce the number of argument names used in the
library, the following identity settings of formal argument names were made:

Generic Argument Fortran-95 Argument

Name Name
ap a

ab a

arb at
afp af

3 Intel® Math Kernel Library Reference Manual

Generic Argument Fortran-95 Argument

Name Name
bp b

bb b
selctg select

Note that these name changes of formal arguments have no impact on program semantics and
follow the unification conventions.

® Input arguments such as array dimensions are not required in Fortran-95 and are skipped from
the calling sequence. Array dimensions are reconstructed from the user data that must exactly
follow the required array shape.
Another type of generic arguments that are skipped in Fortran-95 interface are arguments that
represent workspace arrays (such as work, rwork, and so on). The only exception are cases
when workspace arrays return significant information on output.
Also, an argument can be skipped if its value is completely defined by the presence or
absence of another argument in the calling sequence, and the restored value is the only
meaningful value for the skipped argument.

* Some generic arguments are declared as optional in Fortran-95 interface and may or may not
be present in the calling sequence. An argument can be declared optional if it satisfies one of
the following conditions:

1. If the argument value is completely defined by the presence or absence of another
argument in the calling sequence, it can be declared as optional. The difference from the
skipped argument in this case is that the optional argument can have some meaningful
values that are distinct from the value reconstructed by default.

For example, if some argument (like jobz) can take only two values and one of these
values directly implies the use of another argument, then the value of jobz can be
uniquely reconstructed from the actual presence or absence of this second argument, and
jobz can be omitted.

2. If an input argument can take only a few possible values, it can be declared as optional.
The default value of such argument is typically set as the first value in the list and all
exceptions to this rule are explicitly stated in the routine description.

3. Ifan input argument has a natural default value, it can be declared as optional. The
default value of such optional argument is set to its natural default value.

®* Argument INFO is declared as optional in Fortran-95 interface. If it is present in the calling
sequence, the value assigned to INFO is interpreted as follows:

LAPACK Routines: Linear Equations 3

1. If this value is more then -1000, its meaning is the same as in Fortran 77 routine.
2. Ifthis value is equal to -1000, it means that there is not enough work memory.

3. Ifthis value is equal to -1001, incompatible arguments are presented in the calling
sequence.

® Optional arguments are given in square brackets in Fortran-95 call syntax.

The concrete rules used for reconstructing the values of omitted optional parameters are specific
for each routine and are detailed in the respective “Fortran-95 Notes* subsection given in the end
of routine specification section.

Matrix Storage Schemes

LAPACK routines use the following matrix storage schemes:

® Full storage: a matrix 4 is stored in a two-dimensional array a, with the matrix element a;;
stored in the array element a (1, 7).

® Packed storage scheme allows you to store symmetric, Hermitian, or triangular matrices more
compactly: the upper or lower triangle of the matrix is packed by columns in a
one-dimensional array.

® Band storage: an m-by-n band matrix with k1 sub-diagonals and ku super-diagonals is stored
compactly in a two-dimensional array ab with k1+ku+1 rows and n columns. Columns of the
matrix are stored in the corresponding columns of the array, and diagonals of the matrix are
stored in rows of the array.

In Chapters 4 and 5, arrays that hold matrices in packed storage have names ending in p; arrays
with matrices in band storage have names ending in b.

For more information on matrix storage schemes, see “Matrix Arguments” in Appendix B.

Mathematical Notation

Descriptions of LAPACK routines use the following notation:

Ax=b A system of linear equations with an n-by-n matrix 4 = {a;;}, a
right-hand side vector b = {b;}, and an unknown vector x = {x;}.

AX=B A set of systems with a common matrix 4 and multiple right-hand sides.
The columns of B are individual right-hand sides, and the columns of X
are the corresponding solutions.

x| the vector with elements |x;| (absolute values of x;).

3 Intel® Math Kernel Library Reference Manual

4] the matrix with elements |a;;| (absolute values of a;).
|||oo = max; |x;| The infinity-norm of the vector x.
[l4]le = max; 2 |a;; The infinity-norm of the matrix A.
|||l = max; Z; |a;, The one-norm of the matrix 4. |||, = |47l = 4"/
K(A) = ||I4)| 47 The condition number of the matrix A.

Error Analysis

3-6

In practice, most computations are performed with rounding errors. Besides, you often need to
solve a system Ax = b where the data (the elements of 4 and b) are not known exactly. Therefore,
it’s important to understand how the data errors and rounding errors can affect the solution x.

Data perturbations. If x is the exact solution of Ax = b, and x + dx is the exact solution of a
perturbed problem (4 + 84)x = (b + &b), then

I8x] _ (1321, 801 |
SK(A + , wh K(A) = [|[A[[A7Y.
i <<l) e w2 =

In other words, relative errors in 4 or b may be amplified in the solution vector x by a factor k(4) =
|l4]| ||[47Y)| called the condition number of A.

Rounding errors have the same effect as relative perturbations c(n)e in the original data. Here €
is the machine precision, and c(n) is a modest function of the matrix order n. The corresponding
solution error is

[[6x][/|]| < c(n)k(4)e. (The value of ¢(n) is seldom greater than 10#.)

Thus, if your matrix 4 is ill-conditioned (that is, its condition number k(A4) is very large), then the
error in the solution x is also large; you may even encounter a complete loss of precision.
LAPACK provides routines that allow you to estimate k(4) (see Routines for Estimating the
Condition Number) and also give you a more precise estimate for the actual solution error (see
Refining the Solution and Estimating Its Error).

LAPACK Routines: Linear Equations 3

Computational Routines

Table 3-1 lists the LAPACKcomputational routines (Fortran-77 interface) for factorizing,
equilibrating, and inverting rea/ matrices, estimating their condition numbers, solving systems of
equations with real matrices, refining the solution, and estimating its error.

Table 3-2 lists similar routines for complex matrices. Respective routine names in Fortran-95
interface are without the first symbol (see Routine Naming Conventions).

Table 3-1 Computational Routines for Systems of Equations with Real Matrices
Matrix type, Factorize Equilibrate Solve Condition Estimate Invert
storage scheme matrix matrix system number error matrix
general ?getrf ?geequ ?getrs ?gecon ?gerfs ?getri
general band ?gbtrf ?gbequ ?gbtrs ?gbcon ?gbrfs
general ?gttrf ?gttrs ?gtcon ?gtrfs
tridiagonal
symmetric ?potrf ?poequ ?potrs ?pocon ?porfs ?potri

positive-definite
symmetric ?pptrf ?ppequ ?pptrs ?ppcon ?pprfs ?pptri
positive-definite,
packed storage

symmetric ?pbtrf ?pbequ ?pbtrs ?pbcon ?pbrfs
positive-definite,

band

symmetric ?pttrf ?pttrs ?ptcon ?ptrfs
positive-definite,

tridiagonal

symmetric ?sytrf ?sytrs ?sycon ?syrfs ?sytri
indefinite

symmetric ?sptrf ?sptrs ?spcon ?sprfs ?sptri
indefinite,

packed storage

triangular ?trtrs ?trcon ?trrfs 2trtri
triangular, ?tptrs ?tpcon ?tprfs ?tptri

packed storage
triangular band ?tbtrs ?tbcon ?tbrfs

In this table ? denotes s (single precision) or d (double precision) for Fortran-77 interface.

3-7

3 Intel® Math Kernel Library Reference Manual

Table 3-2 Computational Routines for Systems of Equations with Complex Matrices

Matrix type, Factorize Equilibrate Solve Condition Estimate Invert
storage scheme matrix matrix system number error matrix
general ?getrf ?geequ ?getrs ?gecon ?gerfs ?getri
general band ?gbtrf ?gbequ ?gbtrs ?gbcon ?gbrfs

general ?gttrf ?gttrs ?gtcon ?gtrfs

tridiagonal

Hermitian ?potrf ?poequ ?potrs ?pocon ?porfs ?potri

positive-definite
Hermitian ?pptrf ?ppequ ?pptrs ?ppcon ?pprfs ?pptri
positive-definite,
packed storage

Hermitian ?pbtrf ?pbequ ?pbtrs ?pbcon ?pbrfs
positive-definite,

band

Hermitian ?pttrf ?pttrs ?ptcon ?ptrfs
positive-definite,

tridiagonal

Hermitian ?hetrf ?hetrs ?hecon ?herfs ?hetri
indefinite

symmetric ?sytrf ?sytrs ?sycon ?syrfs ?sytri
indefinite

Hermitian ?hptrf ?hptrs ?hpcon ?hprfs ?hptri
indefinite,
packed storage

symmetric ?sptrf ?sptrs ?spcon ?sprfs ?sptri
indefinite,
packed storage

triangular ?trtrs ?trcon ?trrfs ?trtri

triangular, ?tptrs ?tpcon ?tprfs ?tptri
packed storage

triangular band ?tbtrs ?tbcon ?tbrfs

In this table ? stands for ¢ (single precision complex) or z (double precision complex) for
Fortran-77 interface.

3-8

LAPACK Routines: Linear Equations 3

Routines for Matrix Factorization

This section describes the LAPACK routines for matrix factorization. The following factorizations

are supported:

® LU factorization

® Cholesky factorization of real symmetric positive-definite matrices

® Cholesky factorization of Hermitian positive-definite matrices

* Bunch-Kaufman factorization of real and complex symmetric matrices

®* Bunch-Kaufman factorization of Hermitian matrices.

You can compute the LU factorization using full and band storage of matrices; the Cholesky
factorization using full, packed, and band storage; and the Bunch-Kaufman factorization using full

and packed storage.

?getrf

Computes the LU factorization
of a general m-by-n matrix.

Syntax

Fortran 77:

call sgetrf(m, n, a,
call dgetrf(m, n, a,
call cgetrf(m, n, a,

call zgetrf(m, n, a,

Fortran 95:
call getrf(a [,ipiv]

Description

lda, ipiv,
lda, ipiv,
lda, ipiv,
lda, ipiv,

[,info])

info)
info)
info)

info)

The routine forms the LU factorization of a general m-by-n matrix 4 as

A = PLU,

3 Intel® Math Kernel Library Reference Manual

3-10

where P is a permutation matrix, L is lower triangular with unit diagonal elements (lower
trapezoidal if m> n) and U is upper triangular (upper trapezoidal if m < n). Usually 4 is square
(m=n), and both L and U are triangular. The routine uses partial pivoting, with row interchanges.

Input Parameters

m INTEGER. The number of rows in the matrix 4 (m = 0).
n INTEGER. The number of columns in 4 (n=0).
a REAL for sgetrf

DOUBLE PRECISION for dgetrf

COMPLEX for cgetrf

DOUBLE COMPLEX for zgetrf£.

Array, DIMENSION (1da, *). Contains the matrix 4.
The second dimension of a must be at least max(1, n).

lda INTEGER. The first dimension of a.

Output Parameters
a Overwritten by L and U. The unit diagonal elements of L are not stored.

ipiv INTEGER.
Array, DIMENSION at least max(1,min(m,n)).
The pivot indices: row i was interchanged with row ipiv(i).

info INTEGER. If info=0, the execution is successful.
If info= -1, the ith parameter had an illegal value.
If info= 1, u;; is 0. The factorization has been completed, but U is exactly
singular. Division by 0 will occur if you use the factor U for solving a system
of linear equations.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine getrf interface are the following:
a Holds the matrix 4 of size (m, n).

ipiv Holds the vector of length min(m, n).

LAPACK Routines: Linear Equations 3

Application Notes

The computed L and U are the exact factors of a perturbed matrix 4 + £, where
|El < c(min(m, n))e P|L||U]

¢(n) is a modest linear function of #, and € is the machine precision.

The approximate number of floating-point operations for real flavors is
(2/3)? if m=n,
(1/3)n*Bm-n) ifm>n,
(1/3)m*(Bn-m) ifm<n.

The number of operations for complex flavors is 4 times greater.

After calling this routine with m = n, you can call the following:

2getrs to solve AX=B or A’X =B or A"X=B;
?gecon to estimate the condition number of 4;
?getri to compute the inverse of 4.

?gbtrf

Computes the LU factorization
of a general m-by-n band matrix.

Syntax

Fortran 77:

call sgbtrf(m, n, k1, ku, ab, ldab, ipiv, info)
call dgbtrf(m, n, k1, ku, ab, ldab, ipiv, info)
call cgbtrf(m, n, k1, ku, ab, ldab, ipiv, info)
call zgbtrf(m, n, k1, ku, ab, ldab, ipiv, info)

Fortran 95:
call gbtrf(a [,k1] [,m]l [,ipiv] [,info])

3 Intel® Math Kernel Library Reference Manual

Description

The routine forms the LU factorization of a general m-by-n band matrix 4 with k1 non-zero
sub-diagonals and ku non-zero super-diagonals. Usually 4 is square (m = n), and then

A = PLU

where P is a permutation matrix; L is lower triangular with unit diagonal elements and at most k1
non-zero elements in each column; U is an upper triangular band matrix with k1 + ku
super-diagonals. The routine uses partial pivoting, with row interchanges (which creates the
additional k1 super-diagonals in U).

Input Parameters

m INTEGER. The number of rows in the matrix 4 (m = 0).

n INTEGER. The number of columns in 4 (n = 0).

k1 INTEGER. The number of sub-diagonals within the band of 4 (k1 = 0).
ku INTEGER. The number of super-diagonals within the band of 4 (ku = 0).
ab REAL for sgbtrf

DOUBLE PRECISION for dgbtrf

COMPLEX for cgbtrf

DOUBLE COMPLEX for zgbtrf.

Array, DIMENSION (1dab, *).

The array ab contains the matrix 4 in band storage

(see Matrix Storage Schemes).
The second dimension of ab must be at least max(1, n).

ldab INTEGER. The first dimension of the array ab.
(1dab 22kl + ku+1)
Output Parameters

ab Overwritten by L and U. The diagonal and kI + ku super-diagonals of U are
stored in the first 1 + k1 + ku rows of ab. The multipliers used to form L are
stored in the next k1 rows.

ipiv INTEGER.
Array, DIMENSION at least max(1,min(m,n)).
The pivot indices: row i was interchanged with row ipiv(i).

3-12

LAPACK Routines: Linear Equations 3

info INTEGER. If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.
If info= 1, u;, is 0. The factorization has been completed, but U is exactly
singular. Division by 0 will occur if you use the factor U for solving a system
of linear equations.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gbtrf interface are the following:

a Stands for argument ab in Fortran 77 interface. Holds the array A4 of size
(2*k1+ku+1,n).

ipiv Holds the vector of length min(m, n).

k1 If omitted, assumed k1 = ku.

ku Restored as ku = 1da-2*kl1-1.

m If omitted, assumed m = n.

Application Notes

The computed L and U are the exact factors of a perturbed matrix 4 + E, where
|E| < c(k1+xu+1)e P|L||U

c(k) is a modest linear function of &, and € is the machine precision.

The total number of floating-point operations for real flavors varies between approximately
2n(kutl)k1 and 2n(k1+kutl)kl. The number of operations for complex flavors is 4 times
greater. All these estimates assume that k1 and ku are much less than min(m, n).

After calling this routine with m = n, you can call the following:
?gbtrs to solve AX =B orATX:BorAHX:B;

?gbcon to estimate the condition number of 4.

3 Intel® Math Kernel Library Reference Manual

?gttrf

Computes the LU factorization of a tridiagonal matrix.

3-14

Syntax

Fortran 77:

call sgttrf(n, di,
call dgttrf(n, dI,
call cgttrf(n, di,

, du, du2, ipiv, info)

du, du2, ipiv, info)

~

du, du2, ipiv, info)

~

Q. Q. Q Q

call zgttrf(n, di, , du, du2, ipiv, info)

Fortran 95:
call gttrf(dl, d, du, du2 [,ipiv] [,info])

Description

The routine computes the LU factorization of a real or complex tridiagonal matrix 4 in the form
A = PLU,

where P is a permutation matrix; L is lower bidiagonal with unit diagonal elements; and U is an
upper triangular matrix with nonzeroes in only the main diagonal and first two superdiagonals.
The routine uses elimination with partial pivoting and row interchanges .

Input Parameters
n INTEGER. The order of the matrix 4 (n = 0).

di, d, du REAL for sgttrf
DOUBLE PRECISION for dgttrf
COMPLEX for cgttrf
DOUBLE COMPLEX for zgttrf.
Arrays containing elements of A.
The array d1 of dimension (n - 1) contains the sub-diagonal elements of A.
The array d of dimension n contains the diagonal elements of 4.
The array du of dimension (n - 1) contains the super-diagonal elements of A.

LAPACK Routines: Linear Equations 3

Output Parameters

dil Overwritten by the (n-1) multipliers that define the matrix L from the LU
factorization of A.

d Overwritten by the n diagonal elements of the upper triangular matrix U from
the LU factorization of A.

du Overwritten by the (n-1) elements of the first super-diagonal of U.

du2 REAL for sgttrf
DOUBLE PRECISION for dgttrf
COMPLEX for cgttrf
DOUBLE COMPLEX for zgttrf.
Array, dimension (n-2). On exit, du2 contains (n-2) elements of the second
super-diagonal of U.

ipiv INTEGER.
Array, dimension (n).
The pivot indices: row i was interchanged with row ipiv(1).

info INTEGER. If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.
If info=1i,u;; is 0. The factorization has been completed, but U is exactly
singular. Division by zero will occur if you use the factor U for solving a
system of linear equations.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gttrf interface are the following:

dil Holds the vector of length (n-1).
d Holds the vectror of length (n).
du Holds the vector of length (n- 1).
du2 Holds the vector of length (n- 2).
ipiv Holds the vector of length (n).

3 Intel® Math Kernel Library Reference Manual

Application Notes
2gbtrs to solve AX=B or A'X =B or A"X = B;

?gbcon to estimate the condition number of 4.

?potrf

Computes the Cholesky factorization of
a symmetric (Hermitian) positive-definite matrix.

Syntax

Fortran 77:

call spotrf(uplo, n, a, lda, info)
call dpotrf (uplo, n, a, lda, info)
call cpotrf(uplo, n, a, lda, info)
call zpotrf (uplo, n, a, lda, info)

Fortran 95:
call potrf(a [,uplol [,infol)
Description

This routine forms the Cholesky factorization of a symmetric positive- definite or, for complex
data, Hermitian positive-definite matrix A:

A=U"U if uplo='U"
A=LL" if uplo='L",

where L is a lower triangular matrix and U is upper triangular.

Input Parameters

uplo CHARACTER*1. Mustbe 'U" or 'L".
Indicates whether the upper or lower triangular part of 4 is stored and how 4 is
factored:

3-16

LAPACK Routines: Linear Equations 3

lda

If uplo= 'U", the array a stores the upper triangular part of the matrix 4, and
A is factored as U'U.

If uplo= 'L, the array a stores the lower triangular part of the matrix 4; A4 is
factored as LL".

INTEGER. The order of matrix 4 (nn=0).

REAL for spotrf

DOUBLE PRECISION for dpotrf

COMPLEX for cpotrf

DOUBLE COMPLEX for zpotr£.

Array, DIMENSION (1da, *).

The array a contains either the upper or the lower triangular part of the matrix
A (see uplo).

The second dimension of a must be at least max(1, n).

INTEGER. The first dimension of a.

Output Parameters

a

info

The upper or lower triangular part of a is overwritten by the Cholesky factor U
or L, as specified by uplo.

INTEGER. If info=0, the execution is successful.

If info= -1, the ith parameter had an illegal value.

If info = i, the leading minor of order i (and hence the matrix 4 itself) is not
positive-definite, and the factorization could not be completed. This may
indicate an error in forming the matrix 4.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine potrf interface are the following:

a

uplo

Holds the matrix 4 of size (n1, n).

Must be 'U' or 'L'. The default value is 'U".

3 Intel® Math Kernel Library Reference Manual

Application Notes

If uplo='u", the computed factor U is the exact factor of a perturbed matrix 4 + E, where

B < cn)e|v]|tl, |ess|< c(n)e fa,,ay;

¢(n) is a modest linear function of n, and € is the machine precision.
A similar estimate holds for uplo='L"'.

The total number of floating-point operations is approximately (1/3)n> for real flavors or (4/3)n’
for complex flavors.

After calling this routine, you can call the following:

?potrs to solve AX =B,
?pocon to estimate the condition number of 4;
?potri to compute the inverse of 4.

?pptrf

Computes the Cholesky factorization of
a symmetric (Hermitian) positive-definite matrix using
packed storage.

Syntax

Fortran 77:

call spptrf(uplo, n, ap, info)
call dpptrf (uplo, n, ap, info)
call cpptrf(uplo, n, ap, info)
call zpptrf(uplo, n, ap, info)

Fortran 95:
call pptrf(a [,uplol [,infol)

Description

This routine forms the Cholesky factorization of a symmetric positive- definite or, for complex
data, Hermitian positive-definite packed matrix A4:

3-18

LAPACK Routines: Linear Equations 3

A=U"U
A=LL"

if uplo='U"

if uplo="1L"

where L is a lower triangular matrix and U is upper triangular.

Input Parameters

uplo

ap

CHARACTER*1. Mustbe 'U' or 'L".

Indicates whether the upper or lower triangular part of 4 is packed in the array
ap, and how 4 is factored:

If uplo='u", the array ap stores the upper triangular part of the matrix A4,
and A is factored as UU.

If uplo= 'L, the array ap stores the lower triangular part of the matrix 4; 4
is factored as LL".

INTEGER. The order of matrix 4 (n = 0).

REAL for spptrf

DOUBLE PRECISION for dpptrf

COMPLEX for cpptrf

DOUBLE COMPLEX for zpptrf.

Array, DIMENSION at least max(1,n(n+1)/2).

The array ap contains either the upper or the lower triangular part of the matrix
A (as specified by uplo) in packed storage (see Matrix Storage Schemes).

Output Parameters

ap

info

The upper or lower triangular part of 4 in packed storage is overwritten by the
Cholesky factor U or L, as specified by uplo.

INTEGER. If info=0, the execution is successful.

If info = -1, the ith parameter had an illegal value.

If info = i, the leading minor of order i (and hence the matrix 4 itself) is not
positive-definite, and the factorization could not be completed. This may
indicate an error in forming the matrix 4.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine pptrf interface are the following:

3 Intel® Math Kernel Library Reference Manual

a Stands for argument ap in Fortran 77 interface. Holds the array A of size
(n* (n+1) /2).
uplo Must be 'U' or 'L'. The default value is 'U".

Application Notes

If uplo='u", the computed factor U is the exact factor of a perturbed matrix 4 + E, where

B < ee ||, |ey < cn)e Jaias,

c(n) is a modest linear function of n, and € is the machine precision.
A similar estimate holds for uplo= 'L"'.

The total number of floating-point operations is approximately (1/3)n> for real flavors and (4/3)n>
for complex flavors.

After calling this routine, you can call the following:

?pptrs to solve AX = B;
?ppcon to estimate the condition number of A4;
?pptri to compute the inverse of A.

?pbtrf

Computes the Cholesky factorization of
a symmetric (Hermitian) positive-definite band matrix.

Syntax

Fortran 77:

call spbtrf(uplo, n, kd, ab, ldab, info
call dpbtrf (uplo, n, kd, ab, ldab, info
call cpbtrf(uplo, n, kd, ab, ldab, info
call zpbtrf(uplo, n, kd, ab, ldab, info

R

Fortran 95:
call pbtrf(a [,uplol [,info])

3-20

LAPACK Routines: Linear Equations 3

Description

This routine forms the Cholesky factorization of a symmetric positive- definite or, for complex
data, Hermitian positive-definite band matrix 4:

A=U"U
A=LL"

if uplo='U"

if uplo="1L"

where L is a lower triangular matrix and U is upper triangular.

Input Parameters

uplo

kd

ab

ldab

CHARACTER*1. Mustbe 'U' or 'L".

Indicates whether the upper or lower triangular part of 4 is stored in the array
ab, and how A4 is factored:

If uplo='uU", the array ab stores the upper triangular part of the matrix A4,
and A is factored as UU.

If uplo='L", the array ab stores the lower triangular part of the matrix 4; 4
is factored as LL,

INTEGER. The order of matrix 4 (nn=0).

INTEGER. The number of super-diagonals or sub-diagonals in the matrix 4
(kd = 0).

REAL for spbtrf

DOUBLE PRECISION for dpbtrf

COMPLEX for cpbtrf

DOUBLE COMPLEX for zpbtrf.

Array, DIMENSION (1dab,*).

The array ap contains either the upper or the lower triangular part of the matrix
A (as specified by uplo) in band storage (see Matrix Storage Schemes).

The second dimension of ab must be at least max(1, n).

INTEGER. The first dimension of the array ab.
(1dab > kd +1)

Output Parameters

ap

info

The upper or lower triangular part of 4 (in band storage) is overwritten by the
Cholesky factor U or L, as specified by uplo.

INTEGER. If info=0, the execution is successful.

If info = -1, the ith parameter had an illegal value.

If info = i, the leading minor of order i (and hence the matrix 4 itself) is not
positive-definite, and the factorization could not be completed. This may
indicate an error in forming the matrix 4.

3-21

3 Intel® Math Kernel Library Reference Manual

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine pbtrf interface are the following:

a Stands for argument ab in Fortran 77 interface. Holds the array 4 of size
(kd+1, n).
uplo Must be 'U' or 'L'. The default value is 'U".

Application Notes

If uplo='u", the computed factor U is the exact factor of a perturbed matrix 4 + E, where
B < c(xa+ De|UlUl, e | < c(ka+ e fa;;ay;

¢(n) is a modest linear function of n, and € is the machine precision.

A similar estimate holds for uplo= 'L"'.

The total number of floating-point operations for real flavors is approximately n(kd+1)2 . The
number of operations for complex flavors is 4 times greater. All these estimates assume that kd is
much less than n.

After calling this routine, you can call the following:
?pbtrs to solve AX = B;

?pbcon to estimate the condition number of 4;

?pttrf

Computes the factorization of
a symmetric (Hermitian) positive-definite tridiagonal

matrix.

3-22

Syntax

Fortran 77:
call spttrf(n, d, e, info)

LAPACK Routines: Linear Equations 3

call dpttrf (n,
call cpttrf(n,
call zpttrf(n,

Fortran 95:
call pttrf(d,

Description

This routine forms

d, e, 1info)
d, e, 1info)

d, e, info)

e [,info])

the factorization of a symmetric positive-definite or, for complex data,

Hermitian positive-definite tridiagonal matrix 4:

A=LDL" where D is diagonal and L is unit lower bidiagonal. The factorization may also be
regarded as having the form 4 = U""DU , where D is unit upper bidiagonal.

Input Parameters

n
d

INTEGER. The order of the matrix 4 (n >0).

REAL for spttrf, cpttrf

DOUBLE PRECISION for dpttrf, zpttrf.

Array, dimension (). Contains the diagonal elements of A.

REAL for spttrf

DOUBLE PRECISION for dpttrf

COMPLEX for cpttrf

DOUBLE COMPLEX for zpttrf.

Array, dimension (n - 1). Contains the sub-diagonal elements of A.

Output Parameters

d

info

Overwritten by the n diagonal elements of the diagonal matrix D from the
LDL factorization of A.

Overwritten by the (n - 1) off-diagonal elements of the unit bidiagonal factor L
or U from the factorization of A.

INTEGER. If info=0, the execution is successful.

If info= -1, the ith parameter had an illegal value.

If info= i, the leading minor of order i (and hence the matrix 4 itself) is not
positive-definite; if 1 < nn, the factorization could not be completed, while if 1
= n, the factorization was completed, but d (n)=0.

3-23

3 Intel® Math Kernel Library Reference Manual

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine pttrf interface are the following:
d Holds the vector of length (n).
e Holds the vector of length (n-1).

?sytrf

Computes the Bunch-Kaufiman factorization of a
symmetric matrix.

Syntax

Fortran 77:

call ssytrf(uplo, n, a, lda, ipiv, work, Ilwork, info)
call dsytrf (uplo, n, a, lda, ipiv, work, lwork, info)
call csytrf(uplo, n, a, lda, ipiv, work, Ilwork, info)
call zsytrf(uplo, n, a, lda, ipiv, work, lwork, info)
Fortran 95:

call sytrf(a [,uplo]l [,ipiv] [,infol)

Description

This routine forms the Bunch-Kaufman factorization of a symmetric matrix:
if uplo='u', A=PUDU'PT
if uplo='L', A=PLDL'PT

where 4 is the input matrix, P is a permutation matrix, U and L are upper and lower triangular
matrices with unit diagonal, and D is a symmetric block-diagonal matrix with 1-by-1 and 2-by-2
diagonal blocks. U and L have 2-by-2 unit diagonal blocks corresponding to the 2-by-2 blocks of
D.

3-24

LAPACK Routines: Linear Equations 3

Input Parameters

uplo

lda
work
1lwork

CHARACTER*1. Mustbe 'U' or 'L".

Indicates whether the upper or lower triangular part of 4 is stored and how 4 is
factored:

If uplo= 'U", the array a stores the upper triangular part of the matrix 4, and
A is factored as PUDU'PT.

If uplo= 'L, the array a stores the lower triangular part of the matrix 4; A4 is
factored as PLDLTPT.

INTEGER. The order of matrix 4 (n = 0).

REAL for ssytrf

DOUBLE PRECISION for dsytrf

COMPLEX for csytrf

DOUBLE COMPLEX for zsytrf.

Array, DIMENSION (1da, *).

The array a contains either the upper or the lower triangular part of the matrix
A (see uplo).

The second dimension of a must be at least max(1, n).

INTEGER. The first dimension of a; at least max(1, n).

Same type as a. Workspace array of dimension Iwork

INTEGER. The size of the work array (Iwork 2 n).

If Iwork = -1, then a workspace query is assumed; the routine only calculates
the optimal size of the work array, returns this value as the first entry of the
work array, and no error message related to Iwork is issued by xerbla.

See Application Notes for the suggested value of 1work.

Output Parameters

a

work (1)

ipiv

The upper or lower triangular part of a is overwritten by details of the
block-diagonal matrix D and the multipliers used to obtain the factor U (or L).
If info=0, on exit work (1) contains the minimum value of 1work required
for optimum performance. Use this Iwork for subsequent runs.

INTEGER.

Array, DIMENSION at least max(1,n).

Contains details of the interchanges and the block structure of D.

If ipiv(i) =k>0,thend,; isa 1-by-1 block, and the ith row and column of
A was interchanged with the kth row and column.

Ifuplo="'U'and ipiv(i) =ipiv(i-1) = -m<0,then D has a 2-by-2 block
in rows/columns i and i-1, and (i-1) th row and column of 4 was
interchanged with the mth row and column.

3-25

3 Intel® Math Kernel Library Reference Manual

3-26

Ifuplo="'L"'and ipiv(i) =ipiv(i+1) = -m<0, then D has a 2-by-2 block
in rows/columns i and i+1, and (i+1) th row and column of 4 was
interchanged with the mth row and column.

info INTEGER. If info=0, the execution is successful.
If info= -1, the ith parameter had an illegal value.
If info=1,d;; is 0. The factorization has been completed, but D is exactly
singular. Division by 0 will occur if you use D for solving a system of linear
equations.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine sytrf interface are the following:

a Holds the matrix 4 of size (n1, n).
ipiv Holds the vector of length (n).
uplo Must be 'U' or 'L'. The default value is 'U".

Application Notes

For better performance, try using 1work =n*blocksize, where blocksize is a machine-dependent
value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run.
On exit, examine work (1) and use this value for subsequent runs.

The 2-by-2 unit diagonal blocks and the unit diagonal elements of U and L are not stored. The
remaining elements of U and L are stored in the corresponding columns of the array a, but
additional row interchanges are required to recover U or L explicitly (which is seldom necessary).

If ipiv(i) =iforall i =1...n,then all off-diagonal elements of U (L) are stored explicitly in
the corresponding elements of the array a.

If uplo='u", the computed factors U and D are the exact factors of a perturbed matrix 4 + E,
where

|E| < c(n)e P|Ul|Dl|U7] P

c(n) is a modest linear function of n, and € is the machine precision.
A similar estimate holds for the computed L and D when uplo="'L'.

LAPACK Routines: Linear Equations 3

The total number of floating-point operations is approximately (1/3)n> for real flavors or (4/3)n’
for complex flavors.

After calling this routine, you can call the following:

?sytrs to solve AX = B;
?sycon to estimate the condition number of 4;
?sytri to compute the inverse of 4.

?hetrf

Computes the Bunch-Kaufman factorization of a
complex Hermitian matrix.

Syntax
Fortran 77:

call chetrf(uplo, n, a, lda, ipiv, work, lwork, info)

call zhetrf (uplo, n, a, lda, ipiv, work, Ilwork, info)

Fortran 95:
call hetrf(a [,uplo]l [,ipiv] [,infol)

Description

This routine forms the Bunch-Kaufman factorization of a Hermitian matrix:
ifuplo='u', A=PUDU"PT
ifuplo='1', A=PLDLAPT

where A is the input matrix, P is a permutation matrix, U and L are upper and lower triangular
matrices with unit diagonal, and D is a Hermitian block-diagonal matrix with 1-by-1 and 2-by-2
diagonal blocks. U and L have 2-by-2 unit diagonal blocks corresponding to the 2-by-2 blocks of
D.

Input Parameters
uplo CHARACTER*1. Mustbe 'U' or 'L"'.

3-27

3 Intel® Math Kernel Library Reference Manual

3-28

lda
work

lwork

Indicates whether the upper or lower triangular part of 4 is stored and how 4 is
factored:

If uplo= 'u", the array a stores the upper triangular part of the matrix 4, and
A is factored as PUDUPT.

If uplo= 'L, the array a stores the lower triangular part of the matrix 4; A4 is
factored as PLDLYPT.

INTEGER. The order of matrix 4 (n=0).

COMPLEX for chetrf

DOUBLE COMPLEX for zhetrf.

Array, DIMENSION (1da, *).

The array a contains either the upper or the lower triangular part of the matrix
A (see uplo).

The second dimension of a must be at least max(1, n).

INTEGER. The first dimension of a; at least max(1, n).
Same type as a. Workspace array of dimension Iwork
INTEGER. The size of the work array (1work = n)

If 1work = -1, then a workspace query is assumed; the routine only calculates
the optimal size of the work array, returns this value as the first entry of the
work array, and no error message related to Iwork is issued by xerbla.

See Application Notes for the suggested value of Iwork.

Output Parameters

a

work (1)

ipiv

The upper or lower triangular part of a is overwritten by details of the
block-diagonal matrix D and the multipliers used to obtain the factor U (or L).

If info =0, on exit work (1) contains the minimum value of 1work required
for optimum performance. Use this 1work for subsequent runs.

INTEGER.

Array, DIMENSION at least max(1,n).

Contains details of the interchanges and the block structure of D.

If ipiv(i) =k>0,thend,; isa 1-by-1 block, and the ith row and column of
A was interchanged with the kth row and column.

Ifuplo="'U'and ipiv(i) =ipiv(i-1) =-m<0,then D has a 2-by-2 block
in rows/columns i and i-1, and (i-1) th row and column of 4 was
interchanged with the mth row and column.

LAPACK Routines: Linear Equations 3

Ifuplo="'L"'and ipiv(i) =ipiv(i+1) = -m<0, then D has a 2-by-2 block
in rows/columns i and i+1, and (i+1) th row and column of 4 was
interchanged with the mth row and column.

info INTEGER. If info=0, the execution is successful.
If info= -1, the ith parameter had an illegal value.
If info=1,d;; is 0. The factorization has been completed, but D is exactly
singular. Division by 0 will occur if you use D for solving a system of linear
equations.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine hetrf interface are the following:

a Holds the matrix 4 of size (n1, n).
ipiv Holds the vector of length (n).
uplo Must be 'U' or 'L'. The default value is 'U".

Application Notes

This routine is suitable for Hermitian matrices that are not known to be positive-definite. If 4 is in
fact positive-definite, the routine does not perform interchanges, and no 2-by-2 diagonal blocks
occur in D.

For better performance, try using 1work =n*blocksize, where blocksize is a machine-dependent
value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of 1work for the first run.
On exit, examine work (1) and use this value for subsequent runs.

The 2-by-2 unit diagonal blocks and the unit diagonal elements of U and L are not stored. The
remaining elements of U and L are stored in the corresponding columns of the array a, but
additional row interchanges are required to recover U or L explicitly (which is seldom necessary).

If ipiv(i) =iforall i=1...n,then all off-diagonal elements of U (L) are stored explicitly in
the corresponding elements of the array a.

3-29

3 Intel® Math Kernel Library Reference Manual

If uplo='u", the computed factors U and D are the exact factors of a perturbed matrix 4 + E,
where

|E| < c(n)e P|Ui|Dl|U7] P

¢(n) is a modest linear function of n, and € is the machine precision.
A similar estimate holds for the computed L and D when uplo= 'L".

The total number of floating-point operations is approximately (4/3)1‘13 .

After calling this routine, you can call the following:

?hetrs to solve AX = B;
?hecon to estimate the condition number of A4;
?hetri to compute the inverse of A.

?sptrf

Computes the Bunch-Kaufman factorization of a
symmetric matrix using packed storage.

Syntax
Fortran 77:

call ssptrf(uplo, n, ap, ipiv, info
call dsptrf (uplo, n, ap, ipiv, info

(
(
call csptrf(uplo, n, ap, ipiv, info

(

R N

call zsptrf(uplo, n, ap, ipiv, info

Fortran 95:
call sptrf(a [,uplo]l [,ipiv] [,info]l)

Description

This routine forms the Bunch-Kaufman factorization of a symmetric matrix 4 using packed
storage:

ifuplo='u', A=PUDU'PT
ifuplo='1', A=PLDL'PT

LAPACK Routines: Linear Equations 3

where P is a permutation matrix, U and L are upper and lower triangular matrices with unit
diagonal, and D is a symmetric block-diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks. U
and L have 2-by-2 unit diagonal blocks corresponding to the 2-by-2 blocks of D.

Input Parameters

uplo

ap

CHARACTER*1. Mustbe 'U' or 'L".

Indicates whether the upper or lower triangular part of 4 is packed in the array
ap and how A4 is factored:

If uplo= 'u", the array ap stores the upper triangular part of the matrix A4,
and A4 is factored as PUDU'PT.

If uplo= 'L, the array ap stores the lower triangular part of the matrix 4; 4
is factored as PLDLTPT.

INTEGER. The order of matrix 4 (n = 0).

REAL for ssptrf

DOUBLE PRECISION for dsptrf

COMPLEX for csptrf

DOUBLE COMPLEX for zsptrf.

Array, DIMENSION at least max(1,n(n+1)/2).

The array ap contains either the upper or the lower triangular part of the matrix
A (as specified by uplo) in packed storage (see Matrix Storage Schemes).

Output Parameters

ap

ipiv

The upper or lower triangle of A (as specified by uplo) is overwritten by
details of the block-diagonal matrix D and the multipliers used to obtain the
factor U (or L).

INTEGER.

Array, DIMENSION at least max(1,n).

Contains details of the interchanges and the block structure of D.

If ipiv(i) =k>0,thend,; isa 1-by-1 block, and the ith row and column of
A was interchanged with the kth row and column.

Ifuplo="'U'and ipiv(i) =ipiv(i-1) = -m<0,then D has a 2-by-2 block
in rows/columns i and i-1, and (i-1) th row and column of 4 was
interchanged with the mth row and column.

Ifuplo="'L'and ipiv(i) =ipiv(i+1) =-m<0,then D has a 2-by-2 block
in rows/columns i and i+1, and (i+1) th row and column of 4 was
interchanged with the mth row and column.

3-31

3 Intel® Math Kernel Library Reference Manual

info INTEGER. If info=0, the execution is successful.
If info= -1, the ith parameter had an illegal value.
If info=1i,d;; is 0. The factorization has been completed, but D is exactly
singular. Division by 0 will occur if you use D for solving a system of linear
equations.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine sptrf interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array A4 of size
(n*(n+1) /2).

ipiv Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U".

Application Notes

The 2-by-2 unit diagonal blocks and the unit diagonal elements of U and L are not stored. The
remaining elements of U and L overwrite elements of the corresponding columns of the matrix A4,
but additional row interchanges are required to recover U or L explicitly (which is seldom
necessary).

Ifipiv(i) =iforall 1=1...n,then all off-diagonal elements of U (L) are stored explicitly in
packed form.

If uplo='u", the computed factors U and D are the exact factors of a perturbed matrix 4 + E,
where

|E| < c(n)e P|Ul|Dl|U7] P

c(n) is a modest linear function of n, and € is the machine precision.
A similar estimate holds for the computed L and D when uplo= "'L"'.

The total number of floating-point operations is approximately (1/3)n3 for real flavors or (4/3»)113
for complex flavors.

After calling this routine, you can call the following:
?sptrs to solve AX = B,

?spcon to estimate the condition number of 4;

3-32

LAPACK Routines: Linear Equations 3

?sptri to compute the inverse of 4.

?hptrf

Computes the Bunch-Kaufiman factorization of a
complex Hermitian matrix using packed storage.

Syntax

Fortran 77:
call chptrf (uplo, n, ap, ipiv, info)
call zhptrf (uplo, n, ap, ipiv, info)

Fortran 95:
call hptrf(a [,uplo]l [,ipiv] [,info]l)

Description

This routine forms the Bunch-Kaufman factorization of a Hermitian matrix using packed storage:
ifuplo='u', A4=PUDU"PT
ifuplo='1', A=PLDLAPT

where 4 is the input matrix, P is a permutation matrix, U and L are upper and lower triangular
matrices with unit diagonal, and D is a Hermitian block-diagonal matrix with 1-by-1 and 2-by-2
diagonal blocks. U and L have 2-by-2 unit diagonal blocks corresponding to the 2-by-2 blocks of
D.

Input Parameters

uplo CHARACTER*1. Mustbe 'U' or 'L"'.

Indicates whether the upper or lower triangular part of 4 is packed and how 4
is factored:

If uplo='U", the array ap stores the upper triangular part of the matrix A4,
and A is factored as PUDU"PT.

If uplo= 'L, the array ap stores the lower triangular part of the matrix 4; 4
is factored as PLDLYPT.

n INTEGER. The order of matrix 4 (nn=0).

3-33

3 Intel® Math Kernel Library Reference Manual

3-34

ap

COMPLEX for chptrf

DOUBLE COMPLEX for zhptrf.

Array, DIMENSION at least max(1,n(n+1)/2).

The array ap contains either the upper or the lower triangular part of the matrix
A (as specified by uplo) in packed storage (see Matrix Storage Schemes).

Output Parameters

ap

ipiv

info

The upper or lower triangle of A (as specified by uplo) is overwritten by
details of the block-diagonal matrix D and the multipliers used to obtain the
factor U (or L).

INTEGER.

Array, DIMENSTION at least max(1,n).

Contains details of the interchanges and the block structure of D.

If ipiv(i) =k>0,thend,; isa l1-by-1 block, and the ith row and column of
A was interchanged with the kth row and column.

Ifuplo="'U'and ipiv(i) =ipiv(i-1) =-m<0,then D has a 2-by-2 block
in rows/columns i and i-1, and (i-1) th row and column of 4 was
interchanged with the mth row and column.

Ifuplo="'L'and ipiv(i) =ipiv(i+1) = -m<0,then D has a 2-by-2 block
in rows/columns i and i+1, and (i+1) th row and column of 4 was
interchanged with the mth row and column.

INTEGER. If info=0, the execution is successful.

If info = -1, the ith parameter had an illegal value.

If info=1,d;; is 0. The factorization has been completed, but D is exactly
singular. Division by 0 will occur if you use D for solving a system of linear
equations.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine hptrf interface are the following:

a

ipiv

Stands for argument ap in Fortran 77 interface. Holds the array 4 of size
(n* (n+1) /2).

Holds the vector of length (n).

LAPACK Routines: Linear Equations 3

uplo Must be 'U' or 'L'. The default value is 'U".

Application Notes

The 2-by-2 unit diagonal blocks and the unit diagonal elements of U and L are not stored. The
remaining elements of U and L are stored in the corresponding columns of the array a, but
additional row interchanges are required to recover U or L explicitly (which is seldom necessary).

If ipiv(i) =iforall i =1...n,then all off-diagonal elements of U (L) are stored explicitly in
the corresponding elements of the array a.

If uplo='u', the computed factors U and D are the exact factors of a perturbed matrix 4 + E,
where

|E| < c(n)e P|Ul|Dl|U7] P

c(n) is a modest linear function of n, and € is the machine precision.
A similar estimate holds for the computed L and D when uplo= 'L".

The total number of floating-point operations is approximately (4/3)n3.

After calling this routine, you can call the following:

?hptrs to solve AX=B;
?hpcon to estimate the condition number of 4;
?hptri to compute the inverse of 4.

3-35

3 Intel® Math Kernel Library Reference Manual

Routines for Solving Systems of Linear Equations

This section describes the LAPACK routines for solving systems of linear equations. Before
calling most of these routines, you need to factorize the matrix of your system of equations (see
Routines for Matrix Factorization in this chapter). However, the factorization is not necessary if
your system of equations has a triangular matrix.

?getrs

Solves a system of linear equations with an LU-factored
square matrix, with multiple right-hand sides.

Syntax

Fortran 77:

call sgetrs(trans, n, nrhs, a, lda, ipiv, b, 1db, info)
call dgetrs(trans, n, nrhs, a, lda, ipiv, b, 1ldb, info)
call cgetrs(trans, n, nrhs, a, lda, ipiv, b, 1db, info)
call zgetrs(trans, n, nrhs, a, lda, ipiv, b, 1db, info)
Fortran 95:

call getrs(a, ipiv, b [,trans] [,info])

Description

This routine solves for X the following systems of linear equations:

AX=B if trans="N",
ATx=B if trans="T",
Alx =B if trans="¢C" (for complex matrices only).

Before calling this routine, you must call 2getrf to compute the LU factorization of 4.

Input Parameters
trans CHARACTER*1. Mustbe 'N' or 'T' or 'C"'.
Indicates the form of the equations:

If trans= 'N"', then AX = B is solved for X.

LAPACK Routines: Linear Equations 3

If trans='T', then ATX = B is solved for X.
If trans = 'C', then 47X = B is solved for X.

n INTEGER. The order of 4; the number of rows in B (n = 0).
nrhs INTEGER. The number of right-hand sides (nrhs = 0).
a, b REAL for sgetrs

DOUBLE PRECISION for dgetrs
COMPLEX for cgetrs

DOUBLE COMPLEX for zgetrs.
Arrays: a(1da,*), b(1db, *).

The array a contains the matrix 4.
The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations.

The second dimension of a must be at least max(1,n), the second dimension of
b at least max(1,nrhs).

lda INTEGER. The first dimension of a; 1da = max(1, n).
1db INTEGER. The first dimension of b; 1db = max(1, n).
ipiv INTEGER.

Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?getrf.
Output Parameters
b Overwritten by the solution matrix X.
info INTEGER. If info=0, the execution is successful.

If info = -1, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine getrs interface are the following:

a Holds the matrix 4 of size (n1, n).
b Holds the matrix B of size (n, nrhs).
ipiv Holds the vector of length (n).

3-37

3 Intel® Math Kernel Library Reference Manual

trans Mustbe 'N', 'C', or 'T'. The default value is 'N'.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of
equations (4 + E)x = b where
|El < c(n)e PIL||U

¢(n) is a modest linear function of n, and € is the machine precision.

If x is the true solution, the computed solution x satisfies this error bound:

= %ol

—=< c cond (A4, x)&
L~ ¢ cond (2,%)

where cond(4,) = || |4~ J4] i [l / ¥l < 47!l Ml = ().

Note that cond(4,x) can be much smaller than k..(4); the condition number of A” and 4" might or
might not be equal to K.(4).

The approximate number of floating-point operations for one right-hand side vector b is 2n? for
real flavors and 8n? for complex flavors.

To estimate the condition number x., (4), call 2gecon.
To refine the solution and estimate the error, call ?2gerfs.

?gbtrs

Solves a system of linear equations with an LU-factored
band matrix, with multiple right-hand sides.

Syntax

Fortran 77:

call sgbtrs(trans, n, k1, ku, nrhs, ab, ldab, ipiv, b, 1db, info)
call dgbtrs(trans, n, k1, ku, nrhs, ab, ldab, ipiv, b, 1ldb, info)
call cgbtrs(trans, n, k1, ku, nrhs, ab, ldab, ipiv, b, 1db, info)
call zgbtrs(trans, n, k1, ku, nrhs, ab, ldab, ipiv, b, 1db, info)

LAPACK Routines: Linear Equations 3

Fortran 95:
call gbtrs(a, b, ipiv, [,k1] [,trans] [,infol)

Description

This routine solves for X the following systems of linear equations:

AX=B if trans="N",
ATx=B if trans="T",
A%x =B if trans="C" (for complex matrices only).

Here A is an LU-factored general band matrix of order n with k1 non-zero sub-diagonals and ku
non-zero super-diagonals. Before calling this routine, you must call 2gbtr £ to compute the LU
factorization of 4.

Input Parameters

trans CHARACTER*1. Mustbe 'N' or 'T' or 'C'.

n INTEGER. The order of 4; the number of rows in B (n = 0).

k1 INTEGER. The number of sub-diagonals within the band of 4 (k1 = 0).
ku INTEGER. The number of super-diagonals within the band of 4 (ku = 0).
nrhs INTEGER. The number of right-hand sides (nrhs = 0).

ab, b REAL for sgbtrs

DOUBLE PRECISION for dgbtrs
COMPLEX for cgbtrs

DOUBLE COMPLEX for zgbtrs.
Arrays: ab(1dab, *), b(1db, *).

The array ab contains the matrix 4 in band storage (see Matrix Storage
Schemes).

The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations.

The second dimension of ab must be at least max(1, n),
the second dimension of b at least max(1,nrhs).

ldab INTEGER. The first dimension of the array ab.
(1dab = 2k1+ ku+1).

1db INTEGER. The first dimension of b; 1db = max(1, n).

3-39

3 Intel® Math Kernel Library Reference Manual

3-40

ipiv INTEGER. Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?gbtrt.

Output Parameters

b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.

If info= -1, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gbtrs interface are the following:

a Stands for argument ab in Fortran 77 interface. Holds the array A4 of size
(2*k1+ku+1,n).

b Holds the matrix B of size (n, nrhs).

ipiv Holds the vector of length min(m, n).

k1 If omitted, assumed k1=ku.

ku Restored as 1da-2+k1-1.

trans Must be 'N', 'C', or 'T'. The default value is 'N'.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of
equations (4 + E)x = b, where
|E| < c(kl+ku+1)e P|L||U

c(k) is a modest linear function of £, and € is the machine precision.

If x is the true solution, the computed solution x satisfies this error bound:

| = %ol

Ixll.,

< c(kl+ku+1)cond (A x)&

where cond(40) = || 4™ [| [l / ¥l < 14"l Al = .4).

LAPACK Routines: Linear Equations 3

Note that cond(4,x) can be much smaller than x_(4); the condition number of AT and 4" might or
might not be equal to K.(4).

The approximate number of floating-point operations for one right-hand side vector is 2n(ku +
2k1) for real flavors. The number of operations for complex flavors is 4 times greater. All these
estimates assume that k1 and ku are much less than min(m, n).

To estimate the condition number k., (4), call 2gbcon.
To refine the solution and estimate the error, call 2gbrfs.

?gttrs

Solves a system of linear equations with a tridiagonal
matrix using the LU factorization computed by ?gttrt.

Syntax

Fortran 77:

call sgttrs(trans, n, nrhs, dl, d, du, du2, ipiv, b, 1ldb, info)
call dgttrs(trans, n, nrhs, dl, d, du, du2, ipiv, b, 1ldb, info)
call cgttrs(trans, n, nrhs, dl, d, du, du2, ipiv, b, 1ldb, info)
call zgttrs(trans, n, nrhs, dl, d, du, du2, ipiv, b, 1ldb, info)
Fortran 95:

call gttrs(dl, d, du, du2, b, ipiv [,trans] [,info]l)
Description

This routine solves for X the following systems of linear equations with multiple right hand sides:

AX=B if trans="N",
ATx=B if trans="T",
A%x =B if trans="C" (for complex matrices only).

Before calling this routine, you must call ?2gttrf to compute the LU factorization of 4.

Input Parameters

trans CHARACTER*1. Mustbe 'N' or 'T' or 'C".

3-41

3 Intel® Math Kernel Library Reference Manual

3-42

nrhs

dl,d,du,du2,b

1db

ipiv

Indicates the form of the equations:

If trans= 'N"', then AX = B is solved for X.
If trans='T', then AX = B is solved for X.
If trans='C', then AMX = B is solved for X.
INTEGER. The order of 4 (n = 0).

INTEGER. The number of right-hand sides, i.e., the number of columns in B
(nrhs 20).

REAL for sgttrs

DOUBLE PRECISION for dgttrs

COMPLEX for cgttrs

DOUBLE COMPLEX for zgttrf.

Arrays: d1(n-1),d(n),du(n-1),du2(n-2), b(1db,nrhs).

The array d1 contains the (z - 1) multipliers that define the matrix L from the
LU factorization of A.

The array d contains the n diagonal elements of the upper triangular matrix U
from the LU factorization of 4.

The array du contains the (n- 1) elements of the first super-diagonal of U.
The array du2 contains the (n1 - 2) elements of the second super-diagonal of
U.

The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations.

INTEGER. The leading dimension of b; 1db = max(1, n).

INTEGER.
Array, DIMENSION (n).
The ipiv array, as returned by ?gttrt.

Output Parameters

b

info

Overwritten by the solution matrix X.

INTEGER. If info=0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

LAPACK Routines: Linear Equations 3

Specific details for the routine gttrs interface are the following:

d1 Holds the vector of length (n-1).

d Holds the vector of length (n).

du Holds the vector of length (n-1).

du2 Holds the vector of length (n-2).

b Holds the matrix B of size (n, nrhs).

ipiv Holds the vector of length (n).

trans Must be 'N', 'C', or 'T'. The default value is 'N'.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of
equations (4 + E)x = b where
|El < c(n)e PIL||U

¢(n) is a modest linear function of n, and € is the machine precision.

If x is the true solution, the computed solution x satisfies this error bound:

[= %ol

Il

< c(n) cond (A, x)&

where cond(4x) = || |4~ 4] i [loo/ e < 14l [=).

Note that cond(4,x) can be much smaller than .,(4); the condition number of A7 and A might or
might not be equal to K. (4).

The approximate number of floating-point operations for one right-hand side vector b is 2n? for
real flavors and 8n? for complex flavors.

To estimate the condition number x,, (4), call 2gecon.
To refine the solution and estimate the error, call ?2gerfs.

3-43

3 Intel® Math Kernel Library Reference Manual

?potrs

Solves a system of linear equations with a
Cholesky-factored symmetric (Hermitian)
positive-definite matrix.

3-44

Syntax

Fortran 77:

call spotrs(uplo, n, nrhs, a, lda, b, 1db, info)
call dpotrs(uplo, n, nrhs, a, lda, b, 1db, info)
call cpotrs(uplo, n, nrhs, a, lda, b, 1db, info)
call zpotrs(uplo, n, nrhs, a, lda, b, 1db, info)

Fortran 95:
call potrs(a, b [,uplo]l I[,infol)

Description

This routine solves for X the system of linear equations AX = B with a symmetric positive-definite
or, for complex data, Hermitian positive-definite matrix A, given the Cholesky factorization of 4:

A=U"U if uplo='U'
A=LL" if uplo='L"

where L is a lower triangular matrix and U is upper triangular. The system is solved with multiple
right-hand sides stored in the columns of the matrix B.

Before calling this routine, you must call ?potrf to compute the Cholesky factorization of 4.

Input Parameters
uplo CHARACTER*1. Mustbe 'U" or 'L".
Indicates how the input matrix 4 has been factored:

If uplo='U", the array a stores the factor U of the Cholesky factorization 4 =
U

If uplo='L", the array a stores the factor L of the Cholesky factorization 4
=LY,

LAPACK Routines: Linear Equations 3

n INTEGER. The order of matrix 4 (n = 0).
nrhs INTEGER. The number of right-hand sides (nrhs 2 0).
a, b REAL for spotrs

DOUBLE PRECISION for dpotrs

COMPLEX for cpotrs

DOUBLE COMPLEX for zpotrs.

Arrays: a(1da,*), b(1db, *).

The array a contains the factor U or L (see uplo).

The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations.

The second dimension of a must be at least max(1,n), the second dimension of
b at least max(1,nrhs).

lda INTEGER. The first dimension of a; 1da = max(1, n).

1db INTEGER. The first dimension of b; 1db = max(1, n).

Output Parameters
b Overwritten by the solution matrix X.
info INTEGER. If info =0, the execution is successful.

If info= -1, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine potrs interface are the following:

a Holds the matrix 4 of size (n1, n).
b Holds the matrix B of size (n, nrhs).
uplo Must be 'U' or 'L'. The default value is 'U".

3-45

3 Intel® Math Kernel Library Reference Manual

Application Notes

If uplo='u", the computed solution for each right-hand side 4 is the exact solution of a
perturbed system of equations (4 + E)x = b, where
Bl < c(a)e|UH[l

c(n) is a modest linear function of n, and € is the machine precision.
A similar estimate holds for uplo='L".
If x is the true solution, the computed solution x satisfies this error bound:

[= %]..
W < c(n) cond(A, x)&

where cond(4,) = || |4~ J4] i [l / ¥l < 47!l [l = ().

Note that cond(4,x) can be much smaller than ., (4).
The approximate number of floating-point operations for one right-hand side vector b is 2n? for
real flavors and 817 for complex flavors.

To estimate the condition number x,, (4), call ?pocon.
To refine the solution and estimate the error, call ?porfs.

?pptrs

Solves a system of linear equations with a packed
Cholesky-factored symmetric (Hermitian)
positive-definite matrix.

Syntax

Fortran 77:

call spptrs(uplo, n, nrhs, ap, b, 1ldb, info)
call dpptrs(uplo, n, nrhs, ap, b, 1db, info)
call cpptrs(uplo, n, nrhs, ap, b, 1ldb, info)
call zpptrs(uplo, n, nrhs, ap, b, 1ldb, info)

Fortran 95:
call pptrs(a, b [,uplo]l [,info])

3-46

LAPACK Routines: Linear Equations 3

Description

This routine solves for X the system of linear equations 4X = B with a packed symmetric
positive-definite or, for complex data, Hermitian positive-definite matrix A4, given the Cholesky
factorization of 4:

A=U"U if uplo='U"
A=L1" if uplo="'L

where L is a lower triangular matrix and U is upper triangular. The system is solved with multiple
right-hand sides stored in the columns of the matrix B.

Before calling this routine, you must call ?pptrf to compute the Cholesky factorization of 4.

Input Parameters
uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates how the input matrix 4 has been factored:

If uplo='uU", the array a stores the packed factor U of the Cholesky
factorization 4 = U'U.

If uplo='L", the array a stores the packed factor L of the Cholesky
factorization 4 = LL".

n INTEGER. The order of matrix 4 (nn=0).
nrhs INTEGER. The number of right-hand sides (nrhs = 0).
ap, b REAL for spptrs

DOUBLE PRECISION for dpptrs

COMPLEX for cpptrs

DOUBLE COMPLEX for zpptrs.

Arrays: ap (*), b(1db, *)

The dimension of ap must be at least max(1,n(n+1)/2).

The array ap contains the factor U or L, as specified by uplo, in packed
storage (see Matrix Storage Schemes).

The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations. The second dimension of b must be at least
max(1,nrhs).

1db INTEGER. The first dimension of b; 1db = max(1, n).

3-47

3 Intel® Math Kernel Library Reference Manual

Output Parameters
b Overwritten by the solution matrix X.
info INTEGER. If info =0, the execution is successful.

If info= -1, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine pptrs interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array A4 of size
(n*(n+1) /2).

b Holds the matrix B of size (n, nrhs).

uplo Must be 'U! or 'L'. The default value is 'U".

Application Notes
If uplo='U", the computed solution for each right-hand side b is the exact solution of a
perturbed system of equations (4 + E)x = b, where
|El < c(a)e |UH]|U]
¢(n) is a modest linear function of n, and € is the machine precision.
A similar estimate holds for uplo= 'L"'.

If x is the true solution, the computed solution x satisfies this error bound:

| = ol

Ixll.,

< c¢(n) cond(A, x)&

where cond(4,0) = || |4] oo/ [l < [}47" e [l = A).
Note that cond(4,x) can be much smaller than K(4).

The approximate number of floating-point operations for one right-hand side vector b is 2n? for
real flavors and 8z for complex flavors.

To estimate the condition number x_,(4), call ?ppcon.
To refine the solution and estimate the error, call ?pprfs.

3-48

LAPACK Routines: Linear Equations 3

?pbtrs

Solves a system of linear equations with a
Cholesky-factored symmetric (Hermitian)
positive-definite band matrix.

Syntax

Fortran 77:

call spbtrs(uplo, n, kd, nrhs, ab, ldab, b, 1db, info)
call dpbtrs(uplo, n, kd, nrhs, ab, ldab, b, 1ldb, info)
call cpbtrs(uplo, n, kd, nrhs, ab, ldab, b, 1db, info)
call zpbtrs(uplo, n, kd, nrhs, ab, ldab, b, 1ldb, info)

Fortran 95:
call pbtrs(a, b [,uplo]l [,infol)
Description

This routine solves for X the system of linear equations AX = B with a symmetric positive-definite
or, for complex data, Hermitian positive-definite band matrix A4, given the Cholesky factorization

of A:
A=U"U if uplo="U"
A=LL" if uplo="1L"

where L is a lower triangular matrix and U is upper triangular. The system is solved with multiple
right-hand sides stored in the columns of the matrix B.

Before calling this routine, you must call ?pbtrf to compute the Cholesky factorization of 4 in
the band storage form.

Input Parameters
uplo CHARACTER*1. Mustbe 'U' or 'L"'.

Indicates how the input matrix 4 has been factored:

3-49

3 Intel® Math Kernel Library Reference Manual

If uplo= 'U", the array a stores the factor U of the factorization 4 = U"U in
the band storage form.

If uplo='L', the array a stores the factor L of the factorization 4 = LL in
the band storage form.

n INTEGER. The order of matrix 4 (nn=0).

kd INTEGER. The number of super-diagonals or sub-diagonals in the matrix 4
(kd 2 0).

nrhs INTEGER. The number of right-hand sides (nrhs = 0).

ab, b REAL for spbtrs

DOUBLE PRECISION for dpbtrs
COMPLEX for cpbtrs

DOUBLE COMPLEX for zpbtrs.
Arrays: ab(ldab,*),b(1ldb, *).

The array ab contains the Cholesky factor, as returned by the factorization
routine, in band storage form.

The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations.

The second dimension of ab must be at least max(1, n),
the second dimension of b at least max(1,nrhs).

ldab INTEGER. The first dimension of the array ab.
(1dab > kd +1).

1db INTEGER. The first dimension of b; 1db = max(1, n).

Output Parameters
b Overwritten by the solution matrix X.
info INTEGER. If info=0, the execution is successful.

If info= -1, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine pbtrs interface are the following:

LAPACK Routines: Linear Equations 3

a Stands for argument ab in Fortran 77 interface. Holds the array A4 of size
(kd+1, n).

b Holds the matrix B of size (n, nrhs).

uplo Must be 'U' or 'L'. The default value is 'U".

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of
equations (4 + E)x = b, where

Bl < c(ka+ 1)e PlU]|Ul or Bl < c(xa+ 1)e p|L|L
c(k) is a modest linear function of &, and € is the machine precision.

If x is the true solution, the computed solution x satisfies this error bound:
[~ ..

B < c(kd+ 1) cond(A, x)e

where cond(4,x) = || 14~ [] [l / e < 147" Al =)
Note that cond(4,x) can be much smaller than x_,(4).
The approximate number of floating-point operations for one right-hand side vector is 4n*kd for

real flavors and 16n*kd for complex flavors.

To estimate the condition number ., (4), call ?pbcon.
To refine the solution and estimate the error, call ?pbrfs.

?ptirs

Solves a system of linear equations with a symmetric
(Hermitian) positive-definite tridiagonal matrix using
the factorization computed by ?pttrt.

Syntax

Fortran 77:

call spttrs(n, nrhs, d, e, b, 1db, info)

call dpttrs(n, nrhs, d, e, b, 1db, info)

call cpttrs(uplo, n, nrhs, d, e, b, 1ldb, info)

3-51

3 Intel® Math Kernel Library Reference Manual

call zpttrs(uplo, n, nrhs, d, e, b, 1ldb, info)

Fortran 95:
call pttrs(d, e, b [,info])
call pttrs(d, e, b [,uplo]l [,infol)

Description

This routine solves for X a system of linear equations 4X =B with a symmetric (Hermitian)
positive-definite tridiagonal matrix 4.

Before calling this routine, you must call ?pttrf to compute the LDL? or UDU factorization
of 4.

Input Parameters

uplo CHARACTER*1. Used for cpttrs/zpttrs only.
Mustbe 'u' or 'L'.
Specifies whether the superdiagonal or the subdiagonal of the tridiagonal
matrix 4 is stored and how 4 is factored:
If uplo= 'u", the array e stores the superdiagonal of 4, and 4 is factored as

U pu;
If uplo= 'L, the array e stores the subdiagonal of 4, and 4 is factored as
LDLH,

n INTEGER. The order of 4 (n > 0).

nrhs INTEGER. The number of right-hand sides, i.e., the number of columns of the

matrix B (nrhs 2 0).

d REAL for spttrs, cpttrs
DOUBLE PRECISION for dpttrs, zpttrs.
Array, dimension (n). Contains the diagonal elements of the diagonal matrix
D from the factorization computed by ?pttrf.

e, b REAL for spttrs
DOUBLE PRECISION for dpttrs
COMPLEX for cpttrs
DOUBLE COMPLEX for zpttrs.
Arrays: e(n- 1), b(1db,nrhs).
The array e contains the (n- 1) off-diagonal elements of the unit bidiagonal
factor U or L from the factorization computed by ?pttrf (see uplo).
The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations.

LAPACK Routines: Linear Equations 3

1db INTEGER. The leading dimension of b; 1db = max(1, n).

Output Parameters
b Overwritten by the solution matrix X.
info INTEGER. If info=0, the execution is successful.

If info= -1, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine pttrsf interface are the following:

d Holds the vector of length (n).

e Holds the vector of length (n-1).

b Holds the matrix B of size (n, nrhs).

uplo Used in complex flavors only. Must be 'U' or 'L'. The default value is 'U".
?sytrs

Solves a system of linear equations with a UDU- or
LDL-factored symmetric matrix.

Syntax

Fortran 77:

call ssytrs(uplo, n, nrhs, a, lda, ipiv, b, 1db, info)
call dsytrs(uplo, n, nrhs, a, lda, ipiv, b, 1db, info)
call csytrs(uplo, n, nrhs, a, lda, ipiv, b, 1ldb, info)
call zsytrs(uplo, n, nrhs, a, lda, ipiv, b, 1db, info)
Fortran 95:

call sytrs(a, b, ipiv [,uplo]l I[,infol)

3-53

3 Intel® Math Kernel Library Reference Manual

Description

This routine solves for X the system of linear equations AX = B with a symmetric matrix 4, given
the Bunch-Kaufman factorization of 4:

ifuplo='u', A=PUDU'PT

ifuplo='1', A=PLDLTPT
where P is a permutation matrix, U and L are upper and lower triangular matrices with unit
diagonal, and D is a symmetric block-diagonal matrix. The system is solved with multiple

right-hand sides stored in the columns of the matrix B. You must supply to this routine the factor U
(or L) and the array ipiv returned by the factorization routine ?sytrf.

Input Parameters

uplo CHARACTER*1. Mustbe 'U" or 'L".
Indicates how the input matrix 4 has been factored:

If uplo='u", the array a stores the upper triangular factor U of the
factorization 4 = PUDU'PT.

If uplo='L", the array a stores the lower triangular factor L of the
factorization 4 = PLDLTPT,

n INTEGER. The order of matrix A (n = 0).
nrhs INTEGER. The number of right-hand sides (nrhs = 0).
ipiv INTEGER. Array, DIMENSION at least max(1,n).

The ipiv array, as returned by ?sytrf.

a, b REAL for ssytrs
DOUBLE PRECISION for dsytrs
COMPLEX for csytrs
DOUBLE COMPLEX for zsytrs.
Arrays: a(1da,*), b(1db, *).
The array a contains the factor U or L (see uplo).
The array b contains the matrix B whose columns are the right-hand sides for
the system of equations.

The second dimension of a must be at least max(1,n), the second dimension of
b at least max(1,nrhs).

lda INTEGER. The first dimension of a; 1da = max(1, n).

1db INTEGER. The first dimension of b; 1db = max(1, n).

LAPACK Routines: Linear Equations 3

Output Parameters
b Overwritten by the solution matrix X.
info INTEGER. If info=0, the execution is successful.

If info= -1, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine sytrs interface are the following:

a Holds the matrix 4 of size (n1, nn).

b Holds the matrix B of size (n, nrhs).

ipiv Holds the vector of length (n).

uplo Must be 'U! or 'L'. The default value is 'U".

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of
equations (4 + E)x = b, where

|El < c(n)e PlUIDI|UT] P or |E < c(n)e PIf|DI|L7] P*
¢(n) is a modest linear function of n, and € is the machine precision.

If x is the true solution, the computed solution x satisfies this error bound:

= ol

Il

< ¢(n) cond(A, x)&

where cond(4x) = || 14~ 4] b [loo/ e < 14l [=).

Note that cond(4,x) can be much smaller than K(4).
The total number of floating-point operations for one right-hand side vector is approximately 2n?

for real flavors or 8n? for complex flavors.

To estimate the condition number x,, (4), call ?sycon.
To refine the solution and estimate the error, call ?syrfs.

3-55

3 Intel® Math Kernel Library Reference Manual

?hetrs

Solves a system of linear equations with a UDU- or
LDL-factored Hermitian matrix.

Syntax

Fortran 77:
call chetrs(uplo, n, nrhs, a, lda, ipiv, b, 1db, info)
call zhetrs(uplo, n, nrhs, a, lda, ipiv, b, 1ldb, info)

Fortran 95:
call hetrs(a, b, ipiv [,uplo]l [,infol)

Description

This routine solves for X the system of linear equations AX = B with a Hermitian matrix 4, given
the Bunch-Kaufman factorization of 4:

ifuplo='u', A=PUDU"PT
ifuplo='1', A=PLDL"PT

where P is a permutation matrix, U and L are upper and lower triangular matrices with unit
diagonal, and D is a symmetric block-diagonal matrix. The system is solved with multiple
right-hand sides stored in the columns of the matrix B. You must supply to this routine the factor U
(or L) and the array ipivreturned by the factorization routine ?hetrf.

Input Parameters

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates how the input matrix 4 has been factored:

If uplo='u", the array a stores the upper triangular factor U of the
factorization 4 = PUDUPT.

If uplo= 'L, the array a stores the lower triangular factor L of the
factorization 4 = PLDLYPT.

n INTEGER. The order of matrix A (nn=0).

nrhs INTEGER. The number of right-hand sides (nrhs > 0).

LAPACK Routines: Linear Equations 3

ipiv INTEGER. Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?hetrf.

a, b COMPLEX for chetrs.
DOUBLE COMPLEX for zhetrs.
Arrays: a(lda,*), b(1db, *).
The array a contains the factor U or L (see uplo).
The array b contains the matrix B whose columns are the right-hand sides for
the system of equations.

The second dimension of a must be at least max(1,n), the second dimension of
b at least max(1,nrhs).

lda INTEGER. The first dimension of a; 1da = max(1, n).

1db INTEGER. The first dimension of b; 1db = max(1, n).

Output Parameters
b Overwritten by the solution matrix X.
info INTEGER. If info=0, the execution is successful.

If info= -1, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine hetrs interface are the following:

a Holds the matrix 4 of size (n1, nn).

b Holds the matrix B of size (n, nrhs).

ipiv Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U".

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of
equations (4 + E)x = b, where

|E < c(n)e P|U|D||U7 P" or |E| < c(n)e P|L||D||L"| P”

¢(n) is a modest linear function of n, and € is the machine precision.

3-57

3 Intel® Math Kernel Library Reference Manual

If x is the true solution, the computed solution x satisfies this error bound:

[= %ol

———— < c(n) cond(A, x)&
Il

where cond(,x) = || 14 [| [l / il < [14”' [[Ml] = 5CA)
Note that cond(4,x) can be much smaller than K (4).
The total number of floating-point operations for one right-hand side vector is approximately 8n°.

To estimate the condition number k., (4), call 2hecon.
To refine the solution and estimate the error, call herfs.

?sptrs

Solves a system of linear equations with a UDU- or
LDL-factored symmetric matrix using packed storage.

Syntax

Fortran 77:

call ssptrs(uplo, n, nrhs, ap, ipiv, b, 1db, info)
call dsptrs(uplo, n, nrhs, ap, ipiv, b, 1ldb, info)
call csptrs(uplo, n, nrhs, ap, ipiv, b, 1db, info)
call zsptrs(uplo, n, nrhs, ap, ipiv, b, 1ldb, info)
Fortran 95:

call sptrs(a, b, ipiv [,uplo]l [,infol)

Description

This routine solves for X the system of linear equations AX = B with a symmetric matrix 4, given
the Bunch-Kaufman factorization of 4:

if uplo='U', A4=PUDU'P"
if uplo='1.", A=PLDL"P"

LAPACK Routines: Linear Equations 3

where P is a permutation matrix, U and L are upper and lower packed triangular matrices with unit
diagonal, and D is a symmetric block-diagonal matrix. The system is solved with multiple
right-hand sides stored in the columns of the matrix B. You must supply the factor U (or L) and the
array ipiv returned by the factorization routine ?sptrf.

Input Parameters

uplo

nrhs

ipiv

ap, b

1db

CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates how the input matrix 4 has been factored:

If uplo='u", the array ap stores the packed factor U of the factorization
A=PUDUPT.
If uplo= 'L, the array ap stores the packed factor L of the factorization
A=PLDLTPT,

INTEGER. The order of matrix 4 (n = 0).
INTEGER. The number of right-hand sides (nrhs = 0).

INTEGER. Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?sptrf.

REAL for ssptrs

DOUBLE PRECISION for dsptrs

COMPLEX for csptrs

DOUBLE COMPLEX for zsptrs.

Arrays: ap (*), b(1db, *)

The dimension of ap must be at least max(1,n(nt+1)/2).

The array ap contains the factor U or L, as specified by uplo, in packed

storage (see Matrix Storage Schemes).

The array b contains the matrix B whose columns are the right-hand sides for
the system of equations. The second dimension of b must be at least
max(l,nrhs).

INTEGER. The first dimension of b; 1db = max(1, n).

Output Parameters

b

info

Overwritten by the solution matrix X.

INTEGER. If info=0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

3-59

3 Intel® Math Kernel Library Reference Manual

3-60

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine sptrs interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array 4 of size
(n* (n+1) /2).

b Holds the matrix B of size (n, nrhs).

ipiv Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U".

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of
equations (4 + E)x = b, where

Bl < c(n)e PlU|DI|UT P or |El < c(n)e PlLl|DI|Z7] PT
¢(n) is a modest linear function of n, and € is the machine precision.

If x is the true solution, the computed solution x satisfies this error bound:

= ol

Il

< ¢(n) cond(A, x)&

where cond(4,x) = | A~ JA] 1| [l / ¥l < 14l [l = K).
Note that cond(4,x) can be much smaller than x_,(4).

The total number of floating-point operations for one right-hand side vector is approximately 2n?
for real flavors or 8n” for complex flavors.

To estimate the condition number x., (4), call ?spcon.
To refine the solution and estimate the error, call ?sprfs.

LAPACK Routines: Linear Equations 3

?hptrs

Solves a system of linear equations with a UDU- or
LDL-factored Hermitian matrix using packed storage.

Syntax

Fortran 77:
call chptrs(uplo, n, nrhs, ap, ipiv, b, 1db, info)
call zhptrs(uplo, n, nrhs, ap, ipiv, b, 1ldb, info)

Fortran 95:
call hptrs(a, b, ipiv [,uplo]l [,infol)

Description

This routine solves for X the system of linear equations AX = B with a Hermitian matrix 4, given
the Bunch-Kaufman factorization of 4:

ifuplo='u', A=PUDU"PT
ifuplo='1', A=PLDL"PT

where P is a permutation matrix, U and L are upper and lower packed triangular matrices with unit
diagonal, and D is a symmetric block-diagonal matrix. The system is solved with multiple
right-hand sides stored in the columns of the matrix B.

You must supply to this routine the arrays ap (containing U or L) and ipiv in the form returned
by the factorization routine ?hptrf.
Input Parameters

uplo CHARACTER*1. Mustbe 'U" or 'L".
Indicates how the input matrix 4 has been factored:

If uplo='u", the array ap stores the packed factor U of the factorization

A=pPUDUPT,
If uplo= 'L, the array ap stores the packed factor L of the factorization
A=PLDLYPT,

n INTEGER. The order of matrix 4 (n = 0).

nrhs INTEGER. The number of right-hand sides (nrhs = 0).

3-61

3 Intel® Math Kernel Library Reference Manual

ipiv INTEGER. Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?hptrf.

ap, b COMPLEX for chptrs.
DOUBLE COMPLEX for zhptrs.
Arrays: ap (*), b(1db, *)
The dimension of ap must be at least max(1,n(nt+1)/2).
The array ap contains the factor U or L, as specified by uplo, in packed
storage (see Matrix Storage Schemes).

The array b contains the matrix B whose columns are the right-hand sides for
the system of equations. The second dimension of b must be at least
max(l,nrhs).

1db INTEGER. The first dimension of b; 1db = max(1, n).

Output Parameters

b Overwritten by the solution matrix X.

info INTEGER. If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine hptrs interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array A4 of size
(n*(n+1) /2).

b Holds the matrix B of size (n, nrhs).

ipiv Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U".

3-62

LAPACK Routines: Linear Equations 3

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of
equations (4 + E)x = b, where

|E| < c(n)e P|UI|D||U"|P" or |E|< c(n)e P|L||DI|L"| P
c(n) is a modest linear function of n, and € is the machine precision.

If x is the true solution, the computed solution x satisfies this error bound:

|~ %ol..

Ixll.,

< c(n) cond(A, x)&

where cond(4,x) = | A~ JA] | [l / ¥l < 14l [l = Kh).
Note that cond(4,x) can be much smaller than x_,(4).

The total number of floating-point operations for one right-hand side vector is approximately 81
for complex flavors.

To estimate the condition number x., (4), call 2hpcon.
To refine the solution and estimate the error, call ?hprfs.

?trtrs

Solves a system of linear equations with a triangular
matrix, with multiple right-hand sides.

Syntax

Fortran 77:

call strtrs(uplo, trans, diag, n, nrhs, a, lda, b, 1db, info)
call dtrtrs(uplo, trans, diag, n, nrhs, a, lda, b, 1ldb, info)
call ctrtrs(uplo, trans, diag, n, nrhs, a, lda, b, 1db, info)
call ztrtrs(uplo, trans, diag, n, nrhs, a, lda, b, 1db, info)
Fortran 95:

call trtrs(a, b [,uplo]l [,trans] [,diag]l [,info])

3-63

3 Intel® Math Kernel Library Reference Manual

Description

This routine solves for X the following systems of linear equations with a triangular matrix 4, with
multiple right-hand sides stored in B:

AX=B if trans="N",
ATx=B if trans="T",
A"x =B if trans="C" (for complex matrices only).

Input Parameters
uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates whether 4 is upper or lower triangular:

If uplo='uU", then 4 is upper triangular.
If uplo='L", then 4 is lower triangular.

trans CHARACTER*1. Mustbe 'N' or 'T' or 'C"'.
If trans= 'N"', then AX = B is solved for X.
If trans='T', then ATX = B is solved for X.
If trans = 'C', then 47X = B is solved for X.
diag CHARACTER*1. Mustbe 'N' or 'U".

If diag= 'N", then 4 is not a unit triangular matrix.
If diag= 'U", then A4 is unit triangular: diagonal elements of 4 are assumed to
be 1 and not referenced in the array a.

n INTEGER. The order of A4; the number of rows in B (n = 0).
nrhs INTEGER. The number of right-hand sides (nrhs = 0).
a, b REAL for strtrs

DOUBLE PRECISION for dtrtrs
COMPLEX for ctrtrs

DOUBLE COMPLEX for ztrtrs.
Arrays: a(lda,*), b(1db, *).

The array a contains the matrix 4.
The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations.

The second dimension of a must be at least max(1,n), the second dimension of
b at least max(1,nrhs).

lda INTEGER. The first dimension of a; 1da = max(1, n).

3-64

LAPACK Routines: Linear Equations 3

1db

INTEGER. The first dimension of b; 1db > max(1, n).

Output Parameters

b

info

Overwritten by the solution matrix X.

INTEGER. If info=0, the execution is successful.

If info= -1, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine trtrs interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the matrix 4 of size
(n*(n+1) /2).

b Holds the matrix B of size (n, nrhs).

uplo Must be 'U' or 'L'. The default value is 'U".

trans Mustbe 'N', 'C', or 'T'. The default value is 'N'.

diag Must be 'N' or 'U'. The default value is 'N'.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of
equations (4 + E)x = b where

|E| < c(n)e |4

¢(n) is a modest linear function of n, and € is the machine precision.
If x is the true solution, the computed solution x satisfies this error bound:

[= %ol

Il

< c(n) cond(A, x)&, provided c(n) cond(A, x)e< 1
where cond(4,) = || |4”| 4] 4 [|oo/ [l < 114"l Al = K A).

Note that cond(4,x) can be much smaller than .,(4); the condition number of A” and A might or
might not be equal to K. (4).

3-65

3 Intel® Math Kernel Library Reference Manual

The approximate number of floating-point operations for one right-hand side vector b is n” for real
flavors and 4n? for complex flavors.

To estimate the condition number ¥, (4), call 2trcon.
To estimate the error in the solution, call ?trrfs.

?tptrs

Solves a system of linear equations with a packed
triangular matrix, with multiple right-hand sides.

3-66

Syntax

Fortran 77:

call stptrs(uplo, trans, diag, n, nrhs, ap, b, 1db, info)
call dtptrs(uplo, trans, diag, n, nrhs, ap, b, 1db, info)
call ctptrs(uplo, trans, diag, n, nrhs, ap, b, 1db, info)
call ztptrs(uplo, trans, diag, n, nrhs, ap, b, 1db, info)
Fortran 95:

call tptrs(a, b [,uplo] [,trans] [,diag]l [,info])
Description

This routine solves for X the following systems of linear equations with a packed triangular matrix
A, with multiple right-hand sides stored in B:

AX=B if trans="N",
ATx=B if trans="T",
A"x =B if trans="C" (for complex matrices only).

Input Parameters
uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates whether 4 is upper or lower triangular:

If uplo= U, then 4 is upper triangular.
If uplo='L", then 4 is lower triangular.

LAPACK Routines: Linear Equations 3

trans CHARACTER*1. Mustbe 'N' or 'T' or 'C".

If trans= 'N"', then AX = B is solved for X.

If trans='T', then AX = B is solved for X.

If trans='C', then AMX = B is solved for X.
diag CHARACTER*1. Mustbe 'N' or 'U".

If diag= 'N", then 4 is not a unit triangular matrix.

If diag= 'U", then 4 is unit triangular: diagonal elements are assumed to be 1
and not referenced in the array ap.

n INTEGER. The order of A4; the number of rows in B (n = 0).
nrhs INTEGER. The number of right-hand sides (nrhs > 0).
ap, b REAL for stptrs

DOUBLE PRECISION for dtptrs

COMPLEX for ctptrs

DOUBLE COMPLEX for ztptrs.

Arrays: ap (*), b(1db, *)

The dimension of ap must be at least max(1,n(nt+1)/2).
The array ap contains the matrix 4 in packed storage
(see Matrix Storage Schemes).

The array b contains the matrix B whose columns are the right-hand sides for
the system of equations. The second dimension of b must be at least
max(1,nrhs).

1db INTEGER. The first dimension of b; 1db = max(1, n).

Output Parameters
b Overwritten by the solution matrix X.
info INTEGER. If info=0, the execution is successful.

If info= -1, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine tptrs interface are the following:

3-67

3 Intel® Math Kernel Library Reference Manual

3-68

a Stands for argument ap in Fortran 77 interface. Holds the array A4 of size
(n* (n+1) /2).

b Holds the matrix B of size (n, nrhs).

uplo Must be 'U' or 'L'. The default value is 'U".

trans Must be 'N', 'c', or 'T'. The default value is 'N'.

diag Must be 'N' or 'U'. The default value is 'N'.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of
equations (4 + E)x = b where

|E|< c(n)e Al
¢(n) is a modest linear function of n, and € is the machine precision.

If x is the true solution, the computed solution x satisfies this error bound:

[= %ol

W < c(n) cond(A, x)&, provided c(n) cond(A, x)e< 1

where cond(4, 2) = || A |l o/ [l < 47 [l 4] = ()

Note that cond(4, x) can be much smaller than ..(4); the condition number of 47 and 4" might or
might not be equal to K. (4).

The approximate number of floating-point operations for one right-hand side vector b is n? for real
flavors and 4n? for complex flavors.

To estimate the condition number x,, (4), call ?tpcon.
To estimate the error in the solution, call ?tprfs.

LAPACK Routines: Linear Equations 3

?tbtrs

Solves a system of linear equations with a band
triangular matrix, with multiple right-hand sides.

Syntax

Fortran 77:

call stbtrs(uplo, trans, diag, n, kd, nrhs, ab, ldab, b, 1db, info)
call dtbtrs(uplo, trans, diag, n, kd, nrhs, ab, ldab, b, 1db, info)
call ctbtrs(uplo, trans, diag, n, kd, nrhs, ab, ldab, b, 1db, info)
call ztbtrs(uplo, trans, diag, n, kd, nrhs, ab, ldab, b, 1db, info)
Fortran 95:

call tbtrs(a, b [,uplo]l I[,trans] [,diag]l [,infol)

Description

This routine solves for X the following systems of linear equations with a band triangular matrix 4,
with multiple right-hand sides stored in B:

AX=B if trans="N",
ATx=B if trans="T",
A%x =B if trans="¢C" (for complex matrices only).

Input Parameters
uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates whether 4 is upper or lower triangular:

If uplo='uU", then 4 is upper triangular.
If uplo='L", then 4 is lower triangular.

trans CHARACTER*1. Mustbe 'N' or 'T' or 'C'.
If trans= 'N"', then AX = B is solved for X.
If trans= 'T', then ATX = B is solved for X.
If trans='C', then AMX = B is solved for X.

3-69

3 Intel® Math Kernel Library Reference Manual

diag CHARACTER*1. Mustbe 'N' or 'U".
If diag= 'N", then 4 is not a unit triangular matrix.

If diag= 'u", then 4 is unit triangular: diagonal elements are assumed to be 1
and not referenced in the array ab.

n INTEGER. The order of 4; the number of rows in B (n = 0).

kd INTEGER. The number of super-diagonals or sub-diagonals in the matrix 4
(kd 2 0).

nrhs INTEGER. The number of right-hand sides (nrhs = 0).

ab, b REAL for stbtrs

DOUBLE PRECISION for dtbtrs
COMPLEX for ctbtrs

DOUBLE COMPLEX for ztbtrs.
Arrays: ab(ldab,*),b(1ldb, *).

The array ab contains the matrix 4 in band storage form.

The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations.

The second dimension of ab must be at least max(1, n),
the second dimension of b at least max(1, nrhs).

ldab INTEGER. The first dimension of ab; I1dab > kd+ 1.

1db INTEGER. The first dimension of b; 1db = max(1, n).

Output Parameters
b Overwritten by the solution matrix X.
info INTEGER. If info=0, the execution is successful.

If info = -1, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine tbtrs interface are the following:

a Stands for argument ab in Fortran 77 interface. Holds the array 4 of size
(kd+1,n)

3-70

LAPACK Routines: Linear Equations 3

b Holds the matrix B of size (n, nrhs).

uplo Mustbe 'U' or 'L'. The default value is 'U".
trans Mustbe 'N', 'C', or 'T'. The default value is 'N'.
diag Must be 'N' or 'U'. The default value is 'N'.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of
equations (4 + E)x = b where

|E| < c(n)e A

¢(n) is a modest linear function of n, and € is the machine precision.
If x is the true solution, the computed solution x satisfies this error bound:

|~ %ol

L < c(n) cond(A, x)&, provided c(n) cond(A, x)e< 1

where cond(4, x) = || |4 JA] I [Joo / [¥lloe < 147 [loo [|4]Joo = Kool A).

Note that cond(4, x) can be much smaller than k,.(4); the condition number of 47 and A might or
might not be equal to K.(4).

The approximate number of floating-point operations for one right-hand side vector b is 2n* kd
for real flavors and 8n* kd for complex flavors.

To estimate the condition number x., (4), call 2tbcon.
To estimate the error in the solution, call ?tbrfs.

3-71

3 Intel® Math Kernel Library Reference Manual

Routines for Estimating the Condition Number

This section describes the LAPACK routines for estimating the condition number of a matrix. The
condition number is used for analyzing the errors in the solution of a system of linear equations
(see Error Analysis). Since the condition number may be arbitrarily large when the matrix is
nearly singular, the routines actually compute the reciprocal condition number.

?gecon

Estimates the reciprocal of the condition number of a
general matrix in either the 1-norm or the
infinity-norm.

3-72

Syntax
Fortran 77:

call sgecon(norm, n, a, lda, anorm, rcond, work, iwork, info)

call dgecon(norm, n, a, lda, anorm, rcond, work, iwork, info)

call cgecon(norm, n, a, lda, anorm, rcond, work, rwork, info)

(
(
(
call zgecon(norm, n, a, lda, anorm, rcond, work, rwork, info)

Fortran 95:

call gecon(a, anorm, rcond [,norm] [,infol)

Description

This routine estimates the reciprocal of the condition number of a general matrix A4 in either the
1-norm or infinity-norm:

Ki(d) = A1 l47l1 = KeoldT) = k(4"
Keo () =]lec 147" |oo = 161 (47) = 16, (4.

Before calling this routine:
* compute anorm (either ||4||; = max; %; |a;] or ||4]|., = max; X, |a;])

® call 2getrf to compute the LU factorization of 4.

Input Parameters

norm CHARACTER*1. Mustbe '1' or 'O' or 'I".

LAPACK Routines: Linear Equations 3

If norm= 1" or '0', then the routine estimates «;(4).
If norm= "1, then the routine estimates K., (4).
n INTEGER. The order of the matrix 4 (n = 0).

a, work REAL for sgecon
DOUBLE PRECISION for dgecon
COMPLEX for cgecon
DOUBLE COMPLEX for zgecon.
Arrays: a(1da, *), work (*).

The array a contains the LU-factored matrix A4, as returned by ?getrf.
The second dimension of a must be at least max(1,n).
The array work is a workspace for the routine.

The dimension of work must be at least max(1, 4*n) for real flavors and
max(1, 2*n) for complex flavors.

anorm REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Description).

lda INTEGER. The first dimension of a; 1da = max(1, n).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

rwork REAL for cgecon
DOUBLE PRECISION for zgecon
Workspace array, DIMENSION at least max(1, 2*n).

Output Parameters

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets
rcond = () if the estimate underflows; in this case the matrix is singular (to
working precision). However, anytime rcond is small compared to 1.0,
for the working precision, the matrix may be poorly conditioned or even
singular.

info INTEGER. If info=0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

3-73

3 Intel® Math Kernel Library Reference Manual

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gecon interface are the following:
a Holds the matrix 4 of size (n1, n).

norm Mustbe '1', '0', or 'I'. The default value is '1'.

Application Notes

The computed rcond is never less than p (the reciprocal of the true condition number) and in
practice is nearly always less than 10p. A call to this routine involves solving a number of systems
of linear equations Ax = b or A"x = b; the number is usually 4 or 5 and never more than 11. Each
solution requires approximately 2n® floating-point operations for real flavors and 8n? for complex
flavors.

?gbcon

Estimates the reciprocal of the condition number of a
band matrix in either the 1-norm or the infinity-norm.

call sgbcon(norm, n, k1, ku, ab, ldab, ipiv, anorm, rcond, work, iwork, info
call dgbcon
call cgbcon(norm, n, k1, ku, ab, ldab, ipiv, anorm, rcond, work, rwork, info

call zgbcon(norm, n, k1, ku, ab, ldab, ipiv, anorm, rcond, work, rwork, info

Syntax
Fortran 77:

norm, n, k1, ku, ab, ldab, ipiv, anorm, rcond, work, iwork, info

= DD

(
(
(
(

Fortran 95:

call gbcon(a, ipiv, anorm, rcond [,kl] [,norm] [,infol)

3-74

Description

This routine estimates the reciprocal of the condition number of a general band matrix 4 in either
the 1-norm or infinity-norm:

LAPACK Routines: Linear Equations 3

K1(A) = [[4]]; |47 |1 = Kool AT = Koo A™)
Koo (4) = [|4]]oo |47 loo = 161 (A7) = 1, (4.

Before calling this routine:

* compute anorm (either ||4||; = max; %; |a;] or ||4]|., = max; X, |a;)
® call 2gbtrf to compute the LU factorization of 4.

Input Parameters

norm CHARACTER*1. Mustbe '1' or 'O' or 'I'.

If norm='1" or 'O, then the routine estimates «;(4).
If norm= "1, then the routine estimates K., (4).

n INTEGER. The order of the matrix 4 (n = 0).

k1 INTEGER. The number of sub-diagonals within the band of 4 (k1 > 0).
ku INTEGER. The number of super-diagonals within the band of 4 (ku = 0).
ldab INTEGER. The first dimension of the array ab.

(1dab >2k1 + ku +1).

ipiv INTEGER. Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?gbtrf.

ab, work REAL for sgbcon
DOUBLE PRECISION for dgbcon
COMPLEX for cgbcon
DOUBLE COMPLEX for zgbcon.

Arrays: ab(1dab, *), work (*).

The array ab contains the factored band matrix A4,
as returned by ?gbtrf.

The second dimension of ab must be at least max(1,n).
The array work is a workspace for the routine.

The dimension of work must be at least max(1, 3*n) for real flavors and
max(1, 2*n) for complex flavors.

anorm REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Description).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

3-75

3 Intel® Math Kernel Library Reference Manual

3-76

rwork REAL for cgbcon
DOUBLE PRECISION for zgbcon
Workspace array, DIMENSION at least max(1, 2*n).

Output Parameters

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets
rcond = 0 if the estimate underflows; in this case the matrix is singular (to
working precision). However, anytime rcond is small compared to 1.0,
for the working precision, the matrix may be poorly conditioned or even
singular.

info INTEGER. If info=0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gbcon interface are the following:

a Stands for argument ab in Fortran 77 interface. Holds the array A4 of size
(2*k1+ku+1, n).

ipiv Holds the vector of length (n).

norm Mustbe '1', 'O, or '1'. The default valueis '1'.
k1 If omitted, assumed k1 = ku.

ku Restored as ku = 1da-2*kI-1.

Application Notes

The computed rcond is never less than p (the reciprocal of the true condition number) and in
practice is nearly always less than 10p. A call to this routine involves solving a number of systems
of linear equations Ax = b or A"x = b; the number is usually 4 or 5 and never more than 11. Each
solution requires approximately 2n(ku + 2k1) floating-point operations for real flavors and 8n(ku
+ 2k1) for complex flavors.

LAPACK Routines: Linear Equations 3

?gtcon

Estimates the reciprocal of the condition number of a
tridiagonal matrix using the factorization computed by
?gttrf.

Syntax

Fortran 77:

call sgtcon(norm, n, di, , du, du2, ipiv, anorm, rcond, work, iwork, info)

~

call dgtcon(norm, n, di, du, du2, ipiv, anorm, rcond, work, iwork, info)

N

call cgtcon(norm, n, di, du, du2, ipiv, anorm, rcond, work, info)

Q Q Q Q

call zgtcon(norm, n, di, , du, du2, ipiv, anorm, rcond, work, info)

Fortran 95:

call gtcon(dl, d, du, du2, ipiv, anorm, rcond [,norm] [,infol)

Description
This routine estimates the reciprocal of the condition number of a real or complex tridiagonal
matrix 4 in either the 1-norm or infinity-norm:

1) = I 41

Koo (A) = [A]leo 47"l
An estimate is obtained for ||47!||, and the reciprocal of the condition number is computed as
rcond=1/(||4|| |I47|)-
Before calling this routine:

* compute anorm (either [|4|]; = max; X;|a;| or ||4]|., = max; X, |a;])
® call 2gttrf to compute the LU factorization of 4.

Input Parameters

norm CHARACTER*1. Mustbe '1' or 'O' or 'I".
If norm='1" or 'O, then the routine estimates K;(4).
If norm= "1, then the routine estimates K, (4).

n INTEGER. The order of the matrix 4 (n = 0).

3-77

3 Intel® Math Kernel Library Reference Manual

3-78

dl,d,du,duZz

ipiv

anorm

work

iwork

REAL for sgtcon

DOUBLE PRECISION for dgtcon

COMPLEX for cgtcon

DOUBLE COMPLEX for zgtcon.

Arrays: dl(n-1),d(n),du(n-1),du2(n-2).

The array d1 contains the (z - 1) multipliers that define the matrix L from the
LU factorization of A as computed by ?gttrf.

The array d contains the n diagonal elements of the upper triangular matrix U
from the LU factorization of 4.

The array du contains the (n - 1) elements of the first super-diagonal of U.
The array du2 contains the (n - 2) elements of the second super-diagonal of
U.

INTEGER.
Array, DIMENSION (n).
The array of pivot indices, as returned by ?gttrf.

REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Description).

REAL for sgtcon

DOUBLE PRECISION for dgtcon
COMPLEX for cgtcon

DOUBLE COMPLEX for zgtcon.
Workspace array, DIMENSION (2*n).

INTEGER.
Workspace array, DIMENSION (n).
Used for real flavors only.

Output Parameters

rcond

info

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

An estimate of the reciprocal of the condition number. The routine sets
rcond = (if the estimate underflows; in this case the matrix is singular (to
working precision). However, anytime rcond is small compared to 1.0,
for the working precision, the matrix may be poorly conditioned or even
singular.

INTEGER.

If info =0, the execution is successful.

If info= -1, the ith parameter had an illegal value.

LAPACK Routines: Linear Equations 3

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gtcon interface are the following:

d1 Holds the vector of length (n-1).

d Holds the vector of length (n).

du Holds the vector of length (n-1).

du2 Holds the vector of length (n-2).

ipiv Holds the vector of length (n).

norm Mustbe '1', 'O, or '1'. The default valueis '1'.

Application Notes

The computed rcond is never less than p (the reciprocal of the true condition number) and in
practice is nearly always less than 10p. A call

to this routine involves solving a number of systems of linear equations

Ax = b; the number is usually 4 or 5 and never more than 11. Each solution requires approximately
2n? floating-point operations for real flavors and 8n? for complex flavors.

?pocon

Estimates the reciprocal of the condition number of a
symmetric (Hermitian) positive-definite matrix.

Syntax
Fortran 77:

call spocon(uplo, n, a, lda, anorm, rcond, work, iwork, info)
call dpocon(uplo, n, a, lda, anorm, rcond, work, iwork, info)
call cpocon(uplo, n, a, lda, anorm, rcond, work, rwork, info)

call zpocon(uplo, n, a, lda, anorm, rcond, work, rwork, info)

3-79

3 Intel® Math Kernel Library Reference Manual

Fortran 95:

call pocon(a, anorm, rcond [,uplo] [,info])

Description

This routine estimates the reciprocal of the condition number of a symmetric (Hermitian)
positive-definite matrix 4:

K1 (A4) =||4||; ||47Y||; (since 4 is symmetric or Hermitian, K,.(4) = i;(4)).
Before calling this routine:
* compute anorm (either ||4||; = max; 2; |a;] or ||4]|., = max; 2, |a;])
* call ?potrf to compute the Cholesky factorization of A.

Input Parameters

uplo CHARACTER*1. Mustbe 'U" or 'L'.
Indicates how the input matrix 4 has been factored:

If uplo='u", the array a stores the upper triangular factor U of the
factorization 4 = U"U.

If uplo= 'L, the array a stores the lower triangular factor L of the
factorization 4 = LL".

n INTEGER. The order of the matrix 4 (n = 0).

a, work REAL for spocon
DOUBLE PRECISION for dpocon
COMPLEX for cpocon
DOUBLE COMPLEX for zpocon.
Arrays: a(1da, *), work (*).

The array a contains the factored matrix A4, as returned by ?potrf.
The second dimension of a must be at least max(1,n).
The array work is a workspace for the routine.

The dimension of work must be at least max(1, 3*n) for real flavors and
max(1, 2*n) for complex flavors.

lda INTEGER. The first dimension of a; 1da = max(1, n).

anorm REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Description).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

3-80

LAPACK Routines: Linear Equations 3

rwork REAL for cpocon
DOUBLE PRECISION for zpocon
Workspace array, DIMENSION at least max(1, n).

Output Parameters

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets
rcond = 0 if the estimate underflows; in this case the matrix is singular (to
working precision). However, anytime rcond is small compared to 1.0,
for the working precision, the matrix may be poorly conditioned or even
singular.

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine pocon interface are the following:
a Holds the matrix 4 of size (n1, n).

uplo Must be 'U' or 'L'. The default value is 'U".

Application Notes

The computed rcond is never less than p (the reciprocal of the true condition number) and in
practice is nearly always less than 10p. A call

to this routine involves solving a number of systems of linear equations

Ax = b; the number is usually 4 or 5 and never more than 11. Each solution requires approximately
2n? floating-point operations for real flavors and 8n? for complex flavors.

3-81

3 Intel® Math Kernel Library Reference Manual

?ppcon

Estimates the reciprocal of the condition number of a
packed symmetric (Hermitian) positive-definite matrix.

Syntax
Fortran 77:

call sppcon(uplo, n, ap, anorm, rcond, work, iwork, info)
call dppcon(uplo, n, ap, anorm, rcond, work, iwork, info)
call cppcon(uplo, n, ap, anorm, rcond, work, rwork, info)
call zppcon(uplo, n, ap, anorm, rcond, work, rwork, info)

Fortran 95:

call ppcon(a, anorm, rcond [,uplo]l [,infol)

Description
This routine estimates the reciprocal of the condition number of a packed symmetric (Hermitian)
positive-definite matrix 4:

Ki1(A4) =||4||; ||47Y||; (since 4 is symmetric or Hermitian, K..(4) = «;(4)).
Before calling this routine:
* compute anorm (either ||4||; = max; 2; |a;] or ||4]|., = max; 2, |a;])
¢ call ?pptrf to compute the Cholesky factorization of 4.

Input Parameters

uplo CHARACTER*1. Mustbe 'U" or 'L".
Indicates how the input matrix 4 has been factored:

If uplo='u", the array ap stores the upper triangular factor U of the
factorization 4 = U"U.

If uplo= 'L, the array ap stores the lower triangular factor L of the
factorization 4 = LL”.

n INTEGER. The order of the matrix 4 (n = 0).

3-82

LAPACK Routines: Linear Equations 3

ap, work REAL for sppcon
DOUBLE PRECISION for dppcon
COMPLEX for cppcon
DOUBLE COMPLEX for zppcon.
Arrays: ap (*), work (*).

The array ap contains the packed factored matrix 4, as returned by ?pptrf.
The dimension of ap must be at least max(1,n(nt+1)/2).
The array work is a workspace for the routine.

The dimension of work must be at least max(1, 3*n) for real flavors and
max(1, 2*n) for complex flavors.

anorm REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Description).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

rwork REAL for cppcon
DOUBLE PRECISION for zppcon
Workspace array, DIMENSION at least max(1, n).

Output Parameters

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets
rcond = () if the estimate underflows; in this case the matrix is singular (to
working precision). However, anytime rcond is small compared to 1.0,
for the working precision, the matrix may be poorly conditioned or even
singular.

info INTEGER.
If info =0, the execution is successful.
If info = -1, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine ppcon interface are the following:

3-83

3 Intel® Math Kernel Library Reference Manual

a Stands for argument ap in Fortran 77 interface. Holds the array A4 of size
(n* (n+1) /2).
uplo Must be 'U' or 'L'. The default value is 'U".

Application Notes

The computed rcond is never less than p (the reciprocal of the true condition number) and in
practice is nearly always less than 10p. A call

to this routine involves solving a number of systems of linear equations

Ax = b; the number is usually 4 or 5 and never more than 11. Each solution requires approximately
2n? floating-point operations for real flavors and 8n? for complex flavors.

?pbcon

Estimates the reciprocal of the condition number of a
symmetric (Hermitian) positive-definite band matrix.

3-84

Syntax
Fortran 77:

call spbcon(uplo, n, kd, ab, ldab, anorm, rcond, work, iwork, info)
call dpbcon(uplo, n, kd, ab, ldab, anorm, rcond, work, iwork, info)
call cpbcon(uplo, n, kd, ab, ldab, anorm, rcond, work, rwork, info)
call zpbcon(uplo, n, kd, ab, ldab, anorm, rcond, work, rwork, info)

Fortran 95:

call pbcon(a, anorm, rcond [,uplo] [,info])

Description

This routine estimates the reciprocal of the condition number of a symmetric (Hermitian)
positive-definite band matrix 4:
Ki1(A4) =||4||; ||47"||; (since 4 is symmetric or Hermitian, K., (4) = k,(4)).
Before calling this routine:
* compute anorm (either ||4||; = max; 2; |a;] or ||4]|., = max; 2 |a;])
* call ?pbtrf to compute the Cholesky factorization of A.

LAPACK Routines: Linear Equations 3

Input Parameters

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates how the input matrix 4 has been factored:
If uplo='u", the array ab stores the upper triangular factor U of the
Cholesky factorization 4 = UU.
If uplo= 'L, the array ab stores the lower triangular factor L of the
factorization 4 = LL".

n INTEGER. The order of the matrix 4 (n = 0).

kd INTEGER. The number of super-diagonals or sub-diagonals in the matrix 4
(kd = 0).

ldab INTEGER. The first dimension of the array ab.

(1dab > kd +1).

ab, work REAL for spbcon
DOUBLE PRECISION for dpbcon
COMPLEX for cpbcon
DOUBLE COMPLEX for zpbcon.

Arrays: ab(1ldab, *), work (*).

The array ab contains the factored matrix 4 in band form, as returned by
?pbtrf.

The second dimension of ab must be at least max(1, n),

The array work is a workspace for the routine.

The dimension of work must be at least max(1, 3*n) for real flavors and
max(1, 2*n) for complex flavors.

anorm REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Description).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

rwork REAL for cpbcon
DOUBLE PRECISION for zpbcon.
Workspace array, DIMENSION at least max(1, n).

Output Parameters

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets

3-85

3 Intel® Math Kernel Library Reference Manual

rcond = 0 if the estimate underflows; in this case the matrix is singular (to
working precision). However, anytime rcond is small compared to 1.0,
for the working precision, the matrix may be poorly conditioned or even
singular.

info INTEGER. If info=0, the execution is successful.
If info = -1, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine pbcon interface are the following:

a Stands for argument ab in Fortran 77 interface. Holds the array 4 of size
(kd+1, n).
uplo Must be 'U' or 'L'. The default value is 'U".

Application Notes

The computed rcond is never less than p (the reciprocal of the true condition number) and in
practice is nearly always less than 10p. A call

to this routine involves solving a number of systems of linear equations

Ax = b; the number is usually 4 or 5 and never more than 11. Each solution requires approximately
4n(kd + 1) floating-point operations for real flavors and 16n(kd + 1) for complex flavors.

?ptcon

Estimates the reciprocal of the condition number of a
symmetric (Hermitian) positive-definite tridiagonal
matrix.

Syntax
Fortran 77:

call sptcon(n, d, e, anorm, rcond, work, info)
call dptcon(n, d, e, anorm, rcond, work, info)

call cptcon(n, d, e, anorm, rcond, work, info)

3-86

LAPACK Routines: Linear Equations 3

call zptcon(n, d, e, anorm, rcond, work, info)

Fortran 95:

call ptcon(d, e, anorm, rcond [,infol)

Description

This routine computes the reciprocal of the condition number (in the 1-norm) of a real symmetric
or complex Hermitian positive-definite tridiagonal matrix using the factorization 4 = LDLY or A4
= UMDU computed by ?pttrf :

Ki(A) =||4||; ||47Y||; (since 4 is symmetric or Hermitian, K., (4) = &;(4)).

The norm ||47Y|| is computed by a direct method, and the reciprocal of the condition number is
computed as rcond=1/(|l4]| ||[47|).

Before calling this routine:
* compute anorm as ||[4]|; = max; X; |a;;
® call ?pttrf to compute the factorization of 4.

Input Parameters

n INTEGER. The order of the matrix 4 (n = 0).
d, work REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays, dimension (n).
The array d contains the n diagonal elements of the diagonal matrix D from the
factorization of 4, as computed by ?pttrf ;
work is a workspace array.
e REAL for sptcon
DOUBLE PRECISION for dptcon
COMPLEX for cptcon
DOUBLE COMPLEX for zptcon.
Array, DIMENSION (n-1).
Contains off-diagonal elements of the unit bidiagonal factor U or L from the
factorization computed by ?pttrf .

anorm REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The 1- norm of the original matrix A (see Description).

3-87

3 Intel® Math Kernel Library Reference Manual

3-88

Output Parameters

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets
rcond = 0 if the estimate underflows; in this case the matrix is singular (to
working precision). However, anytime rcond is small compared to 1.0,
for the working precision, the matrix may be poorly conditioned or even
singular.

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gtcon interface are the following:
d Holds the vector of length (n).
e Holds the vector of length (n-1).

Application Notes

The computed rcond is never less than p (the reciprocal of the true condition number) and in
practice is nearly always less than 10p. A call

to this routine involves solving a number of systems of linear equations

Ax = b; the number is usually 4 or 5 and never more than 11. Each solution requires approximately
4n(kd + 1) floating-point operations for real flavors and 16n(kd + 1) for complex flavors.

LAPACK Routines: Linear Equations 3

?sycon

Estimates the reciprocal of the condition number of a
symmetric matrix.

Syntax
Fortran 77:

call ssycon(uplo, n, a, lda, ipiv, anorm, rcond, work, iwork, info)
call dsycon(uplo, n, a, lda, ipiv, anorm, rcond, work, iwork, info)
call csycon(uplo, n, a, lda, ipiv, anorm, rcond, work, info)
call zsycon(uplo, n, a, lda, ipiv, anorm, rcond, work, info)

Fortran 95:

call sycon(a, ipiv, anorm, rcond [,uplo] [,infol)

Description

This routine estimates the reciprocal of the condition number of a symmetric matrix A:
Ki(A4) =||4||; |47"||; (since 4 is symmetric, K.,(4) = k;(4)).

Before calling this routine:
* compute anorm (either ||4||; = max; %; |a;] or ||4]|., = max; X, |a;])
® call 2sytrf to compute the factorization of 4.

Input Parameters

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates how the input matrix 4 has been factored:
If uplo='u", the array a stores the upper triangular factor U of the
factorization 4 = PUDUTPT.
If uplo='L", the array a stores the lower triangular factor L of the
factorization 4 = PLDLTPT.

n INTEGER. The order of matrix 4 (nn=0).

3-89

3 Intel® Math Kernel Library Reference Manual

3-90

a, work

1da

ipiv

anorm

iwork

REAL for ssycon

DOUBLE PRECISION for dsycon
COMPLEX for csycon

DOUBLE COMPLEX for zsycon.
Arrays: a(1da, *), work (*).

The array a contains the factored matrix A4, as returned by ?sytrf.
The second dimension of a must be at least max(1,n).

The array work is a workspace for the routine.
The dimension of work must be at least max(1, 2*n).

INTEGER. The first dimension of a; 1da > max(1, n).

INTEGER. Array, DIMENSION at least max(1,n).
The array ipiv, as returned by ?sytrf.

REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Description).

INTEGER.
Workspace array, DIMENSION at least max(1, n).

Output Parameters

rcond

info

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

An estimate of the reciprocal of the condition number. The routine sets
rcond = 0 if the estimate underflows; in this case the matrix is singular (to
working precision). However, anytime rcond is small compared to 1.0,
for the working precision, the matrix may be poorly conditioned or even
singular.

INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine sycon interface are the following:

LAPACK Routines: Linear Equations 3

a Holds the matrix 4 of size (n1, n).
ipiv Holds the vector of length (n).
uplo Mustbe 'U' or 'L'. The default value is 'U".

Application Notes

The computed rcond is never less than p (the reciprocal of the true condition number) and in
practice is nearly always less than 10p.

A call to this routine involves solving a number of systems of linear equations Ax = b; the number
is usually 4 or 5 and never more than 11. Each solution requires approximately 2n? floating-point
operations for real flavors and 8n? for complex flavors.

?hecon

Estimates the reciprocal of the condition number of a
Hermitian matrix.

Syntax
Fortran 77:

call checon(uplo, n, a, lda, ipiv, anorm, rcond, work, info)

call zhecon(uplo, n, a, lda, ipiv, anorm, rcond, work, info)

Fortran 95:

call hecon(a, ipiv, anorm, rcond [,uplo]l [,info])

Description

This routine estimates the reciprocal of the condition number of a Hermitian matrix 4:
K1 (A4) = ||4||; |47Y||; (since 4 is Hermitian, k,.(4) = ;(4)).

Before calling this routine:
* compute anorm (either ||4||, = max; 2; |a;] or ||4]|., = max; 2, |a;])
¢ call ?hetrf to compute the factorization of 4.

3-91

3 Intel® Math Kernel Library Reference Manual

Input Parameters

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates how the input matrix 4 has been factored:

If uplo='u", the array a stores the upper triangular factor U of the
factorization 4 = PUDUPT.

If uplo= 'L, the array a stores the lower triangular factor L of the
factorization 4 = PLDLYPT.

n INTEGER. The order of matrix A (n=0).

a, work COMPLEX for checon
DOUBLE COMPLEX for zhecon.
Arrays: a(1da, *), work (*).

The array a contains the factored matrix A4, as returned by ?hetrf.
The second dimension of a must be at least max(1,n).

The array work is a workspace for the routine.
The dimension of work must be at least max(1, 2*n).

lda INTEGER. The first dimension of a; 1da = max(1, n).

ipiv INTEGER. Array, DIMENSION at least max(1,n).
The array ipiv, as returned by ?hetrf.

anorm REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Discussion).

Output Parameters

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets
rcond = (if the estimate underflows; in this case the matrix is singular (to
working precision). However, anytime rcond is small compared to 1.0,
for the working precision, the matrix may be poorly conditioned or even
singular.

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

3-92

LAPACK Routines: Linear Equations 3

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine hecon interface are the following:

a Holds the matrix 4 of size (n1, n).
ipiv Holds the vector of length (n).
uplo Must be 'U' or 'L'. The default value is 'U".

Application Notes

The computed rcond is never less than p (the reciprocal of the true condition number) and in
practice is nearly always less than 10p. A call

to this routine involves solving a number of systems of linear equations

Ax = b; the number is usually 5 and never more than 11. Each solution requires approximately 8n?
floating-point operations.

?spcon

Estimates the reciprocal of the condition number of a
packed symmetric matrix.

Syntax
Fortran 77:

call sspcon(uplo, n, ap, ipiv, anorm, rcond, work, iwork, info)

call dspcon(uplo, n, ap, ipiv, anorm, rcond, work, iwork, info)

call cspcon(uplo, n, ap, ipiv, anorm, rcond, work, info)

(
(
(
call zspcon(uplo, n, ap, ipiv, anorm, rcond, work, info)

Fortran 95:

call spcon(a, ipiv, anorm, rcond [,uplo] [,info])

Description

This routine estimates the reciprocal of the condition number of a packed symmetric matrix 4:

3-93

3 Intel® Math Kernel Library Reference Manual

Ki(A4) =||4||; ||47"]|; (since 4 is symmetric, K.,(4) = k;(4)).

Before calling this routine:
* compute anorm (either ||4||; = max; X; |a;] or ||4]|., = max; X, |a;])
® call ?sptrf to compute the factorization of 4.

Input Parameters

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates how the input matrix 4 has been factored:
If uplo='u", the array ap stores the packed upper triangular factor U of the
factorization 4 = PUDUTPT.
If uplo='L", the array ap stores the packed lower triangular factor L of the
factorization 4 = PLDLTPT.

n INTEGER. The order of matrix 4 (nn=0).

ap, work REAL for sspcon
DOUBLE PRECISION for dspcon
COMPLEX for cspcon
DOUBLE COMPLEX for zspcon.
Arrays: ap (*), work (*).

The array ap contains the packed factored matrix 4, as returned by ?sptrf.
The dimension of ap must be at least max(1,n(nt+1)/2).

The array work is a workspace for the routine.
The dimension of work must be at least max(1, 2*n).

ipiv INTEGER. Array, DIMENSION at least max(1,n).
The array ipiv, as returned by ?sptrt.

anorm REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Discussion).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).
Output Parameters

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets
rcond = (if the estimate underflows; in this case the matrix is singular (to

3-94

LAPACK Routines: Linear Equations 3

working precision). However, anytime rcond is small compared to 1.0,
for the working precision, the matrix may be poorly conditioned or even
singular.

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine spcon interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array A4 of size
(n*(n+1) /2).

ipiv Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U".

Application Notes

The computed rcond is never less than p (the reciprocal of the true condition number) and in
practice is nearly always less than 10p. A call

to this routine involves solving a number of systems of linear equations

Ax = b; the number is usually 4 or 5 and never more than 11. Each solution requires approximately
2n? floating-point operations for real flavors and 8z for complex flavors.

?hpcon

Estimates the reciprocal of the condition number of a
packed Hermitian matrix.

Syntax
Fortran 77:

call chpcon(uplo, n, ap, ipiv, anorm, rcond, work, info)

call zhpcon(uplo, n, ap, ipiv, anorm, rcond, work, info)

3-95

3 Intel® Math Kernel Library Reference Manual

Fortran 95:

call hpcon(a, ipiv, anorm, rcond [,uplo] [,info])

Description

This routine estimates the reciprocal of the condition number of a Hermitian matrix A:
Ki1(A4) =||4||; ||47Y||; (since 4 is Hermitian, k,.(4) = i;(4)).

Before calling this routine:

* compute anorm (either ||4||; = max; X; |a;] or ||4]|., = max; X, |a;])

¢ call ?hptrf to compute the factorization of 4.

Input Parameters

uplo CHARACTER+*1. Mustbe 'U' or 'L".
Indicates how the input matrix 4 has been factored:

If uplo= 'u", the array ap stores the packed upper triangular factor U of the
factorization 4 = PUDU'PT.

If uplo='L", the array ap stores the packed lower triangular factor L of the
factorization 4 = PLDLTPT.

n INTEGER. The order of matrix 4 (n = 0).

ap, work COMPLEX for chpcon
DOUBLE COMPLEX for zhpcon.
Arrays: ap (*), work (*).

The array ap contains the packed factored matrix 4, as returned by ?hptrf.
The dimension of ap must be at least max(1,n(nt+1)/2).

The array work is a workspace for the routine.
The dimension of work must be at least max(1, 2*n).

ipiv INTEGER. Array, DIMENSION at least max(1,n).
The array ipiv, as returned by ?hptrf.

anorm REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Discussion).

3-96

LAPACK Routines: Linear Equations 3

Output Parameters

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets
rcond = () if the estimate underflows; in this case the matrix is singular (to
working precision). However, anytime rcond is small compared to 1.0,
for the working precision, the matrix may be poorly conditioned or even
singular.

info INTEGER.
If info =0, the execution is successful.
If info = -1, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gbcon interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array 4 of size
(n*(n+1) /2).
ipiv Holds the vector of length (n).

Application Notes

The computed rcond is never less than p (the reciprocal of the true condition number) and in
practice is nearly always less than 10p. A call

to this routine involves solving a number of systems of linear equations

Ax = b; the number is usually 5 and never more than 11. Each solution requires approximately 8n”
floating-point operations.

3-97

3 Intel® Math Kernel Library Reference Manual

?trcon

Estimates the reciprocal of the condition number of a
triangular matrix.

Syntax

Fortran 77:

call strcon(norm, uplo, diag, N, a, lda, rcond, work, iwork, info)
call dtrcon(norm, uplo, diag, N, a, lda, rcond, work, iwork, info)
call ctrcon(norm, uplo, diag, N, a, lda, rcond, work, rwork, info)
call ztrcon(norm, uplo, diag, N, a, lda, rcond, work, rwork, info)
Fortran 95:

call trcon(a, rcond [,uplo] [,diag]l [,norm] [,info]l)

Description

This routine estimates the reciprocal of the condition number of a triangular matrix 4 in either the
1-norm or infinity-norm:

K1 (A) = A1 A7l = Ko AT) = K47
Koo () = [|4]|oo 47 loo = 11 (A7) = 1, (A7) .

Input Parameters

norm CHARACTER*1. Mustbe '1' or 'O' or 'I"'.
If norm='1" or '0', then the routine estimates x;(4).
If norm= "1, then the routine estimates K, (A4).

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates whether 4 is upper or lower triangular:

If uplo='u", the array a stores the upper triangle of 4, other array elements
are not referenced.

If uplo= 'L, the array a stores the lower triangle of 4, other array elements
are not referenced.

diag CHARACTER+*1. Mustbe 'N' or 'U'.

If diag= 'N"', then 4 is not a unit triangular matrix.

3-98

LAPACK Routines: Linear Equations 3

a, work

lda

iwork

rwork

If diag= 'U"', then 4 is unit triangular: diagonal elements are assumed to be 1
and not referenced in the array a.

INTEGER. The order of the matrix 4 (n = 0).

REAL for strcon

DOUBLE PRECISION for dtrcon
COMPLEX for ctrcon

DOUBLE COMPLEX for ztrcon.
Arrays: a(1da, *), work (*).

The array a contains the matrix 4.
The second dimension of a must be at least max(1,n).
The array work is a workspace for the routine.

The dimension of work must be at least max(1, 3*n) for real flavors and
max(1, 2*n) for complex flavors.

INTEGER. The first dimension of a; 1da = max(1, n).

INTEGER.
Workspace array, DIMENSION at least max(1, n).

REAL for ctrcon
DOUBLE PRECISION for ztrcon.
Workspace array, DIMENSION at least max(1, n).

Output Parameters

rcond

info

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

An estimate of the reciprocal of the condition number. The routine sets
rcond = () if the estimate underflows; in this case the matrix is singular (to
working precision). However, anytime rcond is small compared to 1.0,
for the working precision, the matrix may be poorly conditioned or even
singular.

INTEGER.

If info =0, the execution is successful.

If info = -1, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

3-99

3 Intel® Math Kernel Library Reference Manual

Specific details for the routine trcon interface are the following:

a Holds the matrix 4 of size (n1, n).

norm Mustbe '1', 'O, or '1'. The default valueis '1'.
uplo Must be 'U' or 'L'. The default value is 'U".
diag Must be 'N' or 'U'. The default value is 'N'.

Application Notes

The computed rcond is never less than p (the reciprocal of the true condition number) and in

practice is nearly always less than 10p. A call

to this routine involves solving a number of systems of linear equations
Ax = b; the number is usually 4 or 5 and never more than 11. Each solution requires approximately
n? floating-point operations for real flavors and 4n* operations for complex flavors.

?tpcon

Estimates the reciprocal of the condition number of a
packed triangular matrix.

3-100

Syntax

Fortran 77:

call stpcon(norm, uplo, diag, n, ap,
call dtpcon(norm, uplo, diag, n, ap,
call ctpcon(norm, uplo, diag, n, ap,
call ztpcon(norm, uplo, diag, n, ap,

Fortran 95:
call tpcon(a, rcond [,uplo]l [,diag]

Description

rcond,
rcond,
rcond,

rcond,

[, norm]

work, iwork, info)
work, iwork, info)
work, rwork, info)

)

work, rwork, info

[,info])

This routine estimates the reciprocal of the condition number of a packed triangular matrix 4 in

either the 1-norm or infinity-norm:

Ki(d) = A1 l47l1 = KeoldT) = ka4
Koo (A) = [|]|oo [l |oo = 161 (A7) = 11 (47) .

LAPACK Routines: Linear Equations 3

Input Parameters

norm CHARACTER*1. Mustbe '1' or 'O' or 'I".
If norm='1" or '0', then the routine estimates «;(4).
If norm= "1, then the routine estimates K, (4).

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates whether 4 is upper or lower triangular:

If uplo='uU", the array ap stores the upper triangle of 4 in packed form.

If uplo='L", the array ap stores the lower triangle of 4 in packed form.
diag CHARACTER*1. Mustbe 'N' or 'U".

If diag= 'N", then 4 is not a unit triangular matrix.

If diag= 'U", then 4 is unit triangular: diagonal elements are assumed to be 1
and not referenced in the array ap.

n INTEGER. The order of the matrix 4 (n = 0).

ap, work REAL for stpcon
DOUBLE PRECISION for dtpcon
COMPLEX for ctpcon
DOUBLE COMPLEX for ztpcon.
Arrays: ap (*), work (*).

The array ap contains the packed matrix A.
The dimension of ap must be at least max(1,n(n+1)/2).
The array work is a workspace for the routine.

The dimension of work must be at least max(1, 3*n) for real flavors and
max(1, 2*n) for complex flavors.

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

rwork REAL for ctpcon
DOUBLE PRECISION for ztpcon
Workspace array, DIMENSION at least max(1, n).

Output Parameters

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets
rcond = () if the estimate underflows; in this case the matrix is singular (to

3-101

3 Intel® Math Kernel Library Reference Manual

working precision). However, anytime rcond is small compared to 1.0,
for the working precision, the matrix may be poorly conditioned or even
singular.

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine tpcon interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array A4 of size
(n*(n+1) /2).

norm Mustbe '1', 'O, or 'I'. The default valueis '1'.

uplo Must be 'U' or 'L'. The default value is 'U".

diag Must be 'N' or 'U'. The default value is 'N'.

Application Notes

The computed rcond is never less than p (the reciprocal of the true condition number) and in
practice is nearly always less than 10p. A call

to this routine involves solving a number of systems of linear equations

Ax = b; the number is usually 4 or 5 and never more than 11. Each solution requires approximately
n? floating-point operations for real flavors and 4n* operations for complex flavors.

?tbcon

Estimates the reciprocal of the condition number of a
triangular band matrix.

Syntax

Fortran 77:

call stbcon(norm, uplo, diag, n, kd, ab, ldab, rcond, work, iwork, info)

3-102

LAPACK Routines: Linear Equations 3

call dtbcon(norm, uplo, diag, n, kd, ab, ldab, rcond, work, iwork, info)
call ctbcon(norm, uplo, diag, n, kd, ab, ldab, rcond, work, rwork, info)

call ztbcon(norm, uplo, diag, n, kd, ab, ldab, rcond, work, rwork, info)

Fortran 95:

call tbcon(a, rcond [,uplo] [,diag]l [,norm] [,info]l)

Description

This routine estimates the reciprocal of the condition number of a triangular band matrix 4 in
either the 1-norm or infinity-norm:

K1 (A) = [|4]|y 47| = Keo(AT) = Koo (A7)

Koo () =]les (147" |oo = 11 (47) = 16, (4.

Input Parameters

norm CHARACTER*1. Mustbe '1' or 'O' or 'I'.
If norm='1" or 'O, then the routine estimates «;(4).
If norm= "1, then the routine estimates K., (4).

uplo CHARACTER+*1. Mustbe 'U' or 'L".
Indicates whether 4 is upper or lower triangular:
If uplo= 'u", the array ap stores the upper triangle of 4 in packed form.
If uplo= 'L, the array ap stores the lower triangle of 4 in packed form.

diag CHARACTER*1. Mustbe 'N' or 'U".
If diag= 'N", then 4 is not a unit triangular matrix.

If diag= 'U"', then 4 is unit triangular: diagonal elements are assumed to be 1
and not referenced in the array ab.

n INTEGER. The order of the matrix 4 (n = 0).

kd INTEGER. The number of super-diagonals or sub-diagonals in the matrix A4
(kd = 0).

ab, work REAL for stbcon

DOUBLE PRECISION for dtbcon
COMPLEX for ctbcon

DOUBLE COMPLEX for ztbcon.
Arrays: ab(1dab, *), work (*).

3-103

3 Intel® Math Kernel Library Reference Manual

ldab

iwork

rwork

The array ab contains the band matrix A4.

The second dimension of ab must be at least max(1,n)).

The array work is a workspace for the routine.

The dimension of work must be at least max(1, 3*n) for real flavors and
max(1, 2*n) for complex flavors.

INTEGER. The first dimension of the array ab.
(1dab > kd +1).

INTEGER.
Workspace array, DIMENSION at least max(1, n).

REAL for ctbcon
DOUBLE PRECISION for ztbcon.
Workspace array, DIMENSION at least max(1, n).

Output Parameters

rcond

info

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

An estimate of the reciprocal of the condition number. The routine sets
rcond = 0 if the estimate underflows; in this case the matrix is singular (to
working precision). However, anytime rcond is small compared to 1.0,
for the working precision, the matrix may be poorly conditioned or even
singular.

INTEGER. If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine tbcon interface are the following:

a

norm
uplo

diag

3-104

Stands for argument ab in Fortran 77 interface. Holds the array A4 of size
(kd+1,n).
Mustbe '1', 'O, or 'I'. The default valueis '1'.

Must be 'U' or 'L'. The default value is 'U".

Must be 'N' or 'U'. The default value is 'N'.

LAPACK Routines: Linear Equations 3

Application Notes

The computed rcond is never less than p (the reciprocal of the true condition number) and in
practice is nearly always less than 10p. A call

to this routine involves solving a number of systems of linear equations

Ax = b; the number is usually 4 or 5 and never more than 11. Each solution requires approximately
2n(kd + 1) floating-point operations for real flavors and 8n(kd + 1) operations for complex
flavors.

3-105

3 Intel® Math Kernel Library Reference Manual

Refining the Solution and Estimating Its Error

This section describes the LAPACK routines for refining the computed solution of a system of
linear equations and estimating the solution error. You can call these routines after factorizing the
matrix of the system of equations and computing the solution (see Routines for Matrix

Factorization and Routines for Solving Systems of Linear Equations).

?gerfs

Refines the solution of a system of linear equations with
a general matrix and estimates its error.

Syntax

Fortran 77:

call sgerfs(trans, n, nrhs, a, lda, af, ldaf,
berr, work, iwork, info)

call dgerfs(trans, n, nrhs, a, lda, af, ldaf,
berr, work, iwork, info)

call cgerfs(trans, n, nrhs, a, lda, af, ldaf,
berr, work, rwork, info)

call zgerfs(trans, n, nrhs, a, lda, af, ldaf,
berr, work, rwork, info)

Fortran 95:

call gerfs(a, af, ipiv, b, x [,trans] [, ferr]

Description

ipiv,

ipiv,

ipiv,

ipiv,

[, berr]

1db, ldx, ferr,

1db, ldx, ferr,

1db, ldx, ferr,

1db, ldx, ferr,

[,info])

This routine performs an iterative refinement of the solution to a system of linear equations AX =B
or ATX= B or A”X = B with a general matrix 4, with multiple right-hand sides. For each computed
solution vector x, the routine computes the component-wise backward error . This error is the
smallest relative perturbation in elements of 4 and b such that x is the exact solution of the

perturbed system:

|0al/|ag| < B |ag], 18b;/|b;] < B |by] such that (4 + 8A4)x = (b + 8b).

g

Finally, the routine estimates the component-wise forward error in the computed solution |jx —

Xelloo/|I¥]|o (here x, is the exact solution).

3-106

LAPACK Routines: Linear Equations 3

Before calling this routine:

¢ call the factorization routine ?getrf
¢ call the solver routine ?getrs.

Input Parameters

trans

n

nrhs

a,af,b,x,work

lda
ldaf
1db
1dx

ipiv

CHARACTER*1. Mustbe 'N' or 'T' or 'C".
Indicates the form of the equations:

If trans = 'N', the system has the form 4AX = B.
If trans = 'T', the system has the form ATx=B.
If trans = 'C', the system has the form Afx=B.
INTEGER. The order of the matrix 4 (n = 0).

INTEGER. The number of right-hand sides (nrhs > 0).
REAL for sgerfs
DOUBLE PRECISION for dgerfs

COMPLEX for cgerfs
DOUBLE COMPLEX for zgerfs.

Arrays:

a(lda,*) contains the original matrix 4, as supplied
to ?getrf.

af (ldaf,*) contains the factored matrix A4, as returned by ?getrf.

b(1db, *) contains the right-hand side matrix B.
x(1dx,*) contains the solution matrix X.

work (*) is a workspace array.

The second dimension of a and af must be at least max(1,n); the second
dimension of b and x must be at least max(1,nrhs); the dimension of work
must be at least max(1, 3*n) for real flavors and max(1, 2*n) for complex

flavors.

INTEGER. The first dimension of a; 1da = max(1, n).

INTEGER. The first dimension of af; 1daf = max(1, n).

INTEGER. The first dimension of b; 1db = max(l, n).
INTEGER. The first dimension of x; 1dx = max(1, n).
INTEGER.

Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?getrf.

3-107

3 Intel® Math Kernel Library Reference Manual

3-108

iwork

rwork

INTEGER.
Workspace array, DIMENSION at least max(1, n).

REAL for cgerfs
DOUBLE PRECISION for zgerfs.
Workspace array, DIMENSION at least max(1, n).

Output Parameters

X

ferr, berr

info

The refined solution matrix X.

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.
INTEGER.

If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gerfs interface are the following:

a

art
ipiv
b

be
ferr
berr

trans

Holds the matrix 4 of size (n1, n).
Holds the matrix AF of size (n, n).
Holds the vector of length (n).

Holds the matrix B of size (n, nrhs).
Holds the matrix X of size (n, nrhs).
Holds the vector of length (nrhs).
Holds the vector of length (nrhs).

Must be 'N', 'c', or 'T'. The default value is 'N'.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the

actual error.

LAPACK Routines: Linear Equations 3

For each right-hand side, computation of the backward error involves a minimum of 4n?
floating-point operations (for real flavors) or 16n° operations (for complex flavors). In addition,
each step of iterative refinement involves 60 operations (for real flavors) or 24n° operations (for
complex flavors); the number of iterations may range from 1 to 5. Estimating the forward error
involves solving a number of systems of linear equations Ax = b; the number is usually 4 or 5 and
never more than 11. Each solution requires approximately 2n” floating-point operations for real
flavors or 8n? for complex flavors.

?gbrfs

Refines the solution of a system of linear equations with
a general band matrix and estimates its error.

Syntax

Fortran 77:
call sgbrfs(trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, b, 1ldb, x, 1dx,
ferr, berr, work, iwork, info)
call dgbrfs(trans, n, k1, ku, nrhs, ab, ldab, afb, ldafb, ipiv, b, 1ldb, x, 1dx,
ferr, berr, work, iwork, info)
call cgbrfs(trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, b, 1ldb, x, 1dx,
ferr, berr, work, rwork, info)
call zgbrfs(trans, n, k1, ku, nrhs, ab, ldab, afb, ldafb, ipiv, b, 1ldb, x, 1dx,
ferr, berr, work, rwork, info)
Fortran 95:
call gbrfs(a, af, ipiv, b, x [,k1] [,trans] [, ferr] [,berr] [,info])

Description

This routine performs an iterative refinement of the solution to a system of linear equations AX =B
or ATX = B or AX = B with a band matrix 4, with multiple right-hand sides. For each computed
solution vector x, the routine computes the component-wise backward error B. This error is the
smallest relative perturbation in elements of 4 and b such that x is the exact solution of the
perturbed system:

3-109

3 Intel® Math Kernel Library Reference Manual

3-110

Finally, the routine estimates the component-wise forward error in the computed solution |jx —
Xelloo/|I¥]|o (here x, is the exact solution).

Before calling this routine:

® call the factorization routine ?gbtrf

¢ call the solver routine ?gbtrs.

Input Parameters

trans

n

k1
ku

nrhs

ab,afb,b,x, work

ldab
ldafb

CHARACTER*1. Mustbe 'N' or 'T' or 'C".

Indicates the form of the equations:

If trans = 'N"', the system has the form 4X = B.

If trans='T', the system has the form 47X = B.

If trans='c', the system has the form 4”X = B.

INTEGER. The order of the matrix 4 (n = 0).

INTEGER. The number of sub-diagonals within the band of 4 (k1 = 0).
INTEGER. The number of super-diagonals within the band of 4 (ku = 0).
INTEGER. The number of right-hand sides (nrhs > 0).

REAL for sgbrfs

DOUBLE PRECISION for dgbrfs

COMPLEX for cgbrfs
DOUBLE COMPLEX for zgbrfs.

Arrays:

ab(ldab,*) contains the original band matrix 4, as supplied to 2gbtrf, but
stored in rows from 1 to k1 + ku+ 1.

afb(ldafb,*) contains the factored band matrix A4, as returned by 2gbtrf.
b(1db, *) contains the right-hand side matrix B.

x(1dx,*) contains the solution matrix X.

work (*) is a workspace array.

The second dimension of ab and afb must be at least max(1,n); the second
dimension of b and x must be at least max(1,nrhs); the dimension of work
must be at least max(1, 3*n) for real flavors and max(1, 2*n) for complex
flavors.

INTEGER. The first dimension of ab.
INTEGER. The first dimension of afb .

LAPACK Routines: Linear Equations 3

1db INTEGER. The first dimension of b; 1db = max(1, n).
ldx INTEGER. The first dimension of x; 1dx = max(1, n).
ipiv INTEGER.

Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?gbtrf.

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

rwork REAL for cgbrfs
DOUBLE PRECISION for zgbrfs
Workspace array, DIMENSION at least max(1, n).

Output Parameters

x The refined solution matrix X.
ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.
info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gbrfs interface are the following:

a Stands for argument ab in Fortran 77 interface. Holds the array 4 of size
(kl+ku+1,n).

ar Stands for argument a£b in Fortran 77 interface. Holds the array AF of size
(2*k1*ku+1,n).

ipiv Holds the vector of length (n).

b Holds the matrix B of size (n, nrhs).

x Holds the matrix X of size (n, nrhs).

ferr Holds the vector of length (nrhs).

3-111

3 Intel® Math Kernel Library Reference Manual

berr Holds the vector of length (nrhs).

trans Must be 'N', 'C', or 'T'. The default value is 'N'.
k1 If omitted, assumed k1 = ku.

ku Restored as ku = 1da-k1-1.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the
actual error.

For each right-hand side, computation of the backward error involves a minimum of 4n(k1 + ku)
floating-point operations (for real flavors) or 16n(k1 + ku) operations (for complex flavors). In
addition, each step of iterative refinement involves 2n(4k1 + 3ku) operations (for real flavors) or
8n(4k1 + 3ku) operations (for complex flavors); the number of iterations may range from 1 to 5.
Estimating the forward error involves solving a number of systems of linear equations Ax = b; the
number is usually 4 or 5 and never more than 11. Each solution requires approximately 2n?
floating-point operations for real flavors or 8n? for complex flavors.

?gtrfs

Refines the solution of a system of linear equations with
a tridiagonal matrix and estimates its error.

Syntax

Fortran 77:
call sgtrfs(trans, n, nrhs, dl1, d, du, dlf, df, duf, du2, ipiv, b, 1ldb, x, ldx,
ferr, berr, work, iwork, info)
call dgtrfs(trans, n, nrhs, dl1, d, du, dif, df, duf, du2, ipiv, b, 1ldb, x, 1ldx,
ferr, berr, work, iwork, info)
call cgtrfs(trans, n, nrhs, dl1, d, du, dlf, df, duf, du2, ipiv, b, 1db, x, ldx,
ferr, berr, work, rwork, info)

call zgtrfs(trans, n, nrhs, dl1, d, du, dif, df, duf, du2, ipiv, b, 1ldb, x, 1ldx,
ferr, berr, work, rwork, info)

3-112

LAPACK Routines: Linear Equations 3

Fortran 95:

call gtrfs(dl, d, du, dlf, df, duf, du2, ipiv, b, x [,trans] [, ferr] [,berr]
[,infol)

Description

This routine performs an iterative refinement of the solution to a system of linear equations AX =B
or ATX = B or A"X = B with a tridiagonal matrix 4, with multiple right-hand sides. For each
computed solution vector x, the routine computes the component-wise backward error B. This
error is the smallest relative perturbation in elements of 4 and b such that x is the exact solution of
the perturbed system:

|5alj|/|alj| < B |al-j|, |6bl|/|bl| < B |bl| such that (A + SA)X = (b + Sb)

Finally, the routine estimates the component-wise forward error in the computed solution |jx —
Xelloo/|I¥]|o (here x, is the exact solution).

Before calling this routine:

¢ call the factorization routine ?gttrf
¢ call the solver routine ?gttrs.

Input Parameters

trans CHARACTER*1. Mustbe 'N' or 'T' or 'C".
Indicates the form of the equations:
If trans = 'N', the system has the form 4AX = B.
If trans = 'T', the system has the form ATx=B.
If trans = 'C', the system has the form Afx=B.

n INTEGER. The order of the matrix 4 (n = 0).

nrhs INTEGER. The number of right-hand sides , i.e., the number of columns of the
matrix B (nrhs = 0).

di,d,du,dlf,df,

duf,du2,b, x, work REAL for sgtrfs
DOUBLE PRECISION for dgtrfs
COMPLEX for cgtrfs
DOUBLE COMPLEX for zgtrfs.

Arrays:
d1, dimension (n - 1), contains the subdiagonal elements of 4.
d, dimension (n), contains the diagonal elements of 4.

du, dimension (n - 1), contains the superdiagonal elements of 4.

3-113

3 Intel® Math Kernel Library Reference Manual

d1f, dimension (n- 1), contains the (n2- 1) multipliers that define the matrix
L from the LU factorization of A as computed by ?gttrf.

df, dimension (n), contains the n diagonal elements of the upper triangular
matrix U from the LU factorization of A.

duf, dimension (n-1), contains the (n- 1) elements of the first
super-diagonal of U.

du2, dimension (n-2), contains the (n-2) elements of the second
super-diagonal of U.

b(1db,nrhs) contains the right-hand side matrix B.

x(1dx,nrhs) contains the solution matrix X, as computed by ?gttrs.
work (*) is a workspace array;

the dimension of work must be at least max(1, 3*n) for real flavors and
max(1, 2*n) for complex flavors.

1db INTEGER. The first dimension of b; 1db = max(1, n).
1dx INTEGER. The first dimension of x; 1dx = max(1, n).
ipiv INTEGER.

Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?gttrf.

iwork INTEGER.
Workspace array, DIMENSION (n). Used for real flavors only.

rwork REAL for cgtrfs
DOUBLE PRECISION for zgtrfs.
Workspace array, DIMENSION (n). Used for complex flavors only.

Output Parameters
x The refined solution matrix X.

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

3-114

LAPACK Routines: Linear Equations 3

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gtrfs interface are the following:

d1 Holds the vector of length (n-1).

d Holds the vector of length (n).

du Holds the vector of length (n-1).
dif Holds the vector of length (n-1).

df Holds the vector of length (n).

duf Holds the vector of length (n-1).
du2 Holds the vector of length (n-2).
ipiv Holds the vector of length (n).

b Holds the matrix B of size (n, nrhs).
x Holds the matrix X of size (nn, nrhs).
ferr Holds the vector of length (nrhs).
berr Holds the vector of length (nrhs).
trans Must be 'N', 'C', or 'T'. The default value is 'N'.

?porfs

Refines the solution of a system of linear equations with
a symmetric (Hermitian) positive-definite matrix and
estimates its error.

Syntax

Fortran 77:

call sporfs(uplo, n, nrhs, a, lda, af, ldaf, b, 1ldb, x, 1ldx, ferr, berr, work,
iwork, info)

3-115

3 Intel® Math Kernel Library Reference Manual

call dporfs(uplo, n, nrhs, a, lda, af, ldaf, b, 1ldb, x, 1ldx, ferr, berr, work,
iwork, info)

call cporfs(uplo, n, nrhs, a, lda, af, ldaf, b, 1ldb, x, 1ldx, ferr, berr, work,
rwork, info)

call zporfs(uplo, n, nrhs, a, lda, af, ldaf, b, 1ldb, x, 1ldx, ferr, berr, work,
rwork, info)

Fortran 95:

call porfs(a, af, b, x [,uplo] [,ferr] [,berr] [,info]l)

3-116

Description

This routine performs an iterative refinement of the solution to a system of linear equations AX =B
with a symmetric (Hermitian) positive definite matrix 4, with multiple right-hand sides. For each
computed solution vector x, the routine computes the component-wise backward error B. This
error is the smallest relative perturbation in elements of 4 and b such that x is the exact solution of
the perturbed system:

|8al/|ag| < B |agl, |8b;{/|b;] < B |b;] such that (4 + 8A4)x = (b + 8b).

Finally, the routine estimates the component-wise forward error in the computed solution |jx —
Xelloo/|I¥]|o (here x, is the exact solution).

Before calling this routine:

¢ call the factorization routine ?potrf
¢ call the solver routine ?potrs.

Input Parameters

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates how the input matrix 4 has been factored:
If uplo="U", the array af stores the factor U of the Cholesky factorization 4

= Uu.
Ifuplo= 'L, the array af stores the factor L of the Cholesky factorization 4
=LY,

n INTEGER. The order of the matrix 4 (n = 0).

nrhs INTEGER. The number of right-hand sides (nrhs 2 0).

a,af,b,x,work REAL for sporfs
DOUBLE PRECISION for dporfs
COMPLEX for cporfs
DOUBLE COMPLEX for zporfs.

LAPACK Routines: Linear Equations 3

Arrays:

a(lda,*) contains the original matrix 4, as supplied

to ?potrf.

af (ldaf,*) contains the factored matrix A4, as returned by ?potrf.
b(1db, *) contains the right-hand side matrix B.

x(1dx,*) contains the solution matrix X.

work (*) is a workspace array.

The second dimension of a and af must be at least max(1,n); the second

dimension of b and x must be at least max(1,nrhs); the dimension of work
must be at least max(1, 3*n) for real flavors and max(1, 2*n) for complex

flavors.
lda INTEGER. The first dimension of a; 1da = max(1, n).
ldaf INTEGER. The first dimension of af; I1daf = max(1, n).
1db INTEGER. The first dimension of b; 1db = max(1, n).
1dx INTEGER. The first dimension of x; 1dx = max(1, n).
iwork INTEGER.

Workspace array, DIMENSION at least max(1, n).

rwork REAL for cporfs
DOUBLE PRECISION for zporfs
Workspace array, DIMENSION at least max(1, n).

Output Parameters
b The refined solution matrix X.

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.

info INTEGER.
If info =0, the execution is successful.
If info = -1, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

3-117

3 Intel® Math Kernel Library Reference Manual

Specific details for the routine porfs interface are the following:

a Holds the matrix 4 of size (n1, n).

ar Holds the matrix AF of size (n, n).

b Holds the matrix B of size (n, nrhs).

x Holds the matrix X of size (n, nrhs).

ferr Holds the vector of length (nrhs).

berr Holds the vector of length (nrhs).

uplo Must be 'U! or 'L'. The default value is 'U".

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the
actual error.

For each right-hand side, computation of the backward error involves a minimum of 4n”
floating-point operations (for real flavors) or 16n” operations (for complex flavors). In addition,
each step of iterative refinement involves 6n” operations (for real flavors) or 24n” operations (for
complex flavors); the number of iterations may range from 1 to 5. Estimating the forward error
involves solving a number of systems of linear equations Ax = b; the number is usually 4 or 5 and
never more than 11. Each solution requires approximately 2n? floating-point operations for real
flavors or 8n? for complex flavors.

?pprfs

Refines the solution of a system of linear equations with
a packed symmetric (Hermitian) positive-definite
matrix and estimates its error.

Syntax
Fortran 77:

call spprfs(uplo, n, nrhs, ap, afp, b, 1ldb, x, ldx, ferr, berr, work, iwork,
info)

call dpprfs(uplo, n, nrhs, ap, afp, b, 1ldb, x, 1ldx, ferr, berr, work, iwork,
info)

3-118

LAPACK Routines: Linear Equations 3

call cpprfs(uplo, n, nrhs, ap, afp, b, 1ldb, x, 1ldx, ferr, berr, work, rwork,
info)

call zpprfs(uplo, n, nrhs, ap, afp, b, 1ldb, x, ldx, ferr, berr, work, rwork,

info)

Fortran 95:
call pprfs(a, af, b, x [,uplo] [, ferr] [,berr] [,info]l)

Description

This routine performs an iterative refinement of the solution to a system of linear equations AX =B
with a packed symmetric (Hermitian) positive definite matrix 4, with multiple right-hand sides.
For each computed solution vector x, the routine computes the component-wise backward error 3.
This error is the smallest relative perturbation in elements of 4 and b such that x is the exact
solution of the perturbed system:

Finally, the routine estimates the component-wise forward error in the computed solution ||x —
Xeo|oo/|[¥]|o (here x, is the exact solution).

Before calling this routine:

¢ call the factorization routine ?pptrf
¢ call the solver routine ?pptrs.

Input Parameters

uplo CHARACTER*1. Mustbe 'U" or 'L'.
Indicates how the input matrix 4 has been factored:
If uplo='u", the array afp stores the packed factor U of the Cholesky
factorization 4 = U'U.
If uplo= 'L, the array afp stores the packed factor L of the Cholesky
factorization 4 = LL".

n INTEGER. The order of the matrix 4 (n = 0).

nrhs INTEGER. The number of right-hand sides (nrhs = 0).
ap,afp, b, x, work REAL for spprfs
DOUBLE PRECISION for dpprfs

COMPLEX for cpprfs
DOUBLE COMPLEX for zpprfs.

Arrays:
ap (*) contains the original packed matrix 4, as supplied to ?pptrt.

3-119

3 Intel® Math Kernel Library Reference Manual

3-120

1db
1dx

iwork

rwork

afp (*) contains the factored packed matrix A4, as returned by ?pptr£.
b(1db, *) contains the right-hand side matrix B.

x(1dx, *) contains the solution matrix X.

work (*) is a workspace array.

The dimension of arrays ap and afp must be at least max(1,n(n+1)/2); the
second dimension of b and x must be at least max(1,nrhs); the dimension of

work must be at least max(1, 3*n) for real flavors and max(1, 2*n) for
complex flavors.

INTEGER. The first dimension of b; 1db > max(1, n).
INTEGER. The first dimension of x; 1dx = max(1, n).

INTEGER.
Workspace array, DIMENSION at least max(1, n).

REAL for cpprfs
DOUBLE PRECISION for zpprfs
Workspace array, DIMENSION at least max(1, n).

Output Parameters

X

ferr, berr

info

The refined solution matrix X.

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.

INTEGER. If info=0, the execution is successful.
If info = -1, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine pprfs interface are the following:

a

af

Stands for argument ap in Fortran 77 interface. Holds the array 4 of size
(n* (n+1) /2).

Stands for argument apf in Fortran 77 interface. Holds the array AF of size
(n* (n+1) /2).

LAPACK Routines: Linear Equations 3

b Holds the matrix B of size (n, nrhs).

x Holds the matrix X of size (n, nrhs).

ferr Holds the vector of length (nrhs).

berr Holds the vector of length (nrhs).

uplo Must be 'U' or 'L'. The default value is 'U".

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the
actual error.

For each right-hand side, computation of the backward error involves a minimum of 4n?
floating-point operations (for real flavors) or 1627 operations (for complex flavors). In addition,
each step of iterative refinement involves 61> operations (for real flavors) or 24n” operations (for
complex flavors); the number of iterations may range from 1 to 5.

Estimating the forward error involves solving a number of systems of linear equations Ax = b; the
number of systems is usually 4 or 5 and never more than 11. Each solution requires approximately
2n? floating-point operations for real flavors or 8n* for complex flavors.

?pbrfs

Refines the solution of a system of linear equations with
a band symmetric (Hermitian) positive-definite matrix
and estimates its error.

Syntax

Fortran 77:
call spbrfs(uplo, n, kd, nrhs, ab, ldab, afb, ldafb, b, 1ldb, x, ldx, ferr, berr,
work, iwork, info)
call dpbrfs(uplo, n, kd, nrhs, ab, ldab, afb, ldafb, b, 1db, x, ldx, ferr, berr,
work, iwork, info)
call cpbrfs(uplo, n, kd, nrhs, ab, ldab, afb, ldafb, b, 1ldb, x, ldx, ferr, berr,

work, rwork, info)

call zpbrfs(uplo, n, kd, nrhs, ab, ldab, afb, ldafb, b, 1db, x, 1ldx, ferr, berr,
work, rwork, info)

3-121

3 Intel® Math Kernel Library Reference Manual

Fortran 95:

call pbrfs(a, af, b, x [,uplo] [,ferr] [,berr] [,info])

3-122

Description

This routine performs an iterative refinement of the solution to a system of linear equations AX =B
with a symmetric (Hermitian) positive definite band matrix 4, with multiple right-hand sides. For
each computed solution vector x, the routine computes the component-wise backward error B.
This error is the smallest relative perturbation in elements of 4 and b such that x is the exact
solution of the perturbed system:

Finally, the routine estimates the component-wise forward error in the computed solution ||x —
Xeol|oo/|[¥]|o (here x, is the exact solution).

Before calling this routine:

¢ call the factorization routine ?pbtrf

¢ call the solver routine ?pbtrs.

Input Parameters
uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates how the input matrix 4 has been factored:

If uplo='U", the array arb stores the factor U of the Cholesky factorization

4=U"U.
If uplo='L", the array arb stores the factor L of the Cholesky factorization
A=LL".

n INTEGER. The order of the matrix 4 (n = 0).

kd INTEGER. The number of super-diagonals or sub-diagonals in the matrix A4
(kd = 0).

nrhs INTEGER. The number of right-hand sides (nrhs 2 0).

ab,arfb, b, x, work REAL for spbrfs
DOUBLE PRECISION for dpbrfs
COMPLEX for cpbrfs
DOUBLE COMPLEX for zpbrfs.

Arrays:
ab(ldab,*) contains the original band matrix 4, as supplied to ?pbtrf.

arfb(ldafb,*) contains the factored band matrix A4, as returned by ?pbtrf.

LAPACK Routines: Linear Equations 3

b(1db, *) contains the right-hand side matrix B.

x(1dx,*) contains the solution matrix X.

work (*) is a workspace array.

The second dimension of ab and afb must be at least max(1,n); the second

dimension of b and x must be at least max(1,nrhs); the dimension of work
must be at least max(1, 3*n) for real flavors and max(1, 2*n) for complex

flavors.
ldab INTEGER. The first dimension of ab; 1dab > kd + 1.
ldafb INTEGER. The first dimension of afb; 1dafb = kd+ 1.
1db INTEGER. The first dimension of b; 1db = max(1, n).
1dx INTEGER. The first dimension of x; 1dx = max(1, n).
iwork INTEGER.

Workspace array, DIMENSION at least max(1, n).

rwork REAL for cpbrfs
DOUBLE PRECISION for zpbrfs
Workspace array, DIMENSION at least max(1, n).

Output Parameters
x The refined solution matrix X.

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.

info INTEGER.

If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine pbrfs interface are the following:

a Stands for argument ab in Fortran 77 interface. Holds the array A4 of size
(kd+1, n).

3-123

3 Intel® Math Kernel Library Reference Manual

ar Stands for argument a£b in Fortran 77 interface. Holds the array AF of size
(kd+1, n).

b Holds the matrix B of size (n, nrhs).

x Holds the matrix X of size (nn, nrhs).

ferr Holds the vector of length (nrhs).

berr Holds the vector of length (nrhs).

uplo Must be 'U' or 'L'. The default value is 'U".

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the
actual error.

For each right-hand side, computation of the backward error involves a minimum of 8n* kd
floating-point operations (for real flavors) or 32n* kd operations (for complex flavors). In
addition, each step of iterative refinement involves 12n* kd operations (for real flavors) or 48n* kd
operations (for complex flavors); the number of iterations may range from 1 to 5.

Estimating the forward error involves solving a number of systems of linear equations Ax = b; the
number is usually 4 or 5 and never more than 11. Each solution requires approximately 4n* kd
floating-point operations for real flavors or 16n* kd for complex flavors.

?ptrfs

Refines the solution of a system of linear equations with
a symmetric (Hermitian) positive-definite tridiagonal
matrix and estimates its error.

Syntax

Fortran 77:
call sptrfs(n, nrhs, d, e, df, ef, b, 1ldb, x, 1ldx, ferr, berr, work, info)
call dptrfs(n, nrhs, d, e, df, ef, b, 1db, x, 1ldx, ferr, berr, work, info)

call cptrfs(uplo, n, nrhs, d, e, df, ef, b, 1db, x, ldx, ferr, berr, work,
rwork, info)

3-124

LAPACK Routines: Linear Equations 3

call cptrfs(uplo, n, nrhs, d, e, df, ef, b, 1ldb, x, 1ldx, ferr, berr, work,
rwork, info)
Fortran 95:
call ptrfs(d, df, e, ef, b, x [,ferr] [,berr] [,info])
call ptrfs(d, df, e, ef, b, x [,uplo]l [, ferr] [,berr] [,info])

Description

This routine performs an iterative refinement of the solution to a system of linear equations AX =B
with a symmetric (Hermitian) positive definite tridiagonal matrix 4, with multiple right-hand
sides. For each computed solution vector x, the routine computes the component-wise backward
error . This error is the smallest relative perturbation in elements of 4 and b such that x is the
exact solution of the perturbed system:

Finally, the routine estimates the component-wise forward error in the computed solution ||x —
Xeo|oo/|[¥]|o (here x, is the exact solution).
Before calling this routine:

¢ call the factorization routine ?pttrf
¢ call the solver routine ?pttrs.

Input Parameters

uplo CHARACTER*1. Used for complex flavors only.
Mustbe 'u' or 'L'.

Specifies whether the superdiagonal or the subdiagonal of the tridiagonal
matrix 4 is stored and how 4 is factored:
If uplo= 'u", the array e stores the superdiagonal of 4, and 4 is factored as

U pu;
If uplo= 'L, the array e stores the subdiagonal of 4, and 4 is factored as
LDLH,

n INTEGER. The order of the matrix 4 (n = 0).

nrhs INTEGER. The number of right-hand sides (nrhs = 0).

d, df, rwork REAL for single precision flavors

DOUBLE PRECISION for double precision flavors
Arrays: d(n),df(n), rwork(n).
The array d contains the n diagonal elements of the tridiagonal matrix A.

3-125

3 Intel® Math Kernel Library Reference Manual

e,ef,b,x,work

1db
1dx

The array df contains the n diagonal elements of the diagonal matrix D from
the factorization of A as computed by ?pttrf.

The array rwork is a workspace array used for complex flavors only.

REAL for sptrfs

DOUBLE PRECISION for dptrfs

COMPLEX for cptrfs

DOUBLE COMPLEX for zptres.

Arrays: e(n-1), ef(n-1), b(1db,nrhs), x(1dx,nrhs), work(*).
The array e contains the (n- 1) off-diagonal elements of the tridiagonal
matrix 4 (see uplo).

The array ef contains the (n- 1) off-diagonal elements of the unit bidiagonal
factor U or L from the factorization computed by ?pttrf (see uplo).

The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations.

The array x contains the solution matrix X as computed by ?pttrs.

The array work is a workspace array. The dimension of work must be at least
2*n for real flavors, and at least n for complex flavors.

INTEGER. The leading dimension of b; 1db = max(1, n).
INTEGER. The leading dimension of x; 1dx = max(1, n).

Output Parameters

X

ferr, berr

info

The refined solution matrix X.

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.

INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine ptrfs interface are the following:

d

3-126

Holds the vector of length (n).

LAPACK Routines: Linear Equations 3

dr Holds the vector of length (n).

e Holds the vector of length (n-1).

ef Holds the vector of length (n-1).

b Holds the matrix B of size (n, nrhs).

x Holds the matrix X of size (nn, nrhs).

ferr Holds the vector of length (nrhs).

berr Holds the vector of length (nrhs).

uplo Used in complex flavors only. Must be 'U' or 'L'. The default value is 'uU".

?syrfs

Refines the solution of a system of linear equations with
a symmetric matrix and estimates its error.

Syntax

Fortran 77:

call ssyrfs(uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, 1ldb, x, 1ldx, ferr, berr,
work, iwork, info)

call dsyrfs(uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, 1ldb, x, 1ldx, ferr, berr,
work, iwork, info)

call csyrfs(uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, 1ldb, x, 1ldx, ferr, berr,
work, rwork, info)

call zsyrfs(uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, 1ldb, x, ldx, ferr, berr,
work, rwork, info)

Fortran 95:
call syrfs(a, af, ipiv, b, x [,uplo] [,ferr] [,berr] [,infol)

3-127

3 Intel® Math Kernel Library Reference Manual

Discussion

This routine performs an iterative refinement of the solution to a system of linear equations AX =B
with a symmetric full-storage matrix 4, with multiple right-hand sides. For each computed
solution vector x, the routine computes the component-wise backward error 3. This error is the
smallest relative perturbation in elements of 4 and b such that x is the exact solution of the
perturbed system:

|al/|ag| < B |ag], |8b;{/|b;] < B |b;| such that (4 + 8A4)x = (b + 8b).

Finally, the routine estimates the component-wise forward error in the computed solution ||x —
Xel|oo/|I¥]|o (here x, is the exact solution).
Before calling this routine:

¢ call the factorization routine ?sytrf
¢ call the solver routine ?sytrs.

Input Parameters

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates how the input matrix 4 has been factored:
If uplo='uU", the array af stores the Bunch-Kaufman factorization 4 =

PUDU'PT.
If uplo="'L", the array af stores the Bunch-Kaufman factorization 4 =
PLDLTPT.

n INTEGER. The order of the matrix 4 (n = 0).

nrhs INTEGER. The number of right-hand sides (nrhs = 0).

a,af,b,x,work REAL for ssyrfs
DOUBLE PRECISION for dsyrfs
COMPLEX for csyrfs
DOUBLE COMPLEX for zsyrfs.

Arrays:

a(lda,*) contains the original matrix 4, as supplied

to ?sytrf.

af (ldaf,*) contains the factored matrix A4, as returned by ?sytrf.
b(1db, *) contains the right-hand side matrix B.

x(1dx,*) contains the solution matrix X.

work (*) is a workspace array.

3-128

LAPACK Routines: Linear Equations 3

The second dimension of a and af must be at least max(1,n); the second
dimension of b and x must be at least max(1,nrhs); the dimension of work
must be at least max(1, 3*n) for real flavors and max(1, 2*n) for complex

flavors.
lda INTEGER. The first dimension of a; 1da = max(1, n).
ldaf INTEGER. The first dimension of af; 1daf = max(1, n).
1db INTEGER. The first dimension of b; 1db = max(l, n).
ldx INTEGER. The first dimension of x; 1dx = max(1, n).
ipiv INTEGER.

Array, DIMENSTION at least max(1,n).
The ipiv array, as returned by ?sytrf.

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

rwork REAL for csyrfs
DOUBLE PRECISION for zsyrfs.
Workspace array, DIMENSION at least max(1, n).

Output Parameters
x The refined solution matrix X.

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.
info INTEGER.

If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine syrfs interface are the following:
a Holds the matrix 4 of size (n1, n).

ar Holds the matrix AF of size (n, n).

3-129

3 Intel® Math Kernel Library Reference Manual

ipiv Holds the vector of length (n).

b Holds the matrix B of size (n, nrhs).

x Holds the matrix X of size (n, nrhs).

ferr Holds the vector of length (nrhs).

berr Holds the vector of length (nrhs).

uplo Must be 'U' or 'L'. The default value is 'U".

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the
actual error.

For each right-hand side, computation of the backward error involves a minimum of 4n?
floating-point operations (for real flavors) or 16n” operations (for complex flavors). In addition,
each step of iterative refinement involves 61> operations (for real flavors) or 24n” operations (for
complex flavors); the number of iterations may range from 1 to 5. Estimating the forward error
involves solving a number of systems of linear equations Ax = b; the number is usually 4 or 5 and
never more than 11. Each solution requires approximately 2n? floating-point operations for real
flavors or 8n? for complex flavors.

?herfs

Refines the solution of a system of linear equations with
a complex Hermitian matrix and estimates its error.

Syntax

Fortran 77:

call cherfs(uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, 1ldb, x, ldx, ferr, berr,
work, rwork, info)

call zherfs(uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, 1ldb, x, 1ldx, ferr, berr,
work, rwork, info)

Fortran 95:

call herfs(a, af, ipiv, b, x [,uplo] I[,ferr] [,berr] [,infol)

3-130

LAPACK Routines: Linear Equations 3

Description

This routine performs an iterative refinement of the solution to a system of linear equations AX =B
with a complex Hermitian full-storage matrix 4, with multiple right-hand sides. For each
computed solution vector x, the routine computes the component-wise backward error B. This
error is the smallest relative perturbation in elements of 4 and b such that x is the exact solution of
the perturbed system:

|al/|ag| < B |agl, |8b;{/|b;] < B |b;| such that (4 + 8A4)x = (b + 8b).

Finally, the routine estimates the component-wise forward error in the computed solution |jx —
Xel|oo/|I¥]|o (here x, is the exact solution).
Before calling this routine:

e call the factorization routine ?hetrf
® call the solver routine ?hetrs.

Input Parameters

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates how the input matrix 4 has been factored:
If uplo='u", the array af stores the Bunch-Kaufman factorization 4 =

PUDUHPT,
If uplo='L", the array af stores the Bunch-Kaufman factorization 4 =
PLDLYPT,

n INTEGER. The order of the matrix 4 (n = 0).

nrhs INTEGER. The number of right-hand sides (nrhs > 0).

a,af,b,x,work COMPLEX for cherfs
DOUBLE COMPLEX for zherfs.

Arrays:

a(lda,*) contains the original matrix 4, as supplied

to ?hetrf.

af (ldaf,*) contains the factored matrix A4, as returned by ?hetrf.
b(1db, *) contains the right-hand side matrix B.

x(1dx,*) contains the solution matrix X.

work (*) is a workspace array.

The second dimension of a and af must be at least max(1,n); the second

dimension of b and x must be at least max(1,nrhs); the dimension of work
must be at least max(1, 2*n).

3-131

3 Intel® Math Kernel Library Reference Manual

lda
ldaf
1db
1dx

ipiv

rwork

INTEGER. The first dimension of a; 1da > max(1, n).
INTEGER. The first dimension of af; 1daf = max(1, n).
INTEGER. The first dimension of b; 1db = max(1, n).
INTEGER. The first dimension of x; 1dx > max(1, n).

INTEGER.
Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?hetrf.

REAL for cherfs
DOUBLE PRECISION for zherfs.
Workspace array, DIMENSION at least max(1, n).

Output Parameters

X

ferr, berr

info

The refined solution matrix X.

REAL for cherfs

DOUBLE PRECISION for zherfs.

Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.

INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine herfs interface are the following:

a
ar

ipiv

ferr

berr

3-132

Holds the matrix 4 of size (n1, n).
Holds the matrix AF of size (n, n).
Holds the vector of length (n).

Holds the matrix B of size (n, nrhs).
Holds the matrix X of size (n, nrhs).
Holds the vector of length (nrhs).
Holds the vector of length (nrhs).

LAPACK Routines: Linear Equations 3

uplo Must be 'U' or 'L'. The default value is 'U".

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the
actual error.

For each right-hand side, computation of the backward error involves a minimum of 16
operations. In addition, each step of iterative refinement involves 24n° operations; the number of
iterations may range from 1 to 5.

Estimating the forward error involves solving a number of systems of linear equations Ax = b; the
number is usually 4 or 5 and never more than 11. Each solution requires approximately 8n?
floating-point operations.

The real counterpart of this routine is ssyrfs /dsyrfs.

?sprfs

Refines the solution of a system of linear equations with
a packed symmetric matrix and estimates the solution

Syntax
Fortran 77:

call ssprfs(uplo, n, nrhs, ap, afp, ipiv, b, 1db, x, ldx, ferr, berr, work,
iwork, info)

call dsprfs(uplo, n, nrhs, ap, afp, ipiv, b, 1db, x, 1ldx, ferr, berr, work,
iwork, info)

call csprfs(uplo, n, nrhs, ap, afp, ipiv, b, 1db, x, 1ldx, ferr, berr, work,
rwork, info)

call zsprfs(uplo, n, nrhs, ap, afp, ipiv, b, 1db, x, 1ldx, ferr, berr, work,
rwork, info)

Fortran 95:

call sprfs(a, af, ipiv, b, x [,uplo] [,ferr] [,berr] [,info])

3-133

3 Intel® Math Kernel Library Reference Manual

3-134

Description

This routine performs an iterative refinement of the solution to a system of linear equations AX =B
with a packed symmetric matrix 4, with multiple right-hand sides. For each computed solution
vector x, the routine computes the component-wise backward error B. This error is the smallest
relative perturbation in elements of 4 and b such that x is the exact solution of the perturbed
system:

|al/|ag| < B |agl, 18b;{/|b;] < B |b;| such that (4 + 8A4)x = (b + 8b).

Finally, the routine estimates the component-wise forward error in the computed solution ||x —
Xel|oo/|I¥]|o (here x, is the exact solution).
Before calling this routine:

¢ call the factorization routine ?sptrf
® call the solver routine ?sptrs.

Input Parameters

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates how the input matrix 4 has been factored:
If uplo='uU", the array afp stores the packed Bunch-Kaufman factorization

A= PUDUTPT,
If uplo='L", the array afp stores the packed Bunch-Kaufman factorization
A = PLDLTPT.

n INTEGER. The order of the matrix 4 (n = 0).

nrhs INTEGER. The number of right-hand sides (nrhs = 0).

ap,afp,b,x, work REAL for ssprfs
DOUBLE PRECISION for dsprfs
COMPLEX for csprfs
DOUBLE COMPLEX for zsprfs.

Arrays:

ap (*) contains the original packed matrix 4, as supplied to ?sptrf.
afp (*) contains the factored packed matrix A4, as returned by ?sptrf.
b(1db, *) contains the right-hand side matrix B.

x(1dx,*) contains the solution matrix X.

work (*) is a workspace array.

LAPACK Routines: Linear Equations 3

1db

1dx

ipiv

iwork

rwork

The dimension of arrays ap and afp must be at least max(1,n(n+1)/2); the
second dimension of b and x must be at least max(1,nrhs); the dimension of
work must be at least max(1, 3*n) for real flavors and max(1, 2*n) for
complex flavors.

INTEGER. The first dimension of b; 1db = max(l, n).
INTEGER. The first dimension of x; 1dx = max(1, n).

INTEGER.
Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?sptrf.

INTEGER.
Workspace array, DIMENSION at least max(1, n).

REAL for csprfs
DOUBLE PRECISION for zsprfs
Workspace array, DIMENSION at least max(1, n).

Output Parameters

X

ferr, berr

info

The refined solution matrix X.

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.

INTEGER.
If info =0, the execution is successful.
If info = -1, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine sprfs interface are the following:

a

af

ipiv

Stands for argument ap in Fortran 77 interface. Holds the array 4 of size
(n* (n+1) /2).

Stands for argument afp in Fortran 77 interface. Holds the array AF of size
(n* (n+1) /2).

Holds the vector of length (n).

3-135

3 Intel® Math Kernel Library Reference Manual

b Holds the matrix B of size (n, nrhs).

x Holds the matrix X of size (n, nrhs).

ferr Holds the vector of length (nrhs).

berr Holds the vector of length (nrhs).

uplo Must be 'U' or 'L'. The default value is 'U".

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the
actual error.

For each right-hand side, computation of the backward error involves a minimum of 4n?
floating-point operations (for real flavors) or 1627 operations (for complex flavors). In addition,
each step of iterative refinement involves 61> operations (for real flavors) or 24n” operations (for
complex flavors); the number of iterations may range from 1 to 5.

Estimating the forward error involves solving a number of systems of linear equations Ax = b; the
number of systems is usually 4 or 5 and never more than 11. Each solution requires approximately
2n? floating-point operations for real flavors or 8n* for complex flavors.

?hprfs

Refines the solution of a system of linear equations with
a packed complex Hermitian matrix and estimates the
solution error.

Syntax

Fortran 77:

call chprfs(uplo, n, nrhs, ap, afp, ipiv, b, 1db, x, ldx, ferr, berr, work,
rwork, info)

call zhprfs(uplo, n, nrhs, ap, afp, ipiv, b, 1db, x, 1ldx, ferr, berr, work,
rwork, info)

Fortran 95:
call hprfs(a, af, ipiv, b, x [,uplo] [, ferr] [,berr] [,info])

3-136

LAPACK Routines: Linear Equations 3

Description

This routine performs an iterative refinement of the solution to a system of linear equations AX =B
with a packed complex Hermitian matrix 4, with multiple right-hand sides. For each computed
solution vector x, the routine computes the component-wise backward error . This error is the
smallest relative perturbation in elements of 4 and b such that x is the exact solution of the
perturbed system:

|al/|ag| < B |agl, |8b;{/|b;] < B |b;| such that (4 + 8A4)x = (b + 8b).

Finally, the routine estimates the component-wise forward error in the computed solution |jx —
Xel|oo/|I¥]|o (here x, is the exact solution).
Before calling this routine:

¢ call the factorization routine ?hptrf
¢ call the solver routine ?hptrs.

Input Parameters

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates how the input matrix 4 has been factored:
If uplo='u", the array afp stores the packed Bunch-Kaufman factorization

A = PUDU"PT.
If uplo= 'L, the array afp stores the packed Bunch-Kaufman factorization
A = PLDLYPT,

n INTEGER. The order of the matrix 4 (n = 0).

nrhs INTEGER. The number of right-hand sides (nrhs = 0).

ap,afp, b, x, work COMPLEX for chprfs
DOUBLE COMPLEX for zhprfs.

Arrays:

ap (*) contains the original packed matrix 4, as supplied to ?hptrf.

afp (*) contains the factored packed matrix A4, as returned by ?hptrf.
b(1db, *) contains the right-hand side matrix B.

x(1dx,*) contains the solution matrix X.

work (*) is a workspace array.

The dimension of arrays ap and afp must be at least max(1,n(n+1)/2); the

second dimension of b and x must be at least max(1,nrhs); the dimension of
work must be at least max(1, 2*n).

1db INTEGER. The first dimension of b; 1db =max(1, n).

3-137

3 Intel® Math Kernel Library Reference Manual

3-138

1dx

ipiv

rwork

INTEGER. The first dimension of x; 1dx = max(1, n).

INTEGER.
Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?hptrf.

REAL for chprfs
DOUBLE PRECISION for zhprfs
Workspace array, DIMENSION at least max(1, n).

Output Parameters

X

ferr, berr

info

The refined solution matrix X.

REAL for chprfs.

DOUBLE PRECISION for zhprfs.

Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.

INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine hprfs interface are the following:

a

ar

ipiv

ferr
berr

uplo

Stands for argument ap in Fortran 77 interface. Holds the array A4 of size
(n*(n+1) /2).

Stands for argument afp in Fortran 77 interface. Holds the array AF of size
(n*(n+1) /2).

Holds the vector of length (n).

Holds the matrix B of size (n, nrhs).
Holds the matrix X of size (n, nrhs).
Holds the vector of length (nrhs).
Holds the vector of length (nrhs).

Must be 'U' or 'L'. The default value is 'U".

LAPACK Routines: Linear Equations 3

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the
actual error.

For each right-hand side, computation of the backward error involves a minimum of 16n°
operations. In addition, each step of iterative refinement involves 24n° operations; the number of
iterations may range from 1 to 5.

Estimating the forward error involves solving a number of systems of linear equations Ax = b; the
number is usually 4 or 5 and never more than 11. Each solution requires approximately 8n?
floating-point operations.

The real counterpart of this routine is ssprfs / dsprfs.

?trrfs

Estimates the error in the solution of
a system of linear equations with a triangular matrix.

Syntax
Fortran 77:

call strrfs(uplo, trans, diag, n, nrhs, a, lda, b, 1db, x, 1ldx, ferr, berr,
work, iwork, info)

call dtrrfs(uplo, trans, diag, n, nrhs, a, lda, b, 1db, x, 1ldx, ferr, berr,
work, iwork, info)

call ctrrfs(uplo, trans, diag, n, nrhs, a, lda, b, 1db, x, 1ldx, ferr, berr,
work, rwork, info)

call ztrrfs(uplo, trans, diag, n, nrhs, a, lda, b, 1db, x, 1ldx, ferr, berr,
work, rwork, info)

Fortran 95:
call trrfs(a, b, x [,uplo]l I[,trans] [,diag]l [,ferr] [,berr] [,info])

3-139

3 Intel® Math Kernel Library Reference Manual

3-140

Description

This routine estimates the errors in the solution to a system of linear equations AX = B or A7X =B
or A”X = B with a triangular matrix 4, with multiple right-hand sides. For each computed solution
vector x, the routine computes the component-wise backward error B. This error is the smallest
relative perturbation in elements of 4 and b such that x is the exact solution of the perturbed
system:

|0al/|ag| < B |agl, 18b;{/|b;] < B |b;| such that (4 + 8A4)x = (b + 8b).

The routine also estimates the component-wise forward error in the computed solution ||x —
Xel|oo/|I¥]|o (here x, is the exact solution).

Before calling this routine, call the solver routine ?trtrs.

Input Parameters

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates whether 4 is upper or lower triangular:

If uplo= U, then 4 is upper triangular.
If uplo='L", then 4 is lower triangular.

trans CHARACTER*1. Mustbe 'N' or 'T' or 'C'.
Indicates the form of the equations:
If trans = 'N"', the system has the form 4AX = B.
If trans = 'T', the system has the form A7X = B.
If trans='C', the system has the form 47X = B.
diag CHARACTER*1. Mustbe 'N' or 'U".
If diag= 'N", then 4 is not a unit triangular matrix.

If diag= 'U", then 4 is unit triangular: diagonal elements of 4 are assumed to
be 1 and not referenced in the array a.

n INTEGER. The order of the matrix 4 (n = 0).
nrhs INTEGER. The number of right-hand sides (nrhs > 0).

a, b, x, work REAL for strrfs
DOUBLE PRECISION for dtrrfs
COMPLEX for ctrrfs
DOUBLE COMPLEX for ztrrfs.

Arrays:

a(lda,*) contains the upper or lower triangular matrix A4, as specified by
uplo.

LAPACK Routines: Linear Equations 3

b(1db, *) contains the right-hand side matrix B.
x(1dx,*) contains the solution matrix X.
work (*) is a workspace array.

The second dimension of a must be at least max(1,n); the second dimension of
b and x must be at least max(1,nrhs); the dimension of work must be at least
max(1, 3*n) for real flavors and max(1, 2*n) for complex flavors.

lda INTEGER. The first dimension of a; 1da = max(1, n).
1db INTEGER. The first dimension of b; 1db = max(1, n).
ldx INTEGER. The first dimension of x; 1dx = max(1, n).
iwork INTEGER.

Workspace array, DIMENSION at least max(1, n).

rwork REAL for ctrrfs
DOUBLE PRECISION for ztrrfs
Workspace array, DIMENSION at least max(1, n).

Output Parameters

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.

info INTEGER.
If info =0, the execution is successful.
If info = -1, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine trrfs interface are the following:

a Holds the matrix 4 of size (n1, n).

b Holds the matrix B of size (n, nrhs).
x Holds the matrix X of size (n, nrhs).
ferr Holds the vector of length (nrhs).

3-141

3 Intel® Math Kernel Library Reference Manual

berr Holds the vector of length (nrhs).

uplo Mustbe 'U' or 'L'. The default value is 'U".
trans Must be 'N', 'C', or 'T'. The default value is 'N'.
diag Must be 'N' or 'U'. The default value is 'N'.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the
actual error.

A call to this routine involves, for each right-hand side, solving a number of systems of linear
equations Ax = b; the number of systems is usually 4 or 5 and never more than 11. Each solution
requires approximately n? floating-point operations for real flavors or 4n? for complex flavors.

?tprfs

Estimates the error in the solution of
a system of linear equations with a packed triangular
matrix.

Syntax
Fortran 77:

call stprfs(uplo, trans, diag, n, nrhs, ap, b, 1ldb, x, ldx, ferr, berr, work,
iwork, info)

call dtprfs(uplo, trans, diag, n, nrhs, ap, b, 1ldb, x, 1ldx, ferr, berr, work,
iwork, info)

call ctprfs(uplo, trans, diag, n, nrhs, ap, b, 1ldb, x, ldx, ferr, berr, work,
rwork, info)

call ztprfs(uplo, trans, diag, n, nrhs, ap, b, 1ldb, x, 1ldx, ferr, berr, work,
rwork, info)

Fortran 95:
call tprfs(a, b, x [,uplo] [,trans] [,diag]l [, ferr] [,berr] [,info])

3-142

LAPACK Routines: Linear Equations 3

Description

This routine estimates the errors in the solution to a system of linear equations AX = B or A”X =B
or A”X = B with a packed triangular matrix 4, with multiple right-hand sides. For each computed
solution vector x, the routine computes the component-wise backward error 3. This error is the
smallest relative perturbation in elements of 4 and b such that x is the exact solution of the
perturbed system:

|al/|ag| < B |ag], |8b;{/|b;] < B |b;| such that (4 + 8A4)x = (b + 8b).

The routine also estimates the component-wise forward error in the computed solution ||x —
Xel|oo/|I¥]|o (here x, is the exact solution).

Before calling this routine, call the solver routine ?tptrs.

Input Parameters

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates whether 4 is upper or lower triangular:

If uplo='u", then 4 is upper triangular.
If uplo='L", then 4 is lower triangular.
trans CHARACTER*1. Mustbe 'N' or 'T' or 'C'.
Indicates the form of the equations:
If trans = 'N', the system has the form 4X = B.
If trans = 'T', the system has the form A7X = B.
If trans='C', the system has the form 47X = B.
diag CHARACTER*1. Mustbe 'N' or 'U".
If diag= 'N', A isnot a unit triangular matrix.

If diag='u', A is unit triangular: diagonal elements of 4 are assumed to be
1 and not referenced in the array ap.

n INTEGER. The order of the matrix 4 (n = 0).

nrhs INTEGER. The number of right-hand sides (nrhs > 0).

ap, b, x, workREAL for strrfs
DOUBLE PRECISION for dtrrfs

COMPLEX for ctrrfs
DOUBLE COMPLEX for ztrrfs.

Arrays:

ap (*) contains the upper or lower triangular matrix A4, as specified by uplo.
b(1db, *) contains the right-hand side matrix B.

x(1dx,*) contains the solution matrix X.

3-143

3 Intel® Math Kernel Library Reference Manual

1db
1ldx

iwork

rwork

work (*) is a workspace array.

The dimension of ap must be at least max(1,n(n+1)/2);

the second dimension of b and x must be at least max(1,nrhs); the dimension
of work must be at least max(1, 3*n) for real flavors and max(1, 2*n) for
complex flavors.

INTEGER. The first dimension of b; 1db = max(1, n).
INTEGER. The first dimension of x; 1dx = max(1, n).

INTEGER.
Workspace array, DIMENSION at least max(1, n).

REAL for ctrrfs
DOUBLE PRECISION for ztrrfs
Workspace array, DIMENSION at least max(1, n).

Output Parameters

ferr, berr

info

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.

INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine tprfs interface are the following:

a

ferr

berr

3-144

Stands for argument ap in Fortran 77 interface. Holds the array A4 of size
(n* (n+1) /2).

Holds the matrix B of size (n, nrhs).
Holds the matrix X of size (n, nrhs).
Holds the vector of length (nrhs).
Holds the vector of length (nrhs).

LAPACK Routines: Linear Equations 3

uplo Must be 'U' or 'L'. The default value is 'U".
trans Must be 'N', 'c', or 'T'. The default value is 'N'.
diag Must be 'N' or 'U'. The default value is 'N'.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the
actual error.

A call to this routine involves, for each right-hand side, solving a number of systems of linear
equations Ax = b; the number of systems is usually 4 or 5 and never more than 11. Each solution
requires approximately n” floating-point operations for real flavors or 4n? for complex flavors.

?tbrfs

Estimates the error in the solution of
a system of linear equations with a triangular band
matrix.

Syntax

Fortran 77:

call stbrfs(uplo, trans, diag, n, kd, nrhs, ab, ldab, b, 1ldb, x, 1ldx, ferr,
berr, work, iwork, info)

call dtbrfs(uplo, trans, diag, n, kd, nrhs, ab, ldab, b, 1ldb, x, 1ldx, ferr,
berr, work, iwork, info)

call ctbrfs(uplo, trans, diag, n, kd, nrhs, ab, ldab, b, 1ldb, x, 1ldx, ferr,
berr, work, rwork, 1info)

call ztbrfs(uplo, trans, diag, n, kd, nrhs, ab, ldab, b, 1ldb, x, 1ldx, ferr,
berr, work, rwork, info)

Fortran 95:
call tbrfs(a, b, x [,uplo]l [,trans] [,diagl [,ferr] [,berr] [,infol)

3-145

3 Intel® Math Kernel Library Reference Manual

Description

This routine estimates the errors in the solution to a system of linear equations AX = B or A7X =B
or AX = B with a triangular band matrix 4, with multiple right-hand sides. For each computed
solution vector x, the routine computes the component-wise backward error 3. This error is the
smallest relative perturbation in elements of 4 and b such that x is the exact solution of the
perturbed system:

|al/|ag| < B |agl, 18b;{/|b;] < B |b;] such that (4 + 8A4)x = (b + 8b).

The routine also estimates the component-wise forward error in the computed solution ||x —
Xel|oo/|I¥]|o (here x, is the exact solution).

Before calling this routine, call the solver routine ?tbtrs.

Input Parameters

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates whether 4 is upper or lower triangular:

If uplo= U, then 4 is upper triangular.
If uplo='L", then 4 is lower triangular.

trans CHARACTER*1. Mustbe 'N' or 'T' or 'C'.
Indicates the form of the equations:
If trans = 'N"', the system has the form 4AX = B.
If trans = 'T', the system has the form A7X = B.
If trans='C', the system has the form 47X = B.
diag CHARACTER*1. Mustbe 'N' or 'U".
If diag= 'N"', 4 is not a unit triangular matrix.

If diag= 'U", A4 is unit triangular: diagonal elements of 4 are assumed to be 1
and not referenced in the array ab.

n INTEGER. The order of the matrix 4 (n = 0).

kd INTEGER. The number of super-diagonals or sub-diagonals in the matrix 4
(kd=0).

nrhs INTEGER. The number of right-hand sides (nrhs = 0).

ab, b, x, workREAL for stbrfs
DOUBLE PRECISION for dtbrfs
COMPLEX for ctbrfs
DOUBLE COMPLEX for ztbrfs.

Arrays:

3-146

LAPACK Routines: Linear Equations 3

ab(1dab, *) contains the upper or lower triangular matrix A4, as specified by
uplo, in band storage format.

b(1db, *) contains the right-hand side matrix B.
x(1dx,*) contains the solution matrix X.
work (*) is a workspace array.

The second dimension of a must be at least max(1,n);

the second dimension of b and x must be at least max(1,nrhs).

The dimension of work must be at least max(1, 3*n) for real flavors and
max(1, 2*n) for complex flavors.

ldab INTEGER. The first dimension of the array ab.

(1dab = kd +1).
1db INTEGER. The first dimension of b; 1db = max(1, n).
1dx INTEGER. The first dimension of x; 1dx = max(1, n).
iwork INTEGER.

Workspace array, DIMENSION at least max(1, n).

rwork REAL for ctbrfs
DOUBLE PRECISION for ztbrfs
Workspace array, DIMENSION at least max(1, n).

Output Parameters

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine tbrfs interface are the following:

3-147

3 Intel® Math Kernel Library Reference Manual

3-148

a Stands for argument ab in Fortran 77 interface. Holds the array A of size
(kd+1, n).

b Holds the matrix B of size (n, nrhs).

x Holds the matrix X of size (nn, nrhs).

ferr Holds the vector of length (nrhs).

berr Holds the vector of length (nrhs).

uplo Must be 'U' or 'L'. The default value is 'U".

trans Must be 'N', 'C', or 'T'. The default value is 'N'.

diag Must be 'N' or 'U'. The default value is 'N'.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the
actual error.

A call to this routine involves, for each right-hand side, solving a number of systems of linear
equations Ax = b; the number of systems is usually 4 or 5 and never more than 11. Each solution
requires approximately 2n* kd floating-point operations for real flavors or 8n* kd operations for
complex flavors.

LAPACK Routines: Linear Equations 3

Routines for Matrix Inversion

It is seldom necessary to compute an explicit inverse of a matrix.

In particular, do not attempt to solve a system of equations Ax = b by first computing A7 and then
forming the matrix-vector product x = A~ '5.
Call a solver routine instead (see Routines for Solving Systems of Linear Equations); this is more
efficient and more accurate.

However, matrix inversion routines are provided for the rare occasions when an explicit inverse

matrix is needed.

?getri

Computes the inverse of an LU-factored general matrix.

Syntax
Fortran 77:

call sgetri(n,

call dgetri (n,

call cgetri(n,

(
(
(
call zgetri(n,

Fortran 95:

call getri(a,

Description

a, lda, ipiv, work, lwork, info
a, lda, ipiv, work, lwork, info

a, lda, ipiv, work, lwork, info

R

a, lda, ipiv, work, lwork, info

ipiv [,infol)

This routine computes the inverse (47') of a general matrix A4.
Before calling this routine, call 2getrf to factorize 4.

Input Parameters

n

a, work

INTEGER. The order of the matrix 4 (n = 0).

REAL for sgetri

DOUBLE PRECISION for dgetri
COMPLEX for cgetri

DOUBLE COMPLEX for zgetri.
Arrays: a(lda, *), work (1work).

3-149

3 Intel® Math Kernel Library Reference Manual

3-150

lda

ipiv

1lwork

a(lda,*) contains the factorization of the matrix 4, as returned by >getrf: 4
=PLU.
The second dimension of a must be at least max(1,n).

work (lwork) is a workspace array.
INTEGER. The first dimension of a; 1da = max(1, n).

INTEGER.
Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?getrf.

INTEGER. The size of the work array (Iwork 2 n).

If 1work = -1, then a workspace query is assumed; the routine only calculates
the optimal size of the work array, returns this value as the first entry of the
work array, and no error message related to Iwork is issued by xerbla.

See Application Notes below for the suggested value of 1work.

Output Parameters

a

work (1)

info

Overwritten by the n-by-n matrix 4.

If info =0, on exit work (1) contains the minimum value of Iwork required
for optimum performance.
Use this 1work for subsequent runs.

INTEGER. If info =0, the execution is successful.

If info= -1, the ith parameter had an illegal value.

If info= i, the ith diagonal element of the factor U is zero, U is singular, and
the inversion could not be completed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine getri interface are the following:

a

ipiv

Holds the matrix 4 of size (n1, n).

Holds the vector of length (n).

LAPACK Routines: Linear Equations 3

Application Notes

For better performance, try using 1work = n*blocksize, where blocksize is a machine-dependent
value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run.
On exit, examine work (1) and use this value for subsequent runs.

The computed inverse X satisfies the following error bound:

|XA- 1| < c(n)e x| P|L|[U]

where ¢(n) is a modest linear function of n; € is the machine precision;
I denotes the identity matrix; P, L, and U are the factors of the matrix factorization A = PLU.

The total number of floating-point operations is approximately (4/3)n> for real flavors and
(16/3»)113 for complex flavors.

?potri

Computes the inverse of a symmetric (Hermitian)
positive-definite matrix.

Syntax

Fortran 77:

call spotri(uplo, lda, info

8]
QO

call dpotri lda, info

S

s}
I~
0
8]
@

call cpotri lda, info

S

S
I~
0
s
)

(
(
(
(

e R

call zpotri(uplo, n, a, lda, info
Fortran 95:

call potri(a [,uplo]l [,info]l)
Discussion

This routine computes the inverse (47') of a symmetric positive definite or, for complex flavors,
Hermitian positive-definite matrix 4.
Before calling this routine, call ?potrf to factorize 4.

3-151

3 Intel® Math Kernel Library Reference Manual

3-152

Input Parameters

uplo CHARACTER*1. Mustbe 'U" or 'L".
Indicates how the input matrix 4 has been factored:
If uplo='U", the array a stores the factor U of the Cholesky factorization 4 =

Utu.
If uplo= 'L, the array a stores the factor L of the Cholesky factorization 4 =
LLY.

n INTEGER. The order of the matrix 4 (n = 0).

a REAL for spotri

DOUBLE PRECISION for dpotri
COMPLEX for cpotri

DOUBLE COMPLEX for zpotri.
Array: a(1da, *).

Contains the factorization of the matrix A4, as returned by ?potrf.
The second dimension of a must be at least max(1,n).

lda INTEGER. The first dimension of a; 1da = max(1, n).

Output Parameters
a Overwritten by the n-by-n matrix 4.

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.
If info = i, the ith diagonal element of the Cholesky factor (and hence the
factor itself) is zero, and the inversion could not be completed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine potri interface are the following:
a Holds the matrix 4 of size (n1, n).

uplo Must be 'U! or 'L'. The default value is 'U".

LAPACK Routines: Linear Equations 3

Application Notes

The computed inverse X satisfies the following error bounds:

|xA- 1], < c(n)ery(B), [|AX-1I],< c(n)ex,(A)

where c(n2) is a modest linear function of n, and € is the machine precision;
I denotes the identity matrix.

The 2-norm ||4]|, of a matrix 4 is defined by ||4||, = max,..—1(4x - Ax)"2, and the condition
number Ky(A4) is defined by ky(4) = ||4]|, 47| -

The total number of floating-point operations is approximately (2/3)3 for real flavors and (8/3)n°
for complex flavors.

?pptri

Computes the inverse of a packed symmetric
(Hermitian) positive-definite matrix

Syntax
Fortran 77:

call spptri(uplo, n, ap, info)
call dpptri(uplo, n, ap, info)
call cpptri(uplo, n, ap, info)
call zpptri(uplo, n, ap, info)
Fortran 95:

call pptri(a [,uplo]l [,infol)

Description

This routine computes the inverse (47') of a symmetric positive definite or, for complex flavors,
Hermitian positive-definite matrix 4 in packed form. Before calling this routine, call ?pptrf to
factorize A.

3-153

3 Intel® Math Kernel Library Reference Manual

3-154

Input Parameters

uplo

ap

CHARACTER*1. Mustbe 'U' or 'L".

Indicates how the input matrix 4 has been factored:

If uplo= 'u", the array ap stores the packed factor U of the Cholesky
factorization 4 = UMU.

If uplo= 'L, the array ap stores the packed factor L of the Cholesky
factorization 4 = LL".

INTEGER. The order of the matrix 4 (n = 0).

REAL for spptri

DOUBLE PRECISION for dpptri

COMPLEX for cpptri

DOUBLE COMPLEX for zpptri.

Array, DIMENSION at least max(1,n(n+1)/2).

Contains the factorization of the packed matrix 4,
as returned by ?pptrf.

The dimension ap must be at least max(1,n(n+1)/2).

Output Parameters

ap

info

Overwritten by the packed n-by-n matrix 4.

INTEGER.

If info =0, the execution is successful.

If info= -1, the ith parameter had an illegal value.

If info = i, the ith diagonal element of the Cholesky factor (and hence the
factor itself) is zero, and the inversion could not be completed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine pptri interface are the following:

a

uplo

Stands for argument ap in Fortran 77 interface. Holds the array A4 of size
(n*(n+1) /2).

Must be 'U' or 'L'. The default value is 'U".

LAPACK Routines: Linear Equations 3

Application Notes

The computed inverse X satisfies the following error bounds:

|xA- 1], < c(n)ery(B), [AX-1Ill,< c(n)ex,(A)

where ¢(n) is a modest linear function of n, and € is the machine precision;
1 denotes the identity matrix.

The 2-norm ||4||, of a matrix 4 is defined by ||4||, = max, .- (4x - Ax)"2, and the condition

xx=1
number Ky(4) is defined by K(4) = ||A||» |147!], -

The total number of floating-point operations is approximately (2/3)n> for real flavors and (8/3)n’
for complex flavors.

?sytri

Computes the inverse of a symmetric matrix.

Syntax

Fortran 77:

call ssytri(uplo, n, a, lda, ipiv, work, info)
call dsytri(uplo, n, a, lda, ipiv, work, info)
call csytri(uplo, n, a, lda, ipiv, work, info)
call zsytri(uplo, n, a, lda, ipiv, work, info)

Fortran 95:
call sytri(a, ipiv [,uplo] [,info])
Description

This routine computes the inverse (47') of a symmetric matrix 4.
Before calling this routine, call ?sytrf to factorize 4.

Input Parameters

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates how the input matrix 4 has been factored:

3-155

3 Intel® Math Kernel Library Reference Manual

If uplo='u", the array a stores the Bunch-Kaufman factorization 4 =

PUDUPT,
If uplo='L", the array a stores the Bunch-Kaufman factorization 4 =
PLDLPT,

n INTEGER. The order of the matrix 4 (n = 0).

a, work REAL for ssytri

DOUBLE PRECISION for dsytri
COMPLEX for csytri

DOUBLE COMPLEX for zsytri.
Arrays:

a(lda,*) contains the factorization of the matrix A,
as returned by ?sytrf.
The second dimension of a must be at least max(1,n).

work (*) is a workspace array.
The dimension of work must be at least max(1,2*n).

lda INTEGER. The first dimension of a; 1da = max(1, n).

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?sytrf.

Output Parameters
a Overwritten by the n-by-n matrix 47!,

info INTEGER.
If info =0, the execution is successful.
If info=-1, the ith parameter had an illegal value.
If info = i, the ith diagonal element of D is zero, D is singular, and the
inversion could not be completed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine sytri interface are the following:

a Holds the matrix 4 of size (n1, nn).

3-156

LAPACK Routines: Linear Equations 3

ipiv Holds the vector of length (n).

uplo Mustbe 'U' or 'L'. The default value is 'U".

Application Notes

The computed inverse X satisfies the following error bounds:

DU P xPU- 1| < c(n)e (|D||U"| PT|xIP|Ul + |D||D 7))

for uplo='U", and

|IDL"P*XPL - 1| < c(n)e (|D||L7 PT|x] PIL| + |D||D7'])

for uplo= 'L'. Here c(n) is a modest linear function of n, and € is the machine precision; /

denotes the identity matrix.

The total number of floating-point operations is approximately (2/3)n> for real flavors and (8/3)n’

for complex flavors.

?hetri

Computes the inverse of a complex Hermitian matrix.

Syntax
Fortran 77:

call chetri(uplo, n, a, lda, ipiv, work, info)

call zhetri(uplo, n, a, lda, ipiv, work, info)

Fortran 95:
call hetri(a, ipiv [,uplol [, info])

Description

This routine computes the inverse (47') of a complex Hermitian matrix A.

Before calling this routine, call ?hetrf to factorize 4.

Input Parameters

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates how the input matrix 4 has been

factored:

3-157

3 Intel® Math Kernel Library Reference Manual

If uplo='u", the array a stores the Bunch-Kaufman factorization 4 =

PUDU"PT.
If uplo='L", the array a stores the Bunch-Kaufman factorization 4 =
PLDLYPT,
n INTEGER. The order of the matrix 4 (n = 0).
a, work COMPLEX for chetri
DOUBLE COMPLEX for zhetri.
Arrays:

a(lda,*) contains the factorization of the matrix 4,
as returned by ?hetrf.
The second dimension of a must be at least max(1,n).

work (*) is a workspace array.
The dimension of work must be at least max(1,n).

lda INTEGER. The first dimension of a; 1da = max(1, n).

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?hetrf.

Output Parameters
a Overwritten by the n-by-n matrix 47!,

info INTEGER.
If info =0, the execution is successful.
If info = -1, the ith parameter had an illegal value.
If info = i, the ith diagonal element of D is zero, D is singular, and the
inversion could not be completed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine hetri interface are the following:

a Holds the matrix 4 of size (n1, n).
ipiv Holds the vector of length (n).
uplo Must be 'U" or 'L'. The default value is 'U".

3-158

LAPACK Routines: Linear Equations 3

Application Notes
The computed inverse X satisfies the following error bounds:

DU P xPU- 1| < c(n)e (|D||U7 PT|x PlUl + |D||D7'))
for uplo='U", and

|IDL*P"XxPL - 1| < c(n)e (|D|| ¥ P*|x P|L| + |D||D'])

for uplo= 'L'. Here c(n) is a modest linear function of n, and € is the machine precision; /
denotes the identity matrix.

The total number of floating-point operations is approximately (2/3)3 for real flavors and (8/3)n°
for complex flavors.

The real counterpart of this routine is ?sytri.

?sptri

Computes the inverse of a symmetric matrix using

packed storage.
Syntax
Fortran 77:
call ssptri(uplo, n, ap, ipiv, work, info)
call dsptri(uplo, n, ap, ipiv, work, info)
call csptri(uplo, n, ap, ipiv, work, info)
call zsptri(uplo, n, ap, ipiv, work, info)

Fortran 95:
call sptri(a, ipiv [,uplo] [,info])

Description

This routine computes the inverse (47') of a packed symmetric matrix 4.
Before calling this routine, call ?sptrf to factorize 4.

3-159

3 Intel® Math Kernel Library Reference Manual

Input Parameters

uplo

n

ap, work

ipiv

CHARACTER*1. Mustbe 'U' or 'L".
Indicates how the input matrix 4 has been factored:

If uplo='u", the array ap stores the Bunch-Kaufman factorization 4 =

PUDU'PT.

If uplo= 'L, the array ap stores the Bunch-Kaufman factorization 4 =

PLDLTPT.
INTEGER. The order of the matrix 4 (n = 0).

REAL for ssptri

DOUBLE PRECISION for dsptri
COMPLEX for csptri

DOUBLE COMPLEX for zsptri.
Arrays:

ap (*) contains the factorization of the matrix 4,
as returned by ?sptrf.
The dimension of ap must be at least max(1,n(n+1)/2).

work (*) is a workspace array.
The dimension of work must be at least max(1,n).

INTEGER.
Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?sptrf.

Output Parameters

ap

info

Overwritten by the n-by-n matrix A~! in packed form.

INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

If info= i, the ith diagonal element of D is zero, D is singular, and the

inversion could not be completed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible

arguments, see Fortran-95 Interface Conventions.

Specific details for the routine sptri interface are the following:

3-160

LAPACK Routines: Linear Equations 3

a Stands for argument ap in Fortran 77 interface. Holds the array A4 of size
(n*(n+1) /2).

ipiv Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U".

Application Notes
The computed inverse X satisfies the following error bounds:

DU P xPU- 1| < c(n)e (|DI|U7 P x| PlUl + | DI|D7'])
for uplo='U"', and

DL P xPL - 1| < c(n)e (|D||L7 PT|x] P|L| + |D||D7'])

for uplo= 'L'. Here c(n) is a modest linear function of n, and € is the machine precision; /
denotes the identity matrix.

The total number of floating-point operations is approximately (2/3)n> for real flavors and (8/3)n>
for complex flavors.

?hptri

Computes the inverse of a complex Hermitian matrix
using packed storage.

Syntax
Fortran 77:

call chptri(uplo, n, ap, ipiv, work, info)

call zhptri(uplo, n, ap, ipiv, work, info)
Fortran 95:

call hptri(a, ipiv [,uplo] [,info])
Description

This routine computes the inverse (47') of a complex Hermitian matrix 4 using packed storage.
Before calling this routine, call ?hptrf to factorize 4.

3-161

3 Intel® Math Kernel Library Reference Manual

Input Parameters

uplo CHARACTER*1. Mustbe 'U" or 'L".
Indicates how the input matrix 4 has been factored:
If uplo= 'U", the array ap stores the packed Bunch-Kaufman factorization 4

= PUDU"PT.
If uplo= 'L, the array ap stores the packed Bunch-Kaufman factorization 4
= PLDLHPT,
n INTEGER. The order of the matrix 4 (n = 0).
ap, work COMPLEX for chptri
DOUBLE COMPLEX for zhptri.
Arrays:

ap (*) contains the factorization of the matrix 4,
as returned by ?hptrf.
The dimension of ap must be at least max(1,n(nt+1)/2).

work (*) is a workspace array.
The dimension of work must be at least max(1,n).

ipiv INTEGER.
Array, DIMENSTION at least max(1,n).
The ipiv array, as returned by ?hptrf.

Output Parameters
ap Overwritten by the n-by-n matrix 4.

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.
If info= i, the ith diagonal element of D is zero, D is singular, and the
inversion could not be completed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine hptri interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array A of size
(n*(n+1) /2).

3-162

LAPACK Routines: Linear Equations 3

ipiv Holds the vector of length (n).

uplo Mustbe 'U' or 'L'. The default value is 'U".

Application Notes
The computed inverse X satisfies the following error bounds:

DU P xPU- 1| < c(n)e (|D||U7| P"|x| P|t] + |D||D7'])
for uplo="'U"', and

|IDL*P"XPL - 1| < c(n)e (|D|| L7 P7|x P|L| + |D||D'])

for uplo= 'L'. Here c(n) is a modest linear function of n, and € is the machine precision; /
denotes the identity matrix.

The total number of floating-point operations is approximately (2/3)n3 for real flavors and (8/3)n3
for complex flavors.

The real counterpart of this routine is ?sptri.

?trtri

Computes the inverse of a triangular matrix.

Syntax

Fortran 77:

call strtri(uplo, diag, n, a, lda, info)
call dtrtri(uplo, diag, n, a, lda, info)
call ctrtri(uplo, diag, n, a, lda, info)
call ztrtri(uplo, diag, n, a, lda, info)

Fortran 95:
call trtri(a [,uplo]l [,diag]l [,info]l)

Description

This routine computes the inverse (47') of a triangular matrix A.

3-163

3 Intel® Math Kernel Library Reference Manual

Input Parameters

uplo CHARACTER*1. Mustbe 'U" or 'L".
Indicates whether 4 is upper or lower triangular:

If uplo='uU", then 4 is upper triangular.
If uplo= 'L, then 4 is lower triangular.
diag CHARACTER+*1. Mustbe 'N' or 'U".
If diag= 'N", then 4 is not a unit triangular matrix.

If diag= 'U", A4 is unit triangular: diagonal elements of 4 are assumed to be 1
and not referenced in the array a.

n INTEGER. The order of the matrix 4 (n = 0).

a REAL for strtri
DOUBLE PRECISION for dtrtri
COMPLEX for ctrtri
DOUBLE COMPLEX for ztrtri.

Array: DIMENSION (lda,*).
Contains the matrix 4.
The second dimension of a must be at least max(1,n).

lda INTEGER. The first dimension of a; 1da = max(1, n).

Output Parameters
a Overwritten by the n-by-n matrix 47!,

info INTEGER.
If info =0, the execution is successful.
If info = -1, the ith parameter had an illegal value.
If info = i, the ith diagonal element of A4 is zero, 4 is singular, and the
inversion could not be completed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine trtri interface are the following:
a Holds the matrix 4 of size (n1, n).

uplo Must be 'U" or 'L'. The default value is 'U".

3-164

LAPACK Routines: Linear Equations 3

diag Must be 'N' or 'U'. The default value is 'N'.

Application Notes
The computed inverse X satisfies the following error bounds:
|xa- 1] < c(n)e|x]|Al
[x-a"|< c(n)ela’llal|x]

where ¢(n) is a modest linear function of n; € is the machine precision;
1 denotes the identity matrix.

The total number of floating-point operations is approximately (1/3)3 for real flavors and (4/3)n°
for complex flavors.

?tptri

Computes the inverse of a triangular matrix using
packed storage.

Syntax

Fortran 77:

call stptri(uplo, diag, n, ap, info)
call dtptri(uplo, diag, n, ap, info)
call ctptri(uplo, diag, n, ap, info)
call ztptri(uplo, diag, n, ap, info)

Fortran 95:

call tptri(a [,uplo]l [,diag]l [,infol)

Description

This routine computes the inverse (47') of a packed triangular matrix A4.

Input Parameters

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates whether 4 is upper or lower triangular:

3-165

3 Intel® Math Kernel Library Reference Manual

If uplo='U", then 4 is upper triangular.
If uplo="'L", then 4 is lower triangular.
diag CHARACTER*1. Mustbe 'N' or 'U"'.
If diag= 'N", then 4 is not a unit triangular matrix.

If diag= 'U", A4 is unit triangular: diagonal elements of 4 are assumed to be 1
and not referenced in the array ap.

n INTEGER. The order of the matrix 4 (n = 0).

ap REAL for stptri
DOUBLE PRECISION for dtptri
COMPLEX for ctptri
DOUBLE COMPLEX for ztptri.

Array: DIMENSION at least max(1,n(n+1)/2).
Contains the packed triangular matrix 4.

Output Parameters
ap Overwritten by the packed n-by-n matrix 471,

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.
If info= i, the ith diagonal element of A4 is zero, A4 is singular, and the
inversion could not be completed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine tptri interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array A4 of size
(n* (n+1) /2).

uplo Must be 'U' or 'L'. The default value is 'U".

diag Must be 'N' or 'U'. The default value is 'N'.

3-166

LAPACK Routines: Linear Equations 3

Application Notes
The computed inverse X satisfies the following error bounds:
|xAa- 1| < c(n)e|x]|A|
[x-2a7"< c(n)e|a||allx

where ¢(n) is a modest linear function of n; € is the machine precision;
1 denotes the identity matrix.

The total number of floating-point operations is approximately (1/3)3 for real flavors and (4/3)n°
for complex flavors.

3-167

3 Intel® Math Kernel Library Reference Manual

Routines for Matrix Equilibration

Routines described in this section are used to compute scaling factors needed to equilibrate a

matrix. Note that these routines do not actually scale the matrices.

?geequ

Computes row and column scaling factors intended to
equilibrate a matrix and reduce its condition number.

Syntax
Fortran 77:

call sgeequ(m, n, a, lda, r,
call dgeequ(m, n, a, lda, r,
call cgeequ(m, n, a, lda, r,
call zgeequ(m, n, a, lda, r,
Fortran 95:

call geequ(a, r, c [,rowcnd]

Description

This routine computes row and column scalings intended to equilibrate an m-by-n matrix 4 and
reduce its condition number. The output array r returns the row scale factors and the array c the
column scale factors. These factors are chosen to try to make the largest element in each row and

c, rowcnd, colcnd, amax,
c, rowcnd, colcnd, amax,
c, rowcnd, colcnd, amax,

c, rowcnd, colcnd, amax,

info)
info)
info)

info)

[,colcend] [,amax] [,info])

column of the matrix B with elements b,fr(i)*al-j* c(j) have absolute value 1.

See ?1agge auxiliary function that uses scaling factors computed by ?geequ.

Input Parameters

m INTEGER. The number of rows of the matrix A, m 20.
n INTEGER. The number of columns of the matrix A,
n =0

3-168

LAPACK Routines: Linear Equations 3

lda

REAL for sgeequ

DOUBLE PRECISION for dgeequ
COMPLEX for cgeequ

DOUBLE COMPLEX for zgeequ.

Array: DIMENSION (lda, *).
Contains the m-by-n matrix 4 whose equilibration factors are to be computed.
The second dimension of a must be at least max(1,n).

INTEGER. The leading dimension of a; 1da = max(1, m).

Output Parameters

r, C

rowcnd

colcnd

amax

info

REAL for single precision flavors;

DOUBLE PRECISION for double precision flavors.

Arrays: r(m), c(n).

If info=0, or info > m, the array r contains the row scale factors of the
matrix A4.

If info=0, the array c contains the column scale factors of the matrix 4.

REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
If info=0o0r info>m, rowcnd contains the ratio of the smallest (i) to the

largest r(i).

REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
If info=0, colcnd contains the ratio of the smallest c(i) to the largest c(i).

REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Absolute value of the largest element of the matrix A.

INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.
If info=1 and
i< m, the ith row of A4 is exactly zero;
i> m, the (i-m)th column of 4 is exactly zero.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

3-169

3 Intel® Math Kernel Library Reference Manual

Specific details for the routine geequ interface are the following:

a Holds the matrix 4 of size (m, n).
r Holds the vector of length (m).
c Holds the vector of length (n).

Application Notes

All the components of r and ¢ are restricted to be between SMLNUM = smallest safe number
and BIGNUM = largest safe number. Use of these scaling factors is not guaranteed to reduce the
condition number of 4 but works well in practice.

If rowend 2 0.1 and amax is neither too large nor too small, it is not worth scaling by . If
colcnd 2 0.1, it is not worth scaling by c.

If amax is very close to overflow or very close to underflow, the matrix 4 should be scaled.

?gbequ

Computes row and column scaling factors intended to
equilibrate a band matrix and reduce its condition

number.

3-170

Syntax

Fortran 77:
call sgbequ n, k1, ku, ab, ldab, r, c¢, rowcnd, colcnd, amax, info

call dgbequ n, k1, ku, ab, ldab, r, c¢, rowcnd, colcnd, amax, info

R

(m,
(m,

call cgbequ(m, n, k1, ku, ab, ldab, r, ¢, rowcnd, colcnd, amax, info
(m,

call zgbequ n, k1, ku, ab, ldab, r, c¢, rowcnd, colcnd, amax, info

Fortran 95:

call gbequ(a, r, c¢ [,k1] [,rowecnd] [,colcnd] [,amax] [,infol)

LAPACK Routines: Linear Equations 3

Description

This routine computes row and column scalings intended to equilibrate an m-by-n band matrix 4
and reduce its condition number. The output array r returns the row scale factors and the array c
the column scale factors. These factors are chosen to try to make the largest element in each row
and column of the matrix B with elements b;=r(i)*a;;* c(j) have absolute value 1.

See ?1aggb auxiliary function that uses scaling factors computed by ?gbequ.

Input Parameters

m INTEGER. The number of rows of the matrix A, m =0.
n INTEGER. The number of columns of the matrix A,

n 20.
k1 INTEGER. The number of sub-diagonals within the band of 4 (k1 > 0).
ku INTEGER. The number of super-diagonals within the band of 4 (ku = 0).
ab REAL for sgbequ

DOUBLE PRECISION for dgbequ
COMPLEX for cgbequ
DOUBLE COMPLEX for zgbequ.

Array, DIMENSION (ldab, *).
Contains the original band matrix 4 stored in rows
from 1 to k1+ ku+ 1.

The second dimension of ab must be at least max(1,n);

ldab INTEGER. The leading dimension of ab,
ldab 2 kl+tkutl.

Output Parameters

r, ¢ REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Arrays: r(m), c(n).
If info=0, or info > m, the array r contains the row scale factors of the
matrix 4.
If info=0, the array c contains the column scale factors of the matrix 4.

rowend REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
If info=0o0r info>m, rowcnd contains the ratio of the smallest (i) to the

largest r(i).

3-171

3 Intel® Math Kernel Library Reference Manual

colend REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
If info=0, colcnd contains the ratio of the smallest (i) to the largest c(i).

amax REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Absolute value of the largest element of the matrix A.

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.
If info=1 and
i< m, the ith row of 4 is exactly zero;
1> m, the (i-m)th column of 4 is exactly zero.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gbequ interface are the following:

a Stands for argument ab in Fortran 77 interface. Holds the array 4 of size
(kl+ku+1,n).

r Holds the vector of length (m).

c Holds the vector of length (n).

k1 If omitted, assumed k1 = ku.

ku Restored as ku = lda-k1-1.

Application Notes

All the components of r and ¢ are restricted to be between SMLNUM = smallest safe number
and BIGNUM = largest safe number. Use of these scaling factors is not guaranteed to reduce the
condition number of 4 but works well in practice.

If rowend 2 0.1 and amax is neither too large nor too small, it is not worth scaling by r. If
colcnd 2 0.1, it is not worth scaling by c.

If amax is very close to overflow or very close to underflow, the matrix 4 should be scaled.

3-172

LAPACK Routines: Linear Equations 3

?poequ
Computes row and column scaling factors intended to

equilibrate a symmetric (Hermitian) positive definite
matrix and reduce its condition number.

Syntax
Fortran 77:

call spoequ(n, a, lda, s, scond, amax, info)
call dpoequ(n, a, lda, s, scond, amax, info)
call cpoequ(n, a, lda, s, scond, amax, info)

call zpoequ(n, a, lda, s, scond, amax, 1info)

Fortran 95:

call poequ(a, s [,scond] [,amax] [,info])

Description

This routine computes row and column scalings intended to equilibrate a symmetric (Hermitian)
positive definite matrix 4 and reduce its condition number (with respect to the two-norm). The
output array s returns scale factors computed as

1

a;i i

s(i) =

These factors are chosen so that the scaled matrix B with elements b;=s(i)*a;;* s(j) has diagonal
elements equal to 1.

This choice of s puts the condition number of B within a factor n of the smallest possible
condition number over all possible diagonal scalings.

See ?1agsy auxiliary function that uses scaling factors computed by ?poequ.

Input Parameters
n INTEGER. The order of the matrix A, n =0.

3-173

3 Intel® Math Kernel Library Reference Manual

3-174

1da

REAL for spoequ

DOUBLE PRECISION for dpoequ
COMPLEX for cpoequ

DOUBLE COMPLEX for zpoequ.

Array: DIMENSION (l1da, *).

Contains the n-by-n symmetric or Hermitian positive definite matrix 4 whose
scaling factors are to be computed. Only diagonal elements of 4 are
referenced.

The second dimension of a must be at least max(1,n).

INTEGER. The leading dimension of a; 1da = max(1, m).

Output Parameters

=)

scond

amax

info

REAL for single precision flavors;

DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (n).

If info=0, the array s contains the scale factors for A.

REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
If info=0, scond contains the ratio of the smallest s(i) to the largest s(i).

REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Absolute value of the largest element of the matrix A.

INTEGER.

If info =0, the execution is successful.

If info = -1, the ith parameter had an illegal value.

If info= 1, the ith diagonal element of 4 is nonpositive.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine poequ interface are the following:

a

s

Holds the matrix 4 of size (n1, n).

Holds the vector of length (n).

LAPACK Routines: Linear Equations 3

Application Notes
If scond 2 0.1 and amax is neither too large nor too small, it is not worth scaling by s.

If amax is very close to overflow or very close to underflow, the matrix 4 should be scaled.

?ppequ

Computes row and column scaling factors intended to
equilibrate a symmetric (Hermitian) positive definite
matrix in packed storage and reduce its condition
number.

Syntax
Fortran 77:

call sppequ(uplo, n, ap, s, scond, amax, info)
ap, s, scond, amax, info)

call dppequ(uplo,

B

call cppequ(uplo, ap, s, scond, amax, info)

B

(
(
(
(

call zppequ(uplo, n, ap, s, scond, amax, info)
Fortran 95:

call ppequ(a, s [,scond] [,amax] [,uplo] [,info])
Description

This routine computes row and column scalings intended to equilibrate a symmetric (Hermitian)
positive definite matrix 4 in packed storage and reduce its condition number (with respect to the
two-norm). The output array s returns scale factors computed as

1

N8 i

These factors are chosen so that the scaled matrix B with elements b;=s(i)*a;;* s(j) has diagonal
elements equal to 1.

s(i) =

This choice of s puts the condition number of B within a factor n of the smallest possible
condition number over all possible diagonal scalings.

3-175

3 Intel® Math Kernel Library Reference Manual

3-176

See ?1lagsp auxiliary function that uses scaling factors computed by ?ppequ.

Input Parameters

uplo

ap

CHARACTER*1. Mustbe 'U' or 'L".

Indicates whether the upper or lower triangular part of 4 is packed in the array
ap:

If uplo='uU", the array ap stores the upper triangular part of the matrix 4.

If uplo='L", the array ap stores the lower triangular part of the matrix 4.
INTEGER. The order of matrix A (n = 0).

REAL for sppequ

DOUBLE PRECISION for dppequ

COMPLEX for cppequ

DOUBLE COMPLEX for zppequ.

Array, DIMENSION at least max(1,n(n+1)/2).

The array ap contains either the upper or the lower triangular part of the matrix
A (as specified by uplo) in packed storage (see Matrix Storage Schemes).

Output Parameters

=)

scond

amax

info

REAL for single precision flavors;

DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (n).

If info=0, the array s contains the scale factors for A.

REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
If info=0, scond contains the ratio of the smallest s(i) to the largest s(i).

REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Absolute value of the largest element of the matrix A.

INTEGER.

If info =0, the execution is successful.

If info = -1, the ith parameter had an illegal value.

If info= 1, the ith diagonal element of 4 is nonpositive.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

LAPACK Routines: Linear Equations 3

Specific details for the routine ppequ interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array 4 of size
(n*(n+1) /2).

s Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U".

Application Notes
If scond = 0.1 and amax is neither too large nor too small, it is not worth scaling by s.

If amax is very close to overflow or very close to underflow, the matrix 4 should be scaled.

?pbequ

Computes row and column scaling factors intended to
equilibrate a symmetric (Hermitian) positive definite
band matrix and reduce its condition number.

Syntax

Fortran 77:

call spbequ(uplo, n, kd, ab, ldab, s, scond, amax, info)
call dpbequ(uplo, n, kd, ab, ldab, s, scond, amax, info)
call cpbequ(uplo, n, kd, ab, ldab, s, scond, amax, info)

call zpbequ(uplo, n, kd, ab, ldab, s, scond, amax, info)

Fortran 95:

call pbequ(a, s [,scond] [,amax] [,uplo] I[,info])

Description

This routine computes row and column scalings intended to equilibrate a symmetric (Hermitian)
positive definite matrix 4 in packed storage and reduce its condition number (with respect to the
two-norm). The output array s returns scale factors computed as

1

a;i i

s(i) =

3-177

3 Intel® Math Kernel Library Reference Manual

3-178

These factors are chosen so that the scaled matrix B with elements b;=s(i)*a;;* s(j) has diagonal
elements equal to 1.

This choice of s puts the condition number of B within a factor n of the smallest possible
condition number over all possible diagonal scalings.

See ?1agsb auxiliary function that uses scaling factors computed by ?pbequ.

Input Parameters

uplo

kd

ab

ldab

CHARACTER*1. Mustbe 'U' or 'L".

Indicates whether the upper or lower triangular part of 4 is packed in the array
ab:

If uplo= 'u", the array ab stores the upper triangular part of the matrix 4.

If uplo= 'L, the array ab stores the lower triangular part of the matrix 4.
INTEGER. The order of matrix 4 (n = 0).

INTEGER. The number of super-diagonals or sub-diagonals in the matrix 4
(kd = 0).

REAL for spbequ

DOUBLE PRECISION for dpbequ

COMPLEX for cpbequ

DOUBLE COMPLEX for zpbequ.

Array, DIMENSION (1dab,*).

The array ap contains either the upper or the lower triangular part of the matrix
A (as specified by uplo) in band storage (see Matrix Storage Schemes).

The second dimension of ab must be at least max(1, n).

INTEGER. The leading dimension of the array ab.
(1dab > kd +1).

Output Parameters

=)

scond

amax

REAL for single precision flavors;

DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (n).

If info=0, the array s contains the scale factors for A.

REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
If info=0, scond contains the ratio of the smallest s(i) to the largest s(i).

REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Absolute value of the largest element of the matrix A.

LAPACK Routines: Linear Equations 3

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.
If info= i, the ith diagonal element of 4 is nonpositive.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine pbequ interface are the following:

a Stands for argument ab in Fortran 77 interface. Holds the array A4 of size
(kd+1,n).

s Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U".

Application Notes
If scond 2 0.1 and amax is neither too large nor too small, it is not worth scaling by s.

If amax is very close to overflow or very close to underflow, the matrix 4 should be scaled.

3-179

3 Intel® Math Kernel Library Reference Manual

Driver Routines

Table 3-3 lists the LAPACK driver routines for solving systems of linear equations with real or
complex matrices.

Table 3-3 Driver Routines for Solving Systems of Linear Equations
Matrix type, Simple Driver Expert Driver
storage scheme
general ?gesv ?gesvx
general band ?gbsv ?gbsvx
general tridiagonal 2gtsv ?gtsvx
symmetric/Hermitian ?posv ?pOSVX

positive-definite

symmetric/Hermitian ?ppsv ?PPSVvX
positive-definite,

packed storage

symmetric/Hermitian ?pbsv ?pbsvx
positive-definite,

band

symmetric/Hermitian ?ptsv ?ptsvx
positive-definite,

tridiagonal

symmetric/Hermitian ?gysv/?hesv ?sysvx /?hesvx
indefinite

symmetric/Hermitian ?spsv./?hpsv ?spsvx /?hpsvx
indefinite,

packed storage

complex symmetric ?sysv ?8YysSvx
complex symmetric, ?Spsv ?SpPSVX

packed storage

In this table ? stands for s (single precision real), d (double precision real),
c (single precision complex), or z (double precision complex).

3-180

LAPACK Routines: Linear Equations 3

?gesv

Computes the solution to the system of linear equations
with a square matrix A and multiple right-hand sides.

Syntax

Fortran 77:

call sgesv(n, nrhs, a, lda, ipiv, b, 1ldb, info)
call dgesv(n, nrhs, a, lda, ipiv, b, 1db, info)
call cgesv(n, nrhs, a, lda, ipiv, b, 1ldb, info)
call zgesv(n, nrhs, a, lda, ipiv, b, 1db, info)
Fortran 95:

call gesv(a, b [,ipiv] [,infol)

Description

This routine solves for X the system of linear equations AX = B, where A is an n-by-n matrix, the
columns of matrix B are individual right-hand sides, and the columns of X are the corresponding
solutions.

The LU decomposition with partial pivoting and row interchanges is used to factor4as A =P L
U, where P is a permutation matrix, L is unit lower triangular, and U is upper triangular. The
factored form of 4 is then used to solve the system of equations 4AX = B.

Input Parameters

n INTEGER. The order of 4; the number of rows in B
(n20).

nrhs INTEGER. The number of right-hand sides; the number of columns in B
(nrhs 2 0).

a, b REAL for sgesv

DOUBLE PRECISION for dgesv
COMPLEX for cgesv

DOUBLE COMPLEX for zgesv.
Arrays: a(1da,*), b(1db,*).

3-181

3 Intel® Math Kernel Library Reference Manual

3-182

lda

1db

The array a contains the matrix 4.

The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations.

The second dimension of a must be at least max(1,n), the second dimension of
b at least max(1,nrhs).

INTEGER. The first dimension of a; 1da = max(1, n).

INTEGER. The first dimension of b; 1db = max(1, n).

Output Parameters

a

ipiv

info

Overwritten by the factors L and U from the factorization of 4 = P L U, the unit
diagonal elements of L are not stored .

Overwritten by the solution matrix X.

INTEGER.

Array, DIMENSION at least max(1,n).

The pivot indices that define the permutation matrix P; row i of the matrix was
interchanged with row ipiv(i).

INTEGER. If info=0, the execution is successful.

If info= -1, the ith parameter had an illegal value.

If info= 1, U(4,1) is exactly zero. The factorization has been completed, but
the factor U is exactly singular, so the solution could not be computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gesv interface are the following:

a

b

ipiv

Holds the matrix 4 of size (n1, n).
Holds the matrix B of size (n, nrhs).

Holds the vector of length (n).

LAPACK Routines: Linear Equations 3

?gesvx

Computes the solution to the system of linear equations
with a square matrix A and multiple right-hand sides,
and provides error bounds on the solution.

Syntax
Fortran 77:

call sgesvx(fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r, c, b,
1db, x, 1ldx, rcond, ferr, berr, work, iwork, info)

call dgesvx(fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r, c, b,
1db, x, 1ldx, rcond, ferr, berr, work, iwork, info)

call cgesvx(fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r, c, b,
1db, x, 1ldx, rcond, ferr, berr, work, rwork, info)

call zgesvx(fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r, c, b,
1db, x, 1ldx, rcond, ferr, berr, work, rwork, info)

Fortran 95:

call gesvx(a, b, x [,af] [,ipiv] [, fact] [,trans] [,equed] [,r] [,cl
[, ferr] [,berr] [,rcond] I[,xrpvgrw] [,info]l)

Description

This routine uses the LU factorization to compute the solution to a real or complex system of
linear equations AX = B, where A is an n-by-n matrix, the columns of matrix B are individual
right-hand sides, and the columns of X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.
The routine ?gesvx performs the following steps:

1. If fact ='E', real scaling factors r and c are computed to equilibrate
the system:

trans='N" diag(r)*A*diag(c) *diag(c)' *X = diag(r)*B
trans='T" (diag(r)*A4*diag(c))’ *diag(r)'1 * X = diag(c)*B
trans='c": (diag(r)*A4*diag(c))!! *diag(x)!*X = diag(c)*B

3-183

3 Intel® Math Kernel Library Reference Manual

3-184

Whether or not the system will be equilibrated depends on the scaling of the matrix 4, but if
equilibration is used, 4 is overwritten by diag(r)*A*diag(c) and B by diag(r)*B (if trans='N") or
diag(c)*B (if trans="T' or 'C").

2.If fact ='N' or 'E', the LU decomposition is used to factor the matrix 4 (after equilibration if
fact ='E'")as A = P L U, where P is a permutation matrix, L is a unit lower triangular matrix, and
U is upper triangular.

3. If some U; ; =0, so that U is exactly singular, then the routine returns with info = 1.
Otherwise, the factored form of 4 is used to estimate the condition number of the matrix 4. If the
reciprocal of the condition number is less than machine precision, info=n + 1 is returned as a
warning, but the routine still goes on to solve for X and compute error bounds as described below.

4. The system of equations is solved for X using the factored form of 4.

5. Iterative refinement is applied to improve the computed solution matrix and calculate error
bounds and backward error estimates for it.

6. If equilibration was used, the matrix X is premultiplied by diag(c) (if trans ='N'") or diag(r) (if
trans ='T' or 'C') so that it solves the original system before equilibration.

Input Parameters
fact CHARACTER*1. Mustbe 'F', 'N',or 'E'.

Specifies whether or not the factored form of the matrix A4 is supplied on entry,
and if not, whether the matrix 4 should be equilibrated before it is factored.

If fact ='F': onentry, af and ipiv contain the factored form of 4. If
equed is not 'N', the matrix 4 has been equilibrated with scaling factors given
by rand c.

a, af, and ipiv are not modified.

If fact = 'N', the matrix 4 will be copied to af and factored.
If fact = 'E', the matrix 4 will be equilibrated if necessary, then copied to af
and factored.

trans CHARACTER*1. Mustbe 'N', 'T', or 'C"'.
Specifies the form of the system of equations:

If trans = 'N', the system has the form 4 X=B

(No transpose);

If trans='T', the system has the form A" X=B (Transpose);

If trans='cC', the system has the form A" X =B (Conjugate transpose);

LAPACK Routines: Linear Equations 3

n

nrhs

a,af,b,work

1da
ldaf
1db

ipiv

equed

INTEGER. The number of linear equations; the order of the matrix 4 (n > 0).

INTEGER. The number of right hand sides; the number of columns of the
matrices B and X (nrhs = 0).

REAL for sgesvx

DOUBLE PRECISION for dgesvx

COMPLEX for cgesvx

DOUBLE COMPLEX for ZgesvxX.

Arrays: a(1da,*), af(1daf,*), b(1db,*), work(*).

The array a contains the matrix 4. If fact ='F' and equed is not 'N', then 4
must have been equilibrated by the scaling factors in r and/or c. The second
dimension of a must be at least max(1,n).

The array af is an input argument if fact ='F'. It contains the factored form
of the matrix 4, i.e., the factors L and U from the factorization A = P L U as
computed by ?getrf. If equed is not 'N', then af is the factored form of the
equilibrated matrix 4. The second dimension of af must be at least max(1,n).
The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations. The second dimension of b must be at least
max(1,nrhs).

work (*) is a workspace array.
The dimension of work must be at least max(1,4*n) for real flavors, and at
least max(1,2*n) for complex flavors.

INTEGER. The first dimension of a; 1da > max(1, n).
INTEGER. The first dimension of af; 1daf > max(1, n).
INTEGER. The first dimension of b; 1db > max(1, n).

INTEGER.

Array, DIMENSION at least max(1,n).

The array ipivis an input argument if fact ="F'.

It contains the pivot indices from the factorization

A =P L Uascomputed by 2getrf; row i of the matrix was interchanged with
row ipiv(i).

CHARACTER*1. Mustbe 'N', 'R', 'C',0Or 'B'.

equed is an input argument if fact ='F'. It specifies the form of equilibration
that was done:

If equed = 'N', no equilibration was done (always

true if fact ='N");

If equed = 'Rr', row equilibration was done and 4 has been premultiplied by

3-185

3 Intel® Math Kernel Library Reference Manual

3-186

1dx

iwork

rwork

diag(r);

If equed= ', column equilibration was done and 4 has been postmultiplied
by diag(c);

If equed = 'B"', both row and column equilibration was done; 4 has been
replaced by diag(r)*A4*diag(c).

REAL for single precision flavors;

DOUBLE PRECISION for double precision flavors.

Arrays: r(n), c(n).

The array r contains the row scale factors for 4, and the array ¢ contains the
column scale factors for 4. These arrays are input arguments if fact ='F' only;
otherwise they are output arguments.

If equed='R" or 'B', 4 is multiplied on the left by diag(r); if equed= 'N"
or 'C', ris not accessed.

If fact ='F' and equed= 'R' or 'B', each element of r must be positive.

If equed='C' or 'B', 4 is multiplied on the right by diag(c); if equed= 'N'
or 'R', cis not accessed.
If fact ='F'and equed= 'C' or 'B', each element of c must be positive.

INTEGER. The first dimension of the output array x; 1dx = max(1, n).

INTEGER.
Workspace array, DIMENSION at least max(1, n); used in real flavors only.

REAL for single precision flavors;

DOUBLE PRECISION for double precision flavors.

Workspace array, DIMENSION at least max(1, 2 *n); used in complex flavors
only.

Output Parameters

X

REAL for sgesvx

DOUBLE PRECISION for dgesvx
COMPLEX for cgesvx

DOUBLE COMPLEX for zgesvx.
Array, DIMENSION (1dx, *).

If info=0or info= ntl, the array x contains the solution matrix X to the
original system of equations. Note that 4 and B are modified on exit if equed
'N', and the solution to the equilibrated system is:

diag(c)'l*X, if trans= 'N' and equed= 'C"' or 'B'; diag(r)'l*X, if
trans="'T' or 'C' and equed= 'R' or 'B".

The second dimension of x must be at least max(1,nrhs).

LAPACK Routines: Linear Equations 3

ar

rcond

ferr, berr

ipiv

equed

work, rwork

Array a is not modified on exit if fact ='F' or 'N', or if fact ='E' and equed
='N".

If equed # 'N', A is scaled on exit as follows:

equed='R': A=diag(r)*4

equed='C': A=A*diag(c)

equed='B': A =diag(r)*A4*diag(c)

If fact ='N'or 'E', then af is an output argument and on exit returns the
factors L and U from the factorization 4 = P L U of the original matrix 4(if
fact ='N") or of the equilibrated matrix 4 (if fact ='E"). See the description
of a for the form of the equilibrated matrix.

Overwritten by diag(r)* B if trans="'N' and

equed='R' or 'B';

overwritten by diag(c)*B if trans="'T' and equed='C' or 'B';
not changed if equed= 'N".

These arrays are output arguments if fact #'F'.
See the description of r, ¢ in Input Arguments section.

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

An estimate of the reciprocal condition number of the matrix 4 after
equilibration (if done). The routine sets rcond =0 if the estimate underflows;
in this case the matrix is singular (to working precision). However, anytime
rcond is small compared to 1.0,

for the working precision, the matrix may be poorly conditioned or even
singular.

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and relative backward errors, respectively, for each solution vector.

If fact="N'or 'E', then ipivis an output argument and on exit contains the
pivot indices from the factorization 4 = P L U of the original matrix A(if fact
='N") or of the equilibrated matrix 4 (if fact ='E").

If fact #'F', then equed is an output argument. It specifies the form of
equilibration that was done (see the description of equed in Input Arguments
section).

On exit, work(1) for real flavors, or rwork(1) for complex flavors, contains
the reciprocal pivot growth factor norm(4)/norm(U). The "max absolute
element" norm is used. If work(1) for real flavors, or rwork(1) for complex

3-187

3 Intel® Math Kernel Library Reference Manual

info

flavors is much less than 1, then the stability of the LU factorization of the
(equilibrated) matrix 4 could be poor. This also means that the solution x,
condition estimator rcond, and forward error bound ferr could be unreliable.
If factorization fails with

0 < info < n,then work(1) for real flavors, or rwork(1) for complex flavors
contains the reciprocal pivot growth factor for the leading info columns of A4.

INTEGER. If info=0, the execution is successful.

If info= -1, the ith parameter had an illegal value.

If info=i,and i < n,then U(4,1) is exactly zero. The factorization has been
completed, but the factor U is exactly singular, so the solution and error
bounds could not be computed; rcond = 0 is returned.

If info=1i,and i =n +1, then U is nonsingular, but rcond is less than
machine precision, meaning that the matrix is singular to working precision.
Nevertheless, the solution and error bounds are computed because there are a
number of situations where the computed solution can be more accurate than
the value of rcond would suggest.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gesvx interface are the following:

a
b
X
af

ipiv

ferr

berr

3-188

Holds the matrix 4 of size (n1, nn).
Holds the matrix B of size (n, nrhs).
Holds the matrix X of size (n, nrhs).
Holds the matrix AF of size (n, n).
Holds the vector of length (n).

Holds the vector of length (n). Default value for each element is (i) =
1.0 WP

Holds the vector of length (). Default value for each element is c(1) =
1.0 WP

Holds the vector of length (nrhs).

Holds the vector of length (nrhs).

LAPACK Routines: Linear Equations 3

fact Mustbe 'N', 'E', or 'F'. The default valueis 'N'.If fact = 'F',then both
arguments af and ipiv must be present; otherwise, an error is returned.

trans Mustbe 'N', 'C', or 'T'. The default value is 'N'.

equed Mustbe 'N', 'B', 'C',or 'R'. The default value is 'N'.

rpvgrw Real value that contains the reciprocal pivot growth factor norm(4)/norm(U).
?gbsv

Computes the solution to the system of linear equations
with a band matrix A and multiple right-hand sides.

Syntax

Fortran 77:

call sgbsv(n, k1, ku, nrhs, ab, ldab, ipiv, b, 1db, info)
call dgbsv(n, k1, ku, nrhs, ab, ldab, ipiv, b, 1db, info)
call cgbsv(n, k1, ku, nrhs, ab, ldab, ipiv, b, 1db, info)
call zgbsv(n, k1, ku, nrhs, ab, ldab, ipiv, b, 1db, info)

Fortran 95:
call gbsv(a, b [,k1] [,ipiv] [,infol)

Description

This routine solves for X the real or complex system of linear equations

AX = B, where A is an n-by-n band matrix with k1 subdiagonals and ku superdiagonals, the
columns of matrix B are individual right-hand sides, and the columns of X are the corresponding
solutions.

The LU decomposition with partial pivoting and row interchanges is used to factor 4 as 4= L U,
where L is a product of permutation and unit lower triangular matrices with k1 subdiagonals, and
U is upper triangular with kI+ku superdiagonals. The factored form of 4 is then used to solve the
system of equations 4X = B.

3-189

3 Intel® Math Kernel Library Reference Manual

Input Parameters

n

k1
ku

nrhs

ab, b

ldab

1db

INTEGER. The order of 4; the number of rows in B

(n=0).

INTEGER. The number of sub-diagonals within the band of 4 (k1 > 0).
INTEGER. The number of super-diagonals within the band of 4 (ku = 0).

INTEGER. The number of right-hand sides; the number of columns in B
(nrhs 2 0).

REAL for sgbsv

DOUBLE PRECISION for dgbsv

COMPLEX for cgbsv

DOUBLE COMPLEX for zgbsv.

Arrays: ab(1dab, *), b(ldb,*).

The array ab contains the matrix 4 in band storage

(see Matrix Storage Schemes).

The second dimension of ab must be at least max(1, n).
The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations.

The second dimension of b must be at least max(1,nrhs).

INTEGER. The first dimension of the array ab.
(1dab 22kl + ku+1)

INTEGER. The first dimension of b; 1db = max(1, n).

Output Parameters

ab

ipiv

info

3-190

Overwritten by L and U. The diagonal and k1 + ku super-diagonals of U are
stored in the first 1 + k1 + ku rows of ab. The multipliers used to form L are
stored in the next k1 rows.

Overwritten by the solution matrix X.

INTEGER.
Array, DIMENSTION at least max(1,n).
The pivot indices: row i was interchanged with row ipiv(i).

INTEGER. If info=0, the execution is successful.

If info= -1, the ith parameter had an illegal value.

If info= 1, U(4,1) is exactly zero. The factorization has been completed, but
the factor U is exactly singular, so the solution could not be computed.

LAPACK Routines: Linear Equations 3

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gbsv interface are the following:

a Stands for argument ab in Fortran 77 interface. Holds the array 4 of size
(2*k1l+ku+1,n).

b Holds the matrix B of size (n, nrhs).

ipiv Holds the vector of length (n).

k1 If omitted, assumed k1 = ku.

ku Restored as ku = lda-2*k1-1.
?gbsvx

Computes the solution to the real or complex system of
linear equations with a band matrix A and multiple
right-hand sides, and provides error bounds on the
solution.

Syntax

Fortran 77:

call sgbsvx(fact, trans, n, k1, ku, nrhs, ab, ldab, afb, ldafb, ipiv,
equed, r, ¢, b, 1db, x, 1ldx, rcond, ferr, berr, work, iwork, info)
call dgbsvx(fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv,
equed, r, ¢, b, 1ldb, x, 1ldx, rcond, ferr, berr, work, iwork, info)
call cgbsvx(fact, trans, n, k1, ku, nrhs, ab, ldab, afb, ldafb, ipiv,
equed, r, ¢, b, 1db, x, 1ldx, rcond, ferr, berr, work, rwork, info)

call zgbsvx(fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv,
equed, r, ¢, b, 1ldb, x, 1ldx, rcond, ferr, berr, work, rwork, info)

Fortran 95:
call gbsvx (a, b, x [,k11 [,af] [,ipiv] [, fact] [,trans] [,equed] [, r]
[,cl [,ferr] [,berr] [,rcond] I[,rpvgrw] [,info]l)

3-191

3 Intel® Math Kernel Library Reference Manual

3-192

Description

This routine uses the LU factorization to compute the solution to a real or complex system of
linear equations AX = B, ATx = B, or Ay = B, where A is a band matrix of order n with k1
subdiagonals and ku superdiagonals, the columns of matrix B are individual right-hand sides, and
the columns of X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.
The routine ?gbsvx performs the following steps:

1. If fact ='E', real scaling factors r and c are computed to equilibrate
the system:

trans='N": diag(r)*4*diag(c) *diag(c)'*X = diag(r)*B
trans='T" (diag(r)*A4*diag(c))’ *diag(x)'*X = diag(c)*B
trans='c": (diag(r)*A4*diag(c))!! *diag(x)!*X = diag(c)*B

Whether or not the system will be equilibrated depends on the scaling of the matrix 4, but if
equilibration is used, 4 is overwritten by diag(r)*A*diag(c) and B by diag(r)*B (if trans='N") or
diag(c)*B (if trans="T' or 'C").

2.If fact ='N' or 'E', the LU decomposition is used to factor the matrix 4 (after equilibration if
fact ='E'"Yas A = L U, where L is a product of permutation and unit lower triangular matrices
with k1 subdiagonals, and U is upper triangular with k1+ku superdiagonals.

3. If some U; ; =0, so that U is exactly singular, then the routine returns with info=1.
Otherwise, the factored form of 4 is used to estimate the condition number of the matrix 4. If the
reciprocal of the condition number is less than machine precision, info=n + 1 is returned as a
warning, but the routine still goes on to solve for X and compute error bounds as described below.

4. The system of equations is solved for X using the factored form of 4.

5. Iterative refinement is applied to improve the computed solution matrix and calculate error
bounds and backward error estimates for it.

6. If equilibration was used, the matrix X is premultiplied by diag(c) (if trans ='N'") or diag(r) (if
trans ='T' or 'C') so that it solves the original system before equilibration.

Input Parameters

fact CHARACTER+*1. Mustbe 'F', 'N', or 'E'.

LAPACK Routines: Linear Equations 3

trans

n

k1
ku

nrhs

ab,afb, b, work

Specifies whether or not the factored form of the matrix 4 is supplied on entry,
and if not, whether the matrix 4 should be equilibrated before it is factored.

If fact='F': onentry, afb and ipiv contain the factored form of 4. If
equed is not 'N', the matrix 4 has been equilibrated with scaling factors given
by rand c.

ab, afb, and ipiv are not modified.

If fact = 'N', the matrix 4 will be copied to afb and factored.
If fact = 'E', the matrix 4 will be equilibrated if necessary, then copied to
afb and factored.

CHARACTER*1. Mustbe 'N', 'T', or 'C"'.
Specifies the form of the system of equations:

If trans = 'N', the system has the form 4 X=B

(No transpose);

If trans='T', the system has the form A" X=B (Transpose);

If trans='c', the system has the form A" X =B (Conjugate transpose);

INTEGER. The number of linear equations; the order of the matrix 4 (n = 0).

INTEGER. The number of sub-diagonals within the band of 4 (k1 > 0).
INTEGER. The number of super-diagonals within the band of 4 (ku = 0).

INTEGER. The number of right hand sides; the number of columns of the
matrices B and X (nrhs = 0).

REAL for sgesvx

DOUBLE PRECISION for dgesvx

COMPLEX for cgesvx

DOUBLE COMPLEX for zgesvx.

Arrays: a(1da,*), af(1daf,*), b(1db,*), work(*).

The array ab contains the matrix 4 in band storage

(see Matrix Storage Schemes).

The second dimension of ab must be at least max(1, n).

If fact ='F' and equed is not 'N', then 4 must have been equilibrated by the
scaling factors in r and/or c.

The array afb is an input argument if fact ='F'.

The second dimension of afb must be at least max(1,n).

It contains the factored form of the matrix 4, i.e., the factors L and U from the
factorization 4 = L U as computed by ?gbtrf. U is stored as an upper triangular
band matrix with k1 + ku super-diagonals in the first

3-193

3 Intel® Math Kernel Library Reference Manual

ldab
ldafb

1db

ipiv

equed

3-194

1 + kI + kurows of arb. The multipliers used during the factorization are
stored in the next k1 rows.
If equed is not 'N', then arb is the factored form of the equilibrated matrix 4.

The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations. The second dimension of b must be at least
max(1,nrhs).

work (*) is a workspace array.
The dimension of work must be at least max(1,3*n) for real flavors, and at
least max(1,2*n) for complex flavors.

INTEGER. The first dimension of ab; 1dab = k1+kutl1.

INTEGER. The first dimension of afb;
ldafb2>2*kl1+tkutl.

INTEGER. The first dimension of b; 1db = max(1, n).

INTEGER.

Array, DIMENSION at least max(1,n).

The array ipivis an input argument if fact ='F'.

It contains the pivot indices from the factorization

A= L Uas computed by ?2gbtrf; row i of the matrix was interchanged with
row ipiv(i).

CHARACTER*1. Mustbe 'N', 'R', 'C',Or 'B'.

equed is an input argument if fact ='F'. It specifies the form of equilibration
that was done:

If equed = 'N', no equilibration was done (always

true if fact ='N");

If equed = 'R', row equilibration was done and A4 has been premultiplied by
diag(r);

If equed= ', column equilibration was done and 4 has been postmultiplied
by diag(c);

If equed = 'B"', both row and column equilibration was done; 4 has been
replaced by diag(r)*A4*diag(c).

REAL for single precision flavors;

DOUBLE PRECISION for double precision flavors.

Arrays: r(n), c(n).

The array r contains the row scale factors for 4, and the array ¢ contains the
column scale factors for 4. These arrays are input arguments if fact ='F' only;
otherwise they are output arguments.

If equed= 'R or 'B', 4 is multiplied on the left by diag(r); if equed = 'N"

LAPACK Routines: Linear Equations 3

1dx

iwork

rwork

or 'C', ris not accessed.

If fact ='F' and equed= 'R' or 'B', each element of r must be positive.
If equed='C' or 'B', 4 is multiplied on the right by diag(c); if equed= 'N'
or 'R', cis not accessed.

If fact ='F'and equed= 'C' or 'B', each element of c must be positive.

INTEGER. The first dimension of the output array x; 1dx = max(1, n).

INTEGER.
Workspace array, DIMENSION at least max(1, n); used in real flavors only.

REAL for single precision flavors;

DOUBLE PRECISION for double precision flavors.

Workspace array, DIMENSION at least max(1, n); used in complex flavors
only.

Output Parameters

X

ab

arb

REAL for sgbsvx

DOUBLE PRECISION for dgbsvx
COMPLEX for cgbsvx

DOUBLE COMPLEX for zgbsvx.
Array, DIMENSION (1dx, *).

If info=0or info= ntl, the array x contains the solution matrix X to the
original system of equations. Note that 4 and B are modified on exit if equed
'N', and the solution to the equilibrated system is:

diag(c)'*X, if trans='N' and equed='C"' or 'B'; diag(r)'*X, if
trans="'T' or 'C' and equed= 'R' Or 'B"'.

The second dimension of x must be at least max(1,nrhs).

Array ab is not modified on exit if fact ="F' or 'N', or if fact ='E' and equed
='N".

If equed # 'N', A is scaled on exit as follows:

equed='R': A=diag(r)*4

equed='C': A=Ax*diag(c)

equed='B': A =diag(r)*A4*diag(c)

If fact ='N'or 'E', then afb is an output argument and on exit returns
details of the LU factorization of the original matrix A(if fact ='N") or of the

equilibrated matrix 4 (if fact ='E'). See the description of ab for the form of
the equilibrated matrix.

3-195

3 Intel® Math Kernel Library Reference Manual

b

rcond

ferr, berr

ipiv

equed

work, rwork

info

3-196

Overwritten by diag(r)*b if trans='N' and

equed="'R' Or 'B';

overwritten by diag(c)*b if trans="'T' and equed="'C' or 'B';
not changed if equed= 'N".

These arrays are output arguments if fact #'F'.
See the description of r, ¢ in Input Arguments section.

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

An estimate of the reciprocal condition number of the matrix 4 after
equilibration (if done).

If rcond is less than the machine precision (in particular, if rcond = 0), the
matrix is singular to working precision. This condition is indicated by a return
code of info> 0.

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and relative backward errors, respectively, for each solution vector.

If fact="N'or 'E', then ipivis an output argument and on exit contains the
pivot indices from the factorization 4 = L U of the original matrix 4
(if fact ='N') or of the equilibrated matrix 4 (if fact ='g").

If fact #'F', then equed is an output argument. It specifies the form of
equilibration that was done (see the description of equed in Input Arguments
section).

On exit, work(1) for real flavors, or rwork(1) for complex flavors, contains
the reciprocal pivot growth factor norm(4)/norm(U). The "max absolute
element" norm is used. If work(1) for real flavors, or rwork(1) for complex
flavors is much less than 1, then the stability of the LU factorization of the
(equilibrated) matrix 4 could be poor. This also means that the solution x,
condition estimator rcond, and forward error bound ferr could be unreliable.
If factorization fails with

0 < info < n,then work(1) for real flavors, or rwork(1l) for complex flavors
contains the reciprocal pivot growth factor for the leading info columns of A4.

INTEGER. If info=0, the execution is successful.

If info= -1, the ith parameter had an illegal value.

If info=1i,and i < n,then U(4,1) is exactly zero. The factorization has been
completed, but the factor U is exactly singular, so the solution and error
bounds could not be computed; rcond = 0 is returned.

If info=1i,and i =n +1, then U is nonsingular, but rcond is less than

LAPACK Routines: Linear Equations 3

machine precision, meaning that the matrix is singular to working precision.
Nevertheless, the solution and error bounds are computed because there are a
number of situations where the computed solution can be more accurate than
the value of rcond would suggest.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gbsvx interface are the following:

a Stands for argument ab in Fortran 77 interface. Holds the array A4 of size
(kI+ku+1,n).

b Holds the matrix B of size (n, nrhs).

x Holds the matrix X of size (n, nrhs).

ar Stands for argument ab in Fortran 77 interface. Holds the array AF of size
(2*k1+ku+1,n).

ipiv Holds the vector of length (n).

r Holds the vector of length (). Default value for each element is

r(i)=1.0_ WP

c Holds the vector of length (). Default value for each element is
c(i)=1.0 WP

ferr Holds the vector of length (nrhs).

berr Holds the vector of length (nrhs).

trans Must be 'N', 'C', or 'T'. The default value is 'N'.

equed Must be 'N', 'B', 'C', or 'R'. The default value is 'N'.

fact Mustbe 'N', 'E', or 'F'. The default valueis 'N'. If fact = 'F', then both

arguments af and ipiv must be present; otherwise, an error is returned.

rpvgrw Real value that contains the reciprocal pivot growth factor norm(4)/norm(U).
k1 If omitted, assumed k1 = ku.
ku Restored as ku = l1da-kI-1.

3-197

3 Intel® Math Kernel Library Reference Manual

?gtsv

Computes the solution to the system of linear equations
with a tridiagonal matrix A and multiple right-hand
sides.

Syntax

Fortran 77:

call sgtsv(n, nrhs, dl1, d, du, b, 1ldb, info)
call dgtsv(n, nrhs, dl, d, du, b, 1db, info)
call cgtsv(n, nrhs, dl, d, du, b, 1ldb, info)
call zgtsv(n, nrhs, dl, d, du, b, 1db, info)

Fortran 95:
call gtsv(dl, d, du, b [,infol)

Description

This routine solves for X the system of linear equations AX = B, where A is an n-by-n tridiagonal
matrix, the columns of matrix B are individual right-hand sides, and the columns of X are the
corresponding solutions.

The routine uses Gaussian elimination with partial pivoting.

Note that the equation A'X=B may be solved by interchanging the order of the arguments du
and d1.

Input Parameters

n INTEGER. The order of 4; the number of rows in B
(n20).

nrhs INTEGER. The number of right-hand sides; the number of columns in B
(nrhs 20).

dil, d, du, b REAL for sgtsv
DOUBLE PRECISION for dgtsv
COMPLEX for cgtsv
DOUBLE COMPLEX for zgtsv.
Arrays: d1(n- 1), d(n), du(n - 1), b(1db, *).
The array d1 contains the (n - 1) subdiagonal elements of 4.

3-198

LAPACK Routines: Linear Equations 3

The array d contains the diagonal elements of A.

The array du contains the (n - 1) superdiagonal elements of A.

The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations.

The second dimension of b must be at least max(1,nrhs).

1db INTEGER. The first dimension of b; 1db = max(1, n).

Output Parameters

d1 Overwritten by the (n-2) elements of the second superdiagonal of the upper
triangular matrix U from the LU factorization of A. These elements are stored
in d1(1), ..., d1(n-2).

d Overwritten by the n diagonal elements of U.

du Overwritten by the (n-1) elements of the first superdiagonal of U.
b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.

If info= -1, the ith parameter had an illegal value.
If info= 1, U(4,1) is exactly zero, and the solution has not been computed.
The factorization has not been completed unless i = n.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gtsv interface are the following:

d1 Holds the vector of length (n-1).

d Holds the vector of length (n).

d1 Holds the vector of length (n-1).

b Holds the matrix B of size (n, nrhs).

3-199

3 Intel® Math Kernel Library Reference Manual

?gtsvx

Computes the solution to the real or complex system of
linear equations with a tridiagonal matrix A and
multiple right-hand sides, and provides error bounds on
the solution.

Syntax

Fortran 77:

call sgtsvx(fact, trans, n, nrhs, dl, d, du, dif, df, duf, du2, ipiv,
1db, x, 1ldx, rcond, ferr, berr, work, iwork, info)

call dgtsvx(fact, trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv,
1db, x, 1ldx, rcond, ferr, berr, work, iwork, info)

call cgtsvx(fact, trans, n, nrhs, dl, d, du, dif, df, duf, du2, ipiv,
1db, x, 1ldx, rcond, ferr, berr, work, rwork, info)

call zgtsvx(fact, trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv,
1db, x, 1ldx, rcond, ferr, berr, work, rwork, info)

Fortran 95:

call gtsvx (dl, d, du, b, x [,d1f] [,df] [,duf]l [,du2] [,ipiv] [, fact]
[,trans] [,ferr] [,berr] [,rcond] [,info])

Description

This routine uses the LU factorization to compute the solution to a real or complex system of
linear equations 4X = B, ATx = B, or Ay = B, where A is a tridiagonal matrix of order n, the
columns of matrix B are individual right-hand sides, and the columns of X are the corresponding

solutions.
Error bounds on the solution and a condition estimate are also provided.
The routine ?gtsvx performs the following steps:

1. If fact ='N', the LU decomposition is used to factor the matrix 4 as

A= LU, where L is a product of permutation and unit lower bidiagonal matrices and U is an upper

triangular matrix with nonzeroes in only the main diagonal and first two superdiagonals.

3-200

LAPACK Routines: Linear Equations 3

2. If some U; ; =0, so that U is exactly singular, then the routine returns with info = i.
Otherwise, the factored form of 4 is used to estimate the condition number of the matrix 4. If the
reciprocal of the condition number is less than machine precision, info=n + 1 is returned as a
warning, but the routine still goes on to solve for X and compute error bounds as described below.

3. The system of equations is solved for X using the factored form of 4.

4. Iterative refinement is applied to improve the computed solution matrix and calculate error
bounds and backward error estimates for it.

Input Parameters

fact

trans

n

nrhs

dl,d,du,dlf,df,

CHARACTER*1. Mustbe 'F' or 'N'.

Specifies whether or not the factored form of the matrix 4 has been supplied on
entry.

If fact="'F': onentry, d1f, df, duf, du2, and ipiv contain the factored
form of A; arrays d1, d, du, d1f, df, duf, du2, and ipiv will not be
modified.

If fact = 'N', the matrix 4 will be copied to d1f, df, and duf and factored.
CHARACTER*1. Mustbe 'N', 'T', or 'C"'.
Specifies the form of the system of equations:

If trans = 'N', the system has the form 4 X=B

(No transpose);

If trans='T', the system has the form A’ X=B (Transpose);

If trans='cC', the system has the form A" X =B (Conjugate transpose);

INTEGER. The number of linear equations; the order of the matrix 4 (n = 0).

INTEGER. The number of right hand sides; the number of columns of the
matrices B and X (nrhs 2 0).

duf,du2, b, x, work REAL for sgtsvx

DOUBLE PRECISION for dgtsvx

COMPLEX for cgtsvx

DOUBLE COMPLEX for zgtsvx.

Arrays:

dl1, dimension (n- 1), contains the subdiagonal elements of 4.
d, dimension (n), contains the diagonal elements of A.

du, dimension (n - 1), contains the superdiagonal elements of 4.

3-201

3 Intel® Math Kernel Library Reference Manual

3-202

1db
1ldx

ipiv

iwork

rwork

dif, dimension (n-1).If fact ='"F', then d1f is an input argument and on
entry contains the (n - 1) multipliers that define the matrix L from the LU
factorization of A4 as computed by ?>gttrf.

df, dimension (n).If fact ='F', then df is an input argument and on entry
contains the n diagonal elements of the upper triangular matrix U from the LU
factorization of A.

duf, dimension (n-1).If fact ='F', then duf is an input argument and on
entry contains the (n- 1) elements of the first super-diagonal of U.

du2, dimension (n-2).If fact ='F', then du2 is an input argument and on
entry contains the (n - 2) elements of the second super-diagonal of U.

b(1db, *) contains the right-hand side matrix B. The second dimension of b
must be at least max(1,nrhs).

x(1dx, *) contains the solution matrix X. The second dimension of x must be
at least max(1,nrhs).

work (*) is a workspace array;
the dimension of work must be at least max(1, 3*n) for real flavors and
max(1, 2*n) for complex flavors.

INTEGER. The first dimension of b; 1db = max(l, n).
INTEGER. The first dimension of x; 1dx = max(1, n).
INTEGER.

Array, DIMENSION at least max(1,n). If fact ='F', then ipivis an input
argument and on entry contains the pivot indices, as returned by ?gttrf.

INTEGER.
Workspace array, DIMENSION (n). Used for real flavors only.

REAL for cgtsvx
DOUBLE PRECISION for zgtsvx.
Workspace array, DIMENSION (n). Used for complex flavors only.

Output Parameters

X

REAL for sgtsvx

DOUBLE PRECISION for dgtsvx
COMPLEX for cgtsvx

DOUBLE COMPLEX for zgtsvx.
Array, DIMENSION (1dx, *).

LAPACK Routines: Linear Equations 3

dlf

daf

duf

duz

ipiv

rcond

ferr, berr

info

If info=0or info= ntl, the array x contains the solution matrix X. The
second dimension of x must be at least max(1,nrhs).

If fact ='N', then d1f is an output argument and on exit contains the (- 1)
multipliers that define the matrix L from the LU factorization of A.

If fact ='N', then df is an output argument and on exit contains the n
diagonal elements of the upper triangular matrix U from the LU factorization
of A.

If fact ='N', then duf is an output argument and on exit contains the (n- 1)
elements of the first super-diagonal of U.

If fact ='N', then du2 is an output argument and on exit contains the (n - 2)
elements of the second super-diagonal of U.

The array ipivis an output argument if fact ='N' and, on exit, contains the
pivot indices from the factorization

A= L U; row i of the matrix was interchanged with row ipiv(i). The value
of ipiv(1i) will always be either i or i+1; ipiv(i)=1 indicates a row
interchange was not required.

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

An estimate of the reciprocal condition number of the matrix 4.

If rcond is less than the machine precision (in particular, if rcond = 0), the
matrix is singular to working precision. This condition is indicated by a return
code of info> 0.

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.

INTEGER. If info=0, the execution is successful.

If info= -1, the ith parameter had an illegal value.

If info=i,and i < n, then U(4,1) is exactly zero. The factorization has not
been completed unless i = n, but the factor U is exactly singular, so the
solution and error bounds could not be computed; rcond = 0 is returned.

If info=1i,and i =n +1, then U is nonsingular, but rcond is less than
machine precision, meaning that the matrix is singular to working precision.
Nevertheless, the solution and error bounds are computed because there are a
number of situations where the computed solution can be more accurate than
the value of rcond would suggest.

3-203

3 Intel® Math Kernel Library Reference Manual

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gt svx interface are the following:

d1 Holds the vector of length (n-1).

d Holds the vector of length (n).

du Holds the vector of length (n-1).

b Holds the matrix B of size (nn, nrhs).

x Holds the matrix X of size (nn, nrhs).

dif Holds the vector of length (n-1).

dr Holds the vector of length (n).

duf Holds the vector of length (n-1).

du2 Holds the vector of length (n-2).

ipiv Holds the vector of length (n).

ferr Holds the vector of length (nrhs).

berr Holds the vector of length (nrhs).

fact Must be 'N' or 'F'. The default value is 'N'. If fact = 'F', then the
arguments d1£, df, duf, du2, and ipivmust be present; otherwise, an error is
returned.

trans Must be 'N', 'c', or 'T'. The default value is 'N'.

3-204

LAPACK Routines: Linear Equations 3

?posv

Computes the solution to the system of linear equations
with a symmetric or Hermitian positive definite matrix
A and multiple right-hand sides.

Syntax

Fortran 77:

call sposv(uplo, n, nrhs, a, lda, b, 1ldb, info)
call dposv(uplo, n, nrhs, a, lda, b, 1db, info)
call cposv(uplo, n, nrhs, a, lda, b, 1ldb, info)
call zposv(uplo, n, nrhs, a, lda, b, 1db, info)
Fortran 95:

call posv(a, b [,uplol [,info])

Description

This routine solves for X the real or complex system of linear equations
AX = B, where A is an n-by-n symmetric/Hermitian positive definite matrix, the columns of
matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.

The Cholesky decomposition is used to factor A as 4 = UU if uplo="'1"

or A=LL"if uplo="1L", where U is an upper triangular matrix and L is a lower triangular
matrix. The factored form of 4 is then used to solve the system of equations 4AX = B.

Input Parameters

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates whether the upper or lower triangular part of 4 is stored and how 4 is
factored:

If uplo= 'u", the array a stores the upper triangular part of the matrix 4, and
A is factored as U'U.

If uplo= 'L, the array a stores the lower triangular part of the matrix 4; A4 is
factored as LL".

n INTEGER. The order of matrix A (n=0).
nrhs INTEGER. The number of right-hand sides; the number of columns in B
(nrhs 2 0).

3-205

3 Intel® Math Kernel Library Reference Manual

3-206

a, b REAL for sposv
DOUBLE PRECISION for dposv
COMPLEX for cposv
DOUBLE COMPLEX for zposv.
Arrays: a(1da, *), b(1db, *).
The array a contains either the upper or the lower triangular part of the matrix
A (see uplo).
The second dimension of a must be at least max(1, n).
The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations.
The second dimension of b must be at least max(1,nrhs).

lda INTEGER. The first dimension of a; 1da = max(1, n).

1db INTEGER. The first dimension of b; 1db = max(1, n).

Output Parameters

a If info=0, the upper or lower triangular part of a is overwritten by the
Cholesky factor U or L, as specified by uplo.

b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.

If info= -1, the ith parameter had an illegal value.

If info = i, the leading minor of order i (and hence the matrix 4 itself) is not
positive definite, so the factorization could not be completed, and the solution
has not been computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine posv interface are the following:

a Holds the matrix 4 of size (n1, n).
b Holds the matrix B of size (n, nrhs).
uplo Mustbe 'U' or 'L'. The default value is 'U".

LAPACK Routines: Linear Equations 3

?posvx

Uses the Cholesky factorization to compute the solution
to the system of linear equations with a symmetric or
Hermitian positive definite matrix A, and provides error
bounds on the solution.

Syntax

Fortran 77:

call sposvx(fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b, 1db, x,
1ldx, rcond, ferr, berr, work, iwork, info)

call dposvx(fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b, 1db, x,
ldx, rcond, ferr, berr, work, iwork, info)

call cposvx(fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b, 1db, x,
1dx, rcond, ferr, berr, work, rwork, info)

call zposvx(fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b, 1db, x,
ldx, rcond, ferr, berr, work, rwork, info)

Fortran 95:

call posvx (a, b, x [,uplol [,af] [,fact]l [,equed]l [,s] [,ferr] [,berr]
[,rcond] [,info])

Description

This routine uses the Cholesky factorization 4=U"U or A=LL" to compute the solution to a real
or complex system of linear equations 4X =B, where A is a n-by-n real symmetric/Hermitian
positive definite matrix, the columns of matrix B are individual right-hand sides, and the columns
of X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.
The routine ?posvx performs the following steps:

1. If fact ='E', real scaling factors s are computed to equilibrate
the system:

diag(s)*A*diag(s) *diag(s)'1 * X = diag(s)*B

Whether or not the system will be equilibrated depends on the scaling of the matrix 4, but if
equilibration is used, 4 is overwritten by diag(s)*A*diag(s) and B by diag(s)*B .

3-207

3 Intel® Math Kernel Library Reference Manual

3-208

2. If fact ='N' or 'E', the Cholesky decomposition is used to factor the matrix 4 (after
equilibration if fact ='E') as

A= UHU, if uplo= U’, or
A =LLH, ifuplo= L’
where U is an upper triangular matrix and L is a lower triangular matrix.

3. If the leading i-by-i principal minor is not positive definite, then the routine returns with info
= 1. Otherwise, the factored form of A4 is used to estimate the condition number of the matrix 4. If
the reciprocal of the condition number is less than machine precision, info=n + 1 is returned as
a warning, but the routine still goes on to solve for X and compute error bounds as described
below.

4. The system of equations is solved for X using the factored form of 4.

5. Iterative refinement is applied to improve the computed solution matrix and calculate error
bounds and backward error estimates for it.

6. If equilibration was used, the matrix X is premultiplied by diag(s) so that it solves the original
system before equilibration.

Input Parameters

fact CHARACTER*1. Mustbe 'F', 'N',or 'E".

Specifies whether or not the factored form of the matrix A4 is supplied on entry,
and if not, whether the matrix 4 should be equilibrated before it is factored.

If fact = 'F': on entry, af contains the factored form of 4. If equed= "Y',
the matrix 4 has been equilibrated with scaling factors given by s.
a and af will not be modified.

If fact = 'N', the matrix 4 will be copied to af and factored.
If fact = 'E', the matrix 4 will be equilibrated if necessary, then copied to af
and factored.

uplo CHARACTER*1. Mustbe 'U" or 'L'.
Indicates whether the upper or lower triangular part of 4 is stored and how 4 is
factored:

If uplo= 'u", the array a stores the upper triangular part of the matrix 4, and
A is factored as UU.
If uplo= 'L, the array a stores the lower triangular part of the matrix 4; A4 is
factored as LL".

n INTEGER. The order of matrix 4 (n = 0).

LAPACK Routines: Linear Equations 3

nrhs

a,af,b,work

1da
ldaf
1db

equed

INTEGER. The number of right-hand sides; the number of columns in B
(nrhs 2 0).

REAL for sposvx

DOUBLE PRECISION for dposvx

COMPLEX for cposvx

DOUBLE COMPLEX for zposvx.

Arrays: a(1da,*), af(1daf,*), b(1db,*), work(*).

The array a contains the matrix 4as specified by uplo. If fact ='F' and
equed ="Y', then 4 must have been equilibrated by the scaling factors in s, and
a must contain the equilibrated matrix diag(s)*A4*diag(s). The second
dimension of a must be at least max(1,n).

The array af is an input argument if fact ='F'.

It contains the triangular factor U or L from the Cholesky factorization of 4 in
the same storage format as 4. If equed is not 'N', then af is the factored form
of the equilibrated matrix diag(s)*A*diag(s). The second dimension of af
must be at least max(1,n).

The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations. The second dimension of b must be at least
max(1,nrhs).

work (*) is a workspace array.
The dimension of work must be at least max(1,3*n) for real flavors, and at
least max(1,2*n) for complex flavors.

INTEGER. The first dimension of a; 1da > max(1, n).
INTEGER. The first dimension of af; 1daf > max(1, n).
INTEGER. The first dimension of b; 1db = max(1, n).

CHARACTER=*1. Mustbe 'N' or 'Y'.

equed is an input argument if fact ='F". It specifies the form of equilibration
that was done:

If equed = 'N', no equilibration was done (always

true if fact ='N');

If equed= 'Y, equilibration was done and 4 has been replaced by
diag(s)*A*diag(s).

REAL for single precision flavors;

DOUBLE PRECISION for double precision flavors.

Array, DIMENSION (n).

The array s contains the scale factors for 4. This array is an input argument if

3-209

3 Intel® Math Kernel Library Reference Manual

1dx

iwork

rwork

fact ='F' only; otherwise it is an output argument.
If equed= 'N' , sis not accessed.
If fact ='F' and equed = 'Y, each element of s must be positive.

INTEGER. The first dimension of the output array x; 1dx = max(1, n).

INTEGER.
Workspace array, DIMENSION at least max(1, n); used in real flavors only.

REAL for cposvx;

DOUBLE PRECISION for ZPOSVX.

Workspace array, DIMENSION at least max(1, n); used in complex flavors
only.

Output Parameters

X

af

rcond

3-210

REAL for sposvx

DOUBLE PRECISION for dposvx
COMPLEX for cposvx

DOUBLE COMPLEX for zposvx.
Array, DIMENSION (1dx, *).

If info=0or info= ntl, the array x contains the solution matrix X to the
original system of equations. Note that if equed= "Y', 4 and B are modified
on exit, and the solution to the equilibrated system is diag(s)™! *.X.

The second dimension of x must be at least max(1,nrhs).

Array a is not modified on exit if fact ='F' or 'N', or if fact ='E' and
equed ='N".
If fact ='E' and equed ="Y', 4 is overwritten by diag(s)*4*diag(s)

If fact ='N'or 'E', then af is an output argument and on exit returns the
triangular factor U or L from the Cholesky factorization A=U"U or A=LL" of
the original matrix 4 (if fact ='N'), or of the equilibrated matrix 4

(if fact ='"E"). See the description of a for the form of the equilibrated matrix.

Overwritten by diag(s)*B , if equed="'Y";
not changed if equed= 'N".
This array is an output argument if fact #'F' .

See the description of s in Input Arguments section.

REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal condition number of the matrix 4 after

LAPACK Routines: Linear Equations 3

ferr, berr

equed

info

equilibration (if done). If rcond is less than the machine precision (in
particular, if rcond = 0), the matrix is singular to working precision. This
condition is indicated by a return code of info > 0.

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and relative backward errors, respectively, for each solution vector.

If fact #'F', then equed is an output argument. It specifies the form of
equilibration that was done (see the description of equed in Input Arguments
section).

INTEGER. If info=0, the execution is successful.

If info = -1, the ith parameter had an illegal value.

If info=1i,and i < n, the leading minor of order i (and hence the matrix 4
itself) is not positive definite, so the factorization could not be completed, and
the solution and error bounds could not be computed; rcond = 0 is returned.
If info=1i,and 1 =n +1, then U is nonsingular, but rcond is less than
machine precision, meaning that the matrix is singular to working precision.
Nevertheless, the solution and error bounds are computed because there are a
number of situations where the computed solution can be more accurate than
the value of rcond would suggest.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine posvx interface are the following:

a
b
X
at

S

ferr

berr

Holds the matrix 4 of size (n1, n).
Holds the matrix B of size (n, nrhs).
Holds the matrix X of size (n, nrhs).
Holds the matrix AF of size (n, n).

Holds the vector of length (). Default value for each element is
s(i)=1.0 WP

Holds the vector of length (nrhs).
Holds the vector of length (nrhs).

3-211

3 Intel® Math Kernel Library Reference Manual

uplo Must be 'U' or 'L'. The default value is 'U".

fact Mustbe 'N', 'E', or 'F'. The default value is 'N'. If fact = 'F', then af
must be present; otherwise, an error is returned.

equed Must be 'N' or 'Y'. The default value is 'N'.

?ppsv

Computes the solution to the system of linear equations
with a symmetric (Hermitian) positive definite packed

matrix A

and multiple right-hand sides.

3-212

Syntax

Fortran 77:

call sppsv(uplo, n, nrhs, ap, b, 1ldb, info)
call dppsv(uplo, n, nrhs, ap, b, 1db, info)
call cppsv(uplo, n, nrhs, ap, b, 1ldb, info)
call zppsv(uplo, n, nrhs, ap, b, 1db, info)

Fortran 95:
call ppsv(a, b [,uplol [,info])
Description

This routine solves for X the real or complex system of linear equations

AX = B, where A is an n-by-n real symmetric/Hermitian positive definite matrix stored in packed
format, the columns of matrix B are individual right-hand sides, and the columns of X are the
corresponding solutions.

The Cholesky decomposition is used to factor A as 4 = UU if uplo="u"

or A=LL"if uplo="1L", where U is an upper triangular matrix and L is a lower triangular
matrix. The factored form of 4 is then used to solve the system of equations 4AX = B.

Input Parameters
uplo CHARACTER*1. Mustbe 'U' or 'L"'.

LAPACK Routines: Linear Equations 3

nrhs

ap, b

1db

Indicates whether the upper or lower triangular part of 4 is stored and how 4 is
factored:

If uplo= 'u", the array a stores the upper triangular part of the matrix 4, and
A is factored as U'U.

If uplo= 'L, the array a stores the lower triangular part of the matrix 4; A4 is
factored as LL".

INTEGER. The order of matrix A (n=0).

INTEGER. The number of right-hand sides; the number of columns in B
(nrhs 20).

REAL for sppsv

DOUBLE PRECISION for dppsv

COMPLEX for cppsv

DOUBLE COMPLEX for zppsv.

Arrays: ap(*), b(1db, *).

The array ap contains either the upper or the lower triangular part of the matrix
A (as specified by uplo) in packed storage (see Matrix Storage Schemes).
The dimension of ap must be at least max(1,n(n+1)/2).

The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations.

The second dimension of b must be at least max(1,nrhs).

INTEGER. The first dimension of b; 1db = max(1, n).

Output Parameters

ap

info

If info=0, the upper or lower triangular part of 4 in packed storage is
overwritten by the Cholesky factor U or L, as specified by uplo.

Overwritten by the solution matrix X.

INTEGER. If info=0, the execution is successful.

If info= -1, the ith parameter had an illegal value.

If info = i, the leading minor of order i (and hence the matrix 4 itself) is not
positive definite, so the factorization could not be completed, and the solution
has not been computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine ppsv interface are the following:

3-213

3 Intel® Math Kernel Library Reference Manual

a Stands for argument ap in Fortran 77 interface. Holds the array A4 of size
(n*(n+1) /2).
b Holds the matrix B of size (n, nrhs).
uplo Must be 'U' or 'L'. The default value is 'U".
?ppsvx

Uses the Cholesky factorization to compute the solution
to the system of linear equations with a symmetric
(Hermitian) positive definite packed matrix A, and
provides error bounds on the solution.

Syntax

Fortran 77:

call sppsvx(fact, uplo, n, nrhs, ap, afp, equed, s, b, 1ldb, x, 1ldx,
rcond, ferr, berr, work, iwork, info)

call dppsvx(fact, uplo, n, nrhs, ap, afp, equed, s, b, 1ldb, x, 1dx,
rcond, ferr, berr, work, iwork, info)

call cppsvx(fact, uplo, n, nrhs, ap, afp, equed, s, b, 1ldb, x, 1ldx,
rcond, ferr, berr, work, rwork, 1info)

call zppsvx(fact, uplo, n, nrhs, ap, afp, equed, s, b, 1ldb, x, 1dx,
rcond, ferr, berr, work, rwork, info)

Fortran 95:

call ppsvx (a, b, x [,uplol [,af] [,fact]l [,equed]l [,s] [,ferr] [,berr]
[,rcond] [,info])

Description

This routine uses the Cholesky factorization 4=U"U or A=LL to compute the solution to a real
or complex system of linear equations 4X =B, where A is a n-by-n symmetric or Hermitian
positive definite matrix stored in packed format, the columns of matrix B are individual right-hand
sides, and the columns of X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine ?ppsvx performs the following steps:

3-214

LAPACK Routines: Linear Equations 3

1. If fact ='E', real scaling factors s are computed to equilibrate
the system:

diag(s)*A*diag(s) *diag(s)! *X = diag(s)*B

Whether or not the system will be equilibrated depends on the scaling of the matrix 4, but if
equilibration is used, 4 is overwritten by diag(s)*A*diag(s) and B by diag(s)*B .

2.If fact ='N' or 'E', the Cholesky decomposition is used to factor the matrix 4 (after
equilibration if fact ='E'") as

A4=U"U, ifuplo= U’ or

A =LLH, ifuplo= T,

where U is an upper triangular matrix and L is a lower triangular matrix.

3. If the leading i-by-i principal minor is not positive definite, then the routine returns with
info= i. Otherwise, the factored form of 4 is used to estimate the condition number of the matrix
A. If the reciprocal of the condition number is less than machine precision, info=n +1is
returned as a warning, but the routine still goes on to solve for X and compute error bounds as
described below.

4. The system of equations is solved for X using the factored form of 4.

5. Iterative refinement is applied to improve the computed solution matrix and calculate error
bounds and backward error estimates for it.

6. If equilibration was used, the matrix X is premultiplied by diag(s) so that it solves the original
system before equilibration.

Input Parameters

fact CHARACTER*1. Mustbe 'F', 'N',or 'E'.

Specifies whether or not the factored form of the matrix A4 is supplied on entry,
and if not, whether the matrix 4 should be equilibrated before it is factored.

If fact = 'F': onentry, afp contains the factored form of 4. If equed= "Y',
the matrix A4 has been equilibrated with scaling factors given by s.
ap and afp will not be modified.

If fact = 'N', the matrix 4 will be copied to afp and factored.
If fact = 'E', the matrix 4 will be equilibrated if necessary, then copied to
afp and factored.

uplo CHARACTER+*1. Mustbe 'U' or 'L".

3-215

3 Intel® Math Kernel Library Reference Manual

3-216

nrhs

ap,afp,b,work

1db

equed

Indicates whether the upper or lower triangular part of 4 is stored and how 4 is
factored:

If uplo='uU", the array ap stores the upper triangular part of the matrix A4,
and 4 is factored as U"U.

If uplo= 'L, the array ap stores the lower triangular part of the matrix 4; 4
is factored as LL,

INTEGER. The order of matrix A (n=0).

INTEGER. The number of right-hand sides; the number of columns in B
(nrhs 20).

REAL for sppsvx

DOUBLE PRECISION for dppsvx

COMPLEX for cppsvx

DOUBLE COMPLEX for zppsvx.

Arrays: ap (*), afp(*), b(1ldb, *), work (*).

The array ap contains the upper or lower triangle of the original
symmetric/Hermitian matrix A in packed storage (see Matrix Storage
Schemes). In case when fact ='F'and equed ="Y', ap must contain the
equilibrated matrix diag(s)*A*diag(s).

The array afp is an input argument if fact ='F' and contains the triangular
factor U or L from the Cholesky factorization of 4 in the same storage format
as A. If equed is not 'N', then afp is the factored form of the equilibrated
matrix 4.

The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations.

work (*) is a workspace array.

The dimension of arrays ap and afp must be at least max(1,n(n+1)/2); the
second dimension of b must be at least max(1,nrhs); the dimension of work
must be at least max(1, 3*n) for real flavors and max(1, 2*n) for complex
flavors.

INTEGER. The first dimension of b; 1db > max(1, n).

CHARACTER=*1. Mustbe 'N' or 'Y'.

equed is an input argument if fact ='F'. It specifies the form of equilibration
that was done:

If equed = 'N', no equilibration was done (always true if fact ='N'");

If equed= 'Y, equilibration was done and 4 has been replaced by
diag(s)*A*diag(s).

LAPACK Routines: Linear Equations 3

1dx

iwork

rwork

REAL for single precision flavors;

DOUBLE PRECISION for double precision flavors.

Array, DIMENSION (n).

The array s contains the scale factors for 4. This array is an input argument if
fact ="F' only; otherwise it is an output argument.

If equed= 'N' , s is not accessed.

If fact ='F' and equed= 'Y, each element of s must be positive.

INTEGER. The first dimension of the output array x; 1dx = max(1, n).

INTEGER.
Workspace array, DIMENSION at least max(1, n); used in real flavors only.

REAL for cppsvx;

DOUBLE PRECISION for zppsvx.

Workspace array, DIMENSION at least max(1, n); used in complex flavors
only.

Output Parameters

X

ap

afp

REAL for sppsvx

DOUBLE PRECISION for dppsvx
COMPLEX for cppsvx

DOUBLE COMPLEX for zppsvx.
Array, DIMENSION (1dx, *).

If info=0or info= nt+l, the array x contains the solution matrix X to the
original system of equations. Note that if equed="'Y"', 4 and B are modified
on exit, and the solution to the equilibrated system is diag(s)'1 * X,

The second dimension of x must be at least max(1,nrhs).

Array ap is not modified on exit if fact ='F' or 'N', or if fact ='E' and
equed="N".
If fact ='E' and equed ="Y', 4 is overwritten by diag(s)*4*diag(s)

If fact ='N'or 'E', then afp is an output argument and on exit returns the
triangular factor U or L from the Cholesky factorization A=U"U or A=LL" of
the original matrix A(if fact ='N'), or of the equilibrated matrix 4

(if fact ='E'). See the description of ap for the form of the equilibrated
matrix.

Overwritten by diag(s)*B , if equed="'Y";
not changed if equed= 'N".

3-217

3 Intel® Math Kernel Library Reference Manual

3-218

rcond

ferr, berr

equed

info

This array is an output argument if fact #'F'.
See the description of s in Input Arguments section.

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

An estimate of the reciprocal condition number of the matrix 4 after
equilibration (if done). If rcond is less than the machine precision (in
particular, if rcond = 0), the matrix is singular to working precision. This
condition is indicated by a return code of info > 0.

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and relative backward errors, respectively, for each solution vector.

If fact #'F', then equed is an output argument. It specifies the form of
equilibration that was done (see the description of equed in Input Arguments
section).

INTEGER. If info=0, the execution is successful.

If info = -1, the ith parameter had an illegal value.

If info=1i,and i < n, the leading minor of order i (and hence the matrix 4
itself) is not positive definite, so the factorization could not be completed, and
the solution and error bounds could not be computed; rcond = 0 is returned.
If info=1i,and 1 =n +1, then U is nonsingular, but rcond is less than
machine precision, meaning that the matrix is singular to working precision.
Nevertheless, the solution and error bounds are computed because there are a
number of situations where the computed solution can be more accurate than
the value of rcond would suggest.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine ppsvx interface are the following:

a

Stands for argument ap in Fortran 77 interface. Holds the array A4 of size
(n*(n+1) /2).

Holds the matrix B of size (n, nrhs).

Holds the matrix X of size (n, nrhs).

LAPACK Routines: Linear Equations 3

af Stands for argument afp in Fortran 77 interface. Holds the matrix AF of size
(n*(n+1) /2).

s Holds the vector of length (). Default value for each element is
s(i)=1.0 WP

ferr Holds the vector of length (nrhs).

berr Holds the vector of length (nrhs).

uplo Must be 'U! or 'L'. The default value is 'U".

fact Must be 'N', 'E', or 'F'. The default value is 'N'. If fact = 'F', then af
must be present; otherwise, an error is returned.

equed Must be 'N' or 'Y'. The default value is 'N'.

?pbsv

Computes the solution to the system of linear equations
with a symmetric or Hermitian positive definite band
matrix A and multiple right-hand sides.

Syntax

Fortran 77:

call spbsv(uplo, n, kd, nrhs, ab, ldab, b, 1db, info)

call dpbsv(uplo, n, kd, nrhs, ab, ldab, b, 1db, info)

call cpbsv(uplo, n, kd, nrhs, ab, ldab, b, 1db, info)
b

call zpbsv(uplo, n, kd, nrhs, ab, ldab,

Fortran 95:
call pbsv(a, b
Description

This routine solves
AX =B, where A is

, 1db, info)

[,uplo]l [,info])

for X the real or complex system of linear equations
an n-by-n symmetric/Hermitian positive definite band matrix, the columns of

matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.

The Cholesky decomposition is used to factor A as 4 = UU if uplo="u"

3-219

3 Intel® Math Kernel Library Reference Manual

or A=LL7if uplo='L"', where U is an upper triangular band matrix and L is a lower triangular
band matrix, with the same number of superdiagonals or subdiagonals as 4. The factored form of
A is then used to solve the system of equations 4X = B.

Input Parameters

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates whether the upper or lower triangular part of 4 is stored in the array
ab, and how A4 is factored:
If uplo='uU", the array ab stores the upper triangular part of the matrix A4,
and A is factored as UU.
If uplo= 'L, the array ab stores the lower triangular part of the matrix 4; 4
is factored as LL,

n INTEGER. The order of matrix 4 (nn=0).

kd INTEGER. The number of superdiagonals of the
matrix 4 if uplo= 'U"', or the number of subdiagonals if uplo= 'L
(kd = 0).

nrhs INTEGER. The number of right-hand sides; the number of columns in B
(nrhs 2 0).

ab, b REAL for spbsv

DOUBLE PRECISION for dpbsv

COMPLEX for cpbsv

DOUBLE COMPLEX for zpbsv.

Arrays: ab(ldab, *), b(1db, *).

The array ab contains either the upper or the lower triangular part of the matrix
A (as specified by uplo) in band storage (see Matrix Storage Schemes).

The second dimension of ab must be at least max(1, n). The array b contains
the matrix B whose columns are the right-hand sides for the systems of
equations.

The second dimension of b must be at least max(1,nrhs).

ldab INTEGER. The first dimension of the array ab.
(1dab > kd +1)

1db INTEGER. The first dimension of b; 1db = max(1, n).

Output Parameters

ab The upper or lower triangular part of 4 (in band storage) is overwritten by the
Cholesky factor U or L, as specified by uplo, in the same storage format as 4.

b Overwritten by the solution matrix X.

3-220

LAPACK Routines: Linear Equations 3

info INTEGER. If info=0, the execution is successful.
If info= -1, the ith parameter had an illegal value.
If info= i, the leading minor of order i (and hence the matrix 4 itself) is not
positive definite, so the factorization could not be completed, and the solution
has not been computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine pbsv interface are the following:

a Stands for argument ab in Fortran 77 interface. Holds the array A4 of size
(kd+1,n).
b Holds the matrix B of size (n, nrhs).
uplo Must be 'U' or 'L'. The default value is 'U".
?pbsvx

Uses the Cholesky factorization to compute the solution
to the system of linear equations with a symmetric
(Hermitian) positive definite band matrix A, and
provides error bounds on the solution.

Syntax

Fortran 77:

call spbsvx(fact, uplo, n, kd, nrhs, ab, ldab, afb, ldafb, equed, s, b,
1db, x, 1ldx, rcond, ferr, berr, work, iwork, info)

call dpbsvx(fact, uplo, n, kd, nrhs, ab, ldab, afb, ldafb, equed, s, b,
1db, x, 1ldx, rcond, ferr, berr, work, iwork, info)

call cpbsvx(fact, uplo, n, kd, nrhs, ab, ldab, afb, ldafb, equed, s, b,
1db, x, 1ldx, rcond, ferr, berr, work, iwork, info)

call zpbsvx(fact, uplo, n, kd, nrhs, ab, ldab, afb, ldafb, equed, s, b,
1db, x, 1ldx, rcond, ferr, berr, work, iwork, info)

3-221

3 Intel® Math Kernel Library Reference Manual

3-222

Fortran 95:

call pbsvx(a, b, x [,uplo]l [,af]l I[,fact] [,equed] [,s] [,ferr] [,berr]
[,rcond] [,info])

Description

This routine uses the Cholesky factorization 4=U"U or A=LL to compute the solution to a real
or complex system of linear equations 4X =B, where A is a n-by-n symmetric or Hermitian
positive definite band matrix, the columns of matrix B are individual right-hand sides, and the
columns of X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.
The routine ?pbsvx performs the following steps:

1. If fact ='E', real scaling factors s are computed to equilibrate
the system:

diag(s)*A*diag(s) *diag(s)'1 * X = diag(s)*B

Whether or not the system will be equilibrated depends on the scaling of the matrix 4, but if
equilibration is used, 4 is overwritten by diag(s)*A*diag(s) and B by diag(s)*B .

2. If fact ='N' or 'E', the Cholesky decomposition is used to factor the matrix 4 (after
equilibration if fact ='E') as

A= UHU, if uplo= U’ or
A =LLH, ifuplo= L’
where U is an upper triangular band matrix and L is a lower triangular band matrix.

3. If the leading i-by-1i principal minor is not positive definite, then the routine returns with
info= i. Otherwise, the factored form of 4 is used to estimate the condition number of the matrix
A. If the reciprocal of the condition number is less than machine precision, info=n +11is
returned as a warning, but the routine still goes on to solve for X and compute error bounds as
described below.

4. The system of equations is solved for X using the factored form of 4.

5. Iterative refinement is applied to improve the computed solution matrix and calculate error
bounds and backward error estimates for it.

6. If equilibration was used, the matrix X is premultiplied by diag(s) so that it solves the original
system before equilibration.

LAPACK Routines: Linear Equations 3

Input Parameters

fact

uplo

kd

nrhs

ab,afb, b, work

CHARACTER*1. Mustbe 'F', 'N', or 'E'.

Specifies whether or not the factored form of the matrix A4 is supplied on entry,
and if not, whether the matrix 4 should be equilibrated before it is factored.

If fact = 'F': onentry, arb contains the factored form of 4. If equed= "Y',
the matrix 4 has been equilibrated with scaling factors given by s.
ab and afb will not be modified.

If fact = 'N', the matrix 4 will be copied to afb and factored.
If fact = 'E', the matrix 4 will be equilibrated if necessary, then copied to
afb and factored.

CHARACTER*1. Mustbe 'U' or 'L"'.

Indicates whether the upper or lower triangular part of 4 is stored and how 4 is

factored:

If uplo= 'u", the array ab stores the upper triangular part of the matrix A4,

and 4 is factored as U"U.

If uplo= 'L, the array ab stores the lower triangular part of the matrix 4; 4

is factored as LL".

INTEGER. The order of matrix 4 (n = 0).

INTEGER. The number of super-diagonals or sub-diagonals in the matrix 4
(kd = 0).

INTEGER. The number of right-hand sides; the number of columns in B
(nrhs 2 0).

REAL for spbsvx

DOUBLE PRECISION for dpbsvx

COMPLEX for cpbsvx

DOUBLE COMPLEX for zpbsvx.
Anayszab(ldab,*),afb(ldab,*),b(ldb,*),work(*L

The array ab contains the upper or lower triangle of the matrix 4 in band
storage (see Matrix Storage Schemes).

If fact ='F' and equed ='Y', then ab must contain the equilibrated matrix
diag(s)*A*diag(s). The second dimension of ab must be at least max(1, n).
The array afb is an input argument if fact ='F'.

It contains the triangular factor U or L from the Cholesky factorization of the
band matrix A4 in the same storage format as A. If equed ="'Y', then afb is the
factored form of the equilibrated matrix 4.

The second dimension of afb must be at least max(1,n).

3-223

3 Intel® Math Kernel Library Reference Manual

ldab
ldafb
1db

equed

1dx

iwork

rwork

3-224

The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations. The second dimension of b must be at least
max(l,nrhs).

work (*) is a workspace array.
The dimension of work must be at least max(1,3*n) for real flavors, and at
least max(1,2*n) for complex flavors.

INTEGER. The first dimension of ab; 1dab = kd+1.
INTEGER. The first dimension of afb; 1dafb > kd+1.
INTEGER. The first dimension of b; 1db = max(1, n).

CHARACTER*1. Mustbe 'N' or 'Y'.

equed is an input argument if fact ='F'. It specifies the form of equilibration
that was done:

If equed = 'N', no equilibration was done (always

true if fact ='N");

If equed= 'Y, equilibration was done and 4 has been replaced by
diag(s)*A*diag(s).

REAL for single precision flavors;

DOUBLE PRECISION for double precision flavors.

Array, DIMENSION (n).

The array s contains the scale factors for 4. This array is an input argument if
fact ="F' only; otherwise it is an output argument.

If equed= 'N' , sis not accessed.

If fact ='F' and equed = 'Y, each element of s must be positive.

INTEGER. The first dimension of the output array x; 1dx > max(1, n).

INTEGER.
Workspace array, DIMENSION at least max(1, n); used in real flavors only.

REAL for cpbsvx;

DOUBLE PRECISION for zpbsvx.

Workspace array, DIMENSION at least max(1, n); used in complex flavors
only.

LAPACK Routines: Linear Equations 3

Output Parameters

X

ab

afb

rcond

ferr, berr

equed

info

REAL for spbsvx

DOUBLE PRECISION for dpbsvx
COMPLEX for cpbsvx

DOUBLE COMPLEX for zpbsvx.
Array, DIMENSION (1dx, *).

If info=0or info= nt+l, the array x contains the solution matrix X to the
original system of equations. Note that if equed="'Y"', 4 and B are modified
on exit, and the solution to the equilibrated system is diag(s)™! *.X.

The second dimension of x must be at least max(1,nrhs).

On exit, if fact ='E' and equed ='Y', 4 is overwritten by diag(s)*4*diag(s)

If fact ='N'or 'E', then afb is an output argument and on exit returns the
triangular factor U or L from the Cholesky factorization A=U"U or A=LL" of
the original matrix A(if fact ='N'), or of the equilibrated matrix 4

(if fact ='g"). See the description of ab for the form of the equilibrated
matrix.

Overwritten by diag(s)*B , if equed="'Y";
not changed if equed= 'N".

This array is an output argument if fact #'F' .
See the description of s in Input Arguments section.

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

An estimate of the reciprocal condition number of the matrix 4 after
equilibration (if done). If rcond is less than the machine precision (in
particular, if rcond = 0), the matrix is singular to working precision. This
condition is indicated by a return code of info > 0.

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and relative backward errors, respectively, for each solution vector.

If fact #'F', then equed is an output argument. It specifies the form of
equilibration that was done (see the description of equed in Input Arguments
section).

INTEGER. If info=0, the execution is successful.
If info= -1, the ith parameter had an illegal value.
If info=i,and i < n, the leading minor of order i (and hence the matrix 4

3-225

3 Intel® Math Kernel Library Reference Manual

itself) is not positive definite, so the factorization could not be completed, and
the solution and error bounds could not be computed; rcond = 0 is returned.
If info=1i,and 1 =n +1, then U is nonsingular, but rcond is less than
machine precision, meaning that the matrix is singular to working precision.
Nevertheless, the solution and error bounds are computed because there are a
number of situations where the computed solution can be more accurate than
the value of rcond would suggest.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine pbsvx interface are the following:

a

af

ferr
berr
uplo

fact

equed

3-226

Stands for argument ab in Fortran 77 interface. Holds the array A4 of size
(kd+1, n).

Holds the matrix B of size (n, nrhs).
Holds the matrix X of size (n, nrhs).

Stands for argument arb in Fortran 77 interface. Holds the array AF of size
(kd+1, n).

Holds the vector of length (). Default value for each element is
s(i)=1.0 WP

Holds the vector of length (nrhs).
Holds the vector of length (nrhs).
Must be 'U" or 'L'. The default value is 'U".

Must be 'N', 'E', or 'F'. The default value is 'N'. If fact = 'F', then af
must be present; otherwise, an error is returned.

Must be 'N' or 'Y'. The default value is 'N'.

LAPACK Routines: Linear Equations 3

?ptsv

Computes the solution to the system of linear equations
with a symmetric or Hermitian positive definite
tridiagonal matrix A and multiple right-hand sides.

Syntax

Fortran 77:

call sptsv(n, nrhs, d, e, b, 1db, info)
call dptsv(n, nrhs, d, e, b, 1db, info)
call cptsv(n, nrhs, d, e, b, 1db, info)
call zptsv(n, nrhs, d, e, b, 1db, info)

Fortran 95:
call ptsv(d, e, b [,infol)

Description

This routine solves for X the real or complex system of linear equations

AX = B, where A is an n-by-n symmetric/Hermitian positive definite tridiagonal matrix, the
columns of matrix B are individual right-hand sides, and the columns of X are the corresponding
solutions.

Ais factored as 4 =L D L, and the factored form of 4 is then used to solve the system of
equations AX = B.

Input Parameters

n INTEGER. The order of matrix 4 (n = 0).

nrhs INTEGER. The number of right-hand sides; the number of columns in B
(nrhs 2 0).

d REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.
Array, dimension at least max(1, n). Contains the diagonal elements of the
tridiagonal matrix A.
e, b REAL for sptsv
DOUBLE PRECISION for dptsv
COMPLEX for cptsv

3-227

3 Intel® Math Kernel Library Reference Manual

3-228

1db

DOUBLE COMPLEX for zptsv.

Arrays: e(n- 1), b(1db, *).

The array e contains the (n - 1) subdiagonal elements

of 4.

The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations.

The second dimension of b must be at least max(1,nrhs).

INTEGER. The first dimension of b; 1db = max(1, n).

Output Parameters

d

info

Overwritten by the n diagonal elements of the diagonal matrix D from the
LDL™ factorization of A.

Overwritten by the (n - 1) subdiagonal elements of the unit bidiagonal factor L
from the factorization of A.

Overwritten by the solution matrix X.

INTEGER. If info=0, the execution is successful.

If info= -1, the ith parameter had an illegal value.

If info = i, the leading minor of order i (and hence the matrix 4 itself) is not
positive definite, and the solution has not been computed. The factorization
has not been completed unless i = n.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine ptsv interface are the following:

d
e

b

Holds the vector of length (n).
Holds the vector of length (n-1).

Holds the matrix B of size (n, nrhs).

LAPACK Routines: Linear Equations 3

?ptsvx

Uses the factorization A=LDL" to compute

the solution to the system of linear equations with a

symmetric (Hermitian) positive definite tridiagonal

matrix A, and provides error bounds on the solution.

Syntax
Fortran 77:

call sptsvx(fact, n, nrhs, d, e, df, ef,
berr, work, info)

call dptsvx(fact, n, nrhs, d, e, df, ef,
berr, work, info)

call cptsvx(fact, n, nrhs, d, e, df, ef,
berr, work, rwork, 1info)

call zptsvx(fact, n, nrhs, d, e, df, ef,
berr, work, rwork, info)

Fortran 95:

call ptsvx(d, e, b, x [,df] [,ef] [, factl]
[, infol)

Description

b, 1db, x, 1ldx, rcond, ferr,

b, 1db, x, 1ldx, rcond, ferr,

b, 1db, x, 1ldx, rcond, ferr,

b, 1db, x, 1ldx, rcond, ferr,

[, ferr] [,berr] [, rcond]

This routine uses the Cholesky factorization A=L D L7 to compute the solution to a real or
complex system of linear equations 4X =B, where A is a n-by-n symmetric or Hermitian
positive definite tridiagonal matrix, the columns of matrix B are individual right-hand sides, and

the columns of X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine ?ptsvx performs the following steps:

1. If fact ='N', the matrix A is factoredas 4 =L D A , where L is a unit lower bidiagonal matrix
and D is diagonal. The factorization can also be regarded as having the form 4 = U” D U.

3-229

3 Intel® Math Kernel Library Reference Manual

2. If the leading i-by-1 principal minor is not positive definite, then the routine returns with
info= i. Otherwise, the factored form of 4 is used to estimate the condition number of the matrix
A. If the reciprocal of the condition number is less than machine precision, info=n +11is
returned as a warning, but the routine still goes on to solve for X and compute error bounds as

described below.

3. The system of equations is solved for X using the factored form of 4.

4. Iterative refinement is applied to improve the computed solution matrix and calculate error
bounds and backward error estimates for it.

Input Parameters

fact

n

nrhs

d,df, rwork

e,ef,b,work

3-230

CHARACTER*1. Mustbe 'F' or 'N'.
Specifies whether or not the factored form of the matrix A4 is supplied on entry.

If fact="F': onentry, df and ef contain the factored form of A. Arrays d,
e, df, and ef will not be modified.

If fact = 'N', the matrix 4 will be copied to df and ef and factored.
INTEGER. The order of matrix 4 (nn=0).

INTEGER. The number of right-hand sides; the number of columns in B
(nrhs 20).

REAL for single precision flavors

DOUBLE PRECISION for double precision flavors

Arrays: d(n),df(n), rwork(n).

The array d contains the n diagonal elements of the tridiagonal matrix A.
The array df is an input argument if fact = 'F' and on entry contains the n
diagonal elements of the diagonal matrix D from the L D L factorization of A.
The array rwork is a workspace array used for complex flavors only.

REAL for sptsvx

DOUBLE PRECISION for dptsvx

COMPLEX for cptsvx

DOUBLE COMPLEX for zptsvx.

Arrays: e(n-1), ef(n-1), b(1db, *), work(*).

The array e contains the (- 1) subdiagonal elements of the tridiagonal
matrix 4.

The array ef is an input argument if fact = 'F' and on entry contains the
(n- 1) subdiagonal elements of the unit bidiagonal factor L from the L D L
factorization of A.

LAPACK Routines: Linear Equations 3

1db
1dx

The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations.

The array work is a workspace array. The dimension of work must be at least
2*n for real flavors, and at least n for complex flavors.

INTEGER. The leading dimension of b; 1db = max(1, n).
INTEGER. The leading dimension of x; 1dx = max(1, n).

Output Parameters

X

df, ef

rcond

ferr, berr

info

REAL for sptsvx

DOUBLE PRECISION for dptsvx
COMPLEX for cptsvx

DOUBLE COMPLEX for zptsvx.
Array, DIMENSION (1dx, *).

If info=0or info= ntl, the array x contains the solution matrix X to the
system of equations. The second dimension of x must be at least
max(1,nrhs).

These arrays are output arguments if fact ='N'.
See the description of df, ef in Input Arguments section.

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

An estimate of the reciprocal condition number of the matrix 4 after
equilibration (if done). If rcond is less than the machine precision (in
particular, if rcond = 0), the matrix is singular to working precision. This
condition is indicated by a return code of info> 0.

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and relative backward errors, respectively, for each solution vector.

INTEGER. If info=0, the execution is successful.

If info= -1, the ith parameter had an illegal value.

If info=i,and i < n, the leading minor of order i (and hence the matrix 4
itself) is not positive definite, so the factorization could not be completed, and
the solution and error bounds could not be computed; rcond = 0 is returned.
If info=1i,and i =n +1, then U is nonsingular, but rcond is less than
machine precision, meaning that the matrix is singular to working precision.
Nevertheless, the solution and error bounds are computed because there are a
number of situations where the computed solution can be more accurate than
the value of rcond would suggest.

3-231

3 Intel® Math Kernel Library Reference Manual

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their

Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible

arguments, see Fortran-95 Interface Conventions.

Specific details for the routine ptsvx interface are the following:

d Holds the vector of length (n).

e Holds the vector of length (n-1).

b Holds the matrix B of size (n, nrhs).

x Holds the matrix X of size (nn, nrhs).

df Holds the vector of length (n).

ef Holds the vector of length (n-1).

ferr Holds the vector of length (nrhs).

berr Holds the vector of length (nrhs).

fact Must be 'N' or 'F'. The default value is 'N'. If fact = 'F', then both

arguments af and ipiv must be present; otherwise, an error is returned.

?sysv

Computes the solution to the system of linear equations
with a real or complex symmetric matrix A and multiple
right-hand sides.

Syntax

Fortran 77:

call ssysv(uplo, n, nrhs, a, lda, ipiv, b, 1ldb,
call dsysv(uplo, n, nrhs, a, lda, ipiv, b, 1db,
call csysv(uplo, n, nrhs, a, lda, ipiv, b, 1ldb,
call zsysv(uplo, n, nrhs, a, lda, ipiv, b, 1ldb,
Fortran 95:

call sysvi(a, b [,uplo]l [,ipiv] [,infol)

3-232

work,
work,
work,

work,

lwork,
lwork,
lwork,

lwork,

info
info

info

= DD

info

LAPACK Routines: Linear Equations 3

Description

This routine solves for X the real or complex system of linear equations
AX = B, where A is an n-by-n symmetric matrix, the columns of matrix B are individual
right-hand sides, and the columns of X are the corresponding solutions.

The diagonal pivoting method is used to factor 4 as 4 =UD U or
A=LDL", where U (or L) is a product of permutation and unit upper (lower) triangular matrices,
and D is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.

The factored form of 4 is then used to solve the system of equations AX = B.

Input Parameters

uplo CHARACTER*1. Mustbe 'U" or 'L".
Indicates whether the upper or lower triangular part of 4 is stored and how 4 is
factored:

If uplo= 'u", the array a stores the upper triangular part of the matrix 4, and
A is factored as UDU.
If uplo= 'L, the array a stores the lower triangular part of the matrix 4; A4 is

factored as LDLT.

n INTEGER. The order of matrix 4 (n = 0).

nrhs INTEGER. The number of right-hand sides; the number of columns in B
(nrhs 2 0).

a, b, work REAL for ssysv

DOUBLE PRECISION for dsysv

COMPLEX for csysv

DOUBLE COMPLEX for zsysv.

Arrays: a(1da, *), b(1db, *), work(lwork).

The array a contains either the upper or the lower triangular part of the
symmetric matrix 4 (see uplo).

The second dimension of a must be at least max(1, n).

The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations.

The second dimension of b must be at least max(1,nrhs).

work (1work) is a workspace array.

lda INTEGER. The first dimension of a; 1da = max(1, n).
1db INTEGER. The first dimension of b; 1db = max(1, n).
lwork INTEGER. The size of the work array (Iwork = 1)

3-233

3 Intel® Math Kernel Library Reference Manual

3-234

If Iwork = -1, then a workspace query is assumed; the routine only calculates
the optimal size of the work array, returns this value as the first entry of the
work array, and no error message related to Iwork is issued by xerbla. See
Application Notes below for details and for the suggested value of 1work.

Output Parameters

a

ipiv

work (1)

info

If info =0, a is overwritten by the block-diagonal matrix D and the
multipliers used to obtain the factor U (or L) from the factorization of 4 as
computed by ?sytrf.

If info =0, b is overwritten by the solution matrix X.

INTEGER.

Array, DIMENSTION at least max(1,n).

Contains details of the interchanges and the block structure of D, as
determined by ?sytrf.

Ifipiv(i) = k>0, thend,; is a 1-by-1 diagonal block, and the ith row and
column of 4 was interchanged with the kth row and column.
Ifuplo="'U'and ipiv(i) =ipiv(i-1) = -m<0, then D has a 2-by-2 block
in rows/columns i and i-1, and (i-1) th row and column of 4 was
interchanged with the mth row and column.

Ifuplo="'L'and ipiv(i) =ipiv(i+1) =-m<0,then D has a 2-by-2 block
in rows/columns i and i+1, and (i+1) th row and column of 4 was
interchanged with the mth row and column.

If info=0, on exit work (1) contains the minimum value of 1work required
for optimum performance. Use this Iwork for subsequent runs.

INTEGER. If info=0, the execution is successful.

If info= -1, the ith parameter had an illegal value.

If info=1i,d;; is 0. The factorization has been completed, but D is exactly
singular, so the solution could not be computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine sysv interface are the following:

a
b

ipiv

Holds the matrix 4 of size (n1, nn).
Holds the matrix B of size (nn, nrhs).

Holds the vector of length (n).

LAPACK Routines: Linear Equations 3

uplo Must be 'U' or 'L'. The default value is 'U".

Application Notes

For better performance, try using 1work = n*blocksize, where blocksize is a machine-dependent
value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use Iwork =-1 for the first run. In this case, a
workspace query is assumed; the routine only calculates the optimal size of the work array, returns
this value as the first entry work (1) of the work array , and no error message related to Iwork is
issued by xerbla. On exit, examine work (1) and use this value for subsequent runs.

?sysvx

Uses the diagonal pivoting factorization to compute the
solution to the system of linear equations with a real or
complex symmetric matrix A, and provides error
bounds on the solution.

Syntax

Fortran 77:

call ssysvx(fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, 1ldb, x, 1dx,
rcond, ferr, berr, work, lwork, iwork, info)

call dsysvx(fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, 1ldb, x, 1dx,
rcond, ferr, berr, work, lwork, iwork, info)

call csysvx(fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, 1ldb, x, 1dx,
rcond, ferr, berr, work, lwork, rwork, info)

call zsysvx(fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, 1ldb, x, 1dx,
rcond, ferr, berr, work, lwork, rwork, info)
Fortran 95:

call sysvx(a, b, x [,uplo] [,af] [,ipiv] [, fact] [,ferr] [,berr] [,rcond]
[,infol)

3-235

3 Intel® Math Kernel Library Reference Manual

3-236

Description

This routine uses the diagonal pivoting factorization to compute the solution to a real or complex
system of linear equations 4X = B, where A is a n-by-n symmetric matrix, the columns of matrix
B are individual right-hand sides, and the columns of X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.
The routine ?sysvx performs the following steps:

1. If fact ='N', the diagonal pivoting method is used to factor the matrix A. The form of the
factorizationis 4 = UD Ul orA =L D LT, where U (or L) is a product of permutation and unit
upper (lower) triangular matrices, and D is symmetric and block diagonal with 1-by-1 and 2-by-2
diagonal blocks.

2.1f some d; ; =0, so that D is exactly singular, then the routine returns with info= 1.
Otherwise, the factored form of 4 is used to estimate the condition number of the matrix 4. If the
reciprocal of the condition number is less than machine precision, info=n + 1 is returned as a
warning, but the routine still goes on to solve for X and compute error bounds as described below.

3. The system of equations is solved for X using the factored form of 4.

4. Tterative refinement is applied to improve the computed solution matrix and calculate error
bounds and backward error estimates for it.

Input Parameters

fact CHARACTER*1. Mustbe 'F' or 'N'.

Specifies whether or not the factored form of the matrix 4 has been supplied on
entry.

If fact="'F': onentry, af and ipiv contain the factored form of 4. Arrays
a, af, and ipiv will not be modified.

If fact = 'N', the matrix 4 will be copied to af and factored.

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates whether the upper or lower triangular part of 4 is stored and how 4 is
factored:

If uplo='U", the array a stores the upper triangular part of the symmetric
matrix 4, and A is factored
as UDU".
If uplo= 'L, the array a stores the lower triangular part of the symmetric
matrix A; A is factored as LDLT.

n INTEGER. The order of matrix A (nn=0).

LAPACK Routines: Linear Equations 3

nrhs

a,af,b,work

lda
ldaf
1db

ipiv

1ldx

INTEGER. The number of right-hand sides; the number of columns in B
(nrhs 2 0).

REAL for ssysvx

DOUBLE PRECISION for dsysvx

COMPLEX for csysvx

DOUBLE COMPLEX for zsysvx.

Arrays: a(1da,*), af(1daf,*), b(1db,*), work(*).

The array a contains either the upper or the lower triangular part of the
symmetric matrix 4 (see uplo).
The second dimension of a must be at least max(1,n).

The array af is an input argument if fact ='F' . It contains he block diagonal
matrix D and the multipliers used to obtain the factor U or L from the
factorization 4 = UD U or 4 =L D L as computed by ?sytrf.

The second dimension of af must be at least max(1,n).

The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations. The second dimension of b must be at least
max(1,nrhs).

work (*) is a workspace array of dimension (1work).
INTEGER. The first dimension of a; 1da = max(1, n).
INTEGER. The first dimension of af; 1daf = max(1, n).
INTEGER. The first dimension of b; 1db = max(1, n).

INTEGER.

Array, DIMENSTION at least max(1,n).

The array ipivis an input argument if fact ='F'.

It contains details of the interchanges and the block structure of D, as
determined by ?sytrf.

Ifipiv(i) = k>0, thend,; is a 1-by-1 diagonal block, and the ith row and
column of 4 was interchanged with the kth row and column.
Ifuplo="'U"and ipiv(i) =ipiv(i-1) =-m<0,then D has a 2-by-2 block
in rows/columns 1 and i-1, and (i-1) th row and column of 4 was
interchanged with the mth row and column.

Ifuplo="'L'and ipiv(i) =ipiv(i+1) =-m<0,then D has a 2-by-2 block
in rows/columns i and i+1, and (i+1) th row and column of 4 was
interchanged with the mth row and column.

INTEGER. The leading dimension of the output array x; 1dx = max(1, n).

3-237

3 Intel® Math Kernel Library Reference Manual

1work

iwork

rwork

INTEGER. The size of the work array .

If Iwork = -1, then a workspace query is assumed; the routine only calculates
the optimal size of the work array, returns this value as the first entry of the
work array, and no error message related to Iwork is issued by xerbla. See
Application Notes below for details and for the suggested value of 1work.

INTEGER.
Workspace array, DIMENSION at least max(1, n); used in real flavors only.

REAL for csysvx;

DOUBLE PRECISION for ZSYSVX.

Workspace array, DIMENSION at least max(1, nn); used in complex flavors
only.

Output Parameters

X

af, ipiv

rcond

ferr, berr

work (1)

3-238

REAL for ssysvx

DOUBLE PRECISION for dsysvx
COMPLEX for csysvx

DOUBLE COMPLEX for zsysvx.
Array, DIMENSION (1dx, *).

If info=0or info= ntl, the array x contains the solution matrix X to the
system of equations. The second dimension of x must be at least
max(1,nrhs).

These arrays are output arguments if fact ='N'.
See the description of af, ipiv in Input Arguments section.

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

An estimate of the reciprocal condition number of the matrix 4. If rcond is
less than the machine precision (in particular, if rcond = 0), the matrix is
singular to working precision. This condition is indicated by a return code of
info>0.

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and relative backward errors, respectively, for each solution vector.
If info=0, on exit work (1) contains the minimum value of Iwork required
for optimum performance. Use this 1work for subsequent runs.

LAPACK Routines: Linear Equations 3

info INTEGER. If info=0, the execution is successful.
If info= -1, the ith parameter had an illegal value.
If info=i,and i < n, then d,; is exactly zero. The factorization has been
completed, but the block diagonal matrix D is exactly singular, so the solution
and error bounds could not be computed; rcond = 0 is returned.
If info=1i,and 1 =n +1, then D is nonsingular, but rcond is less than
machine precision, meaning that the matrix is singular to working precision.
Nevertheless, the solution and error bounds are computed because there are a
number of situations where the computed solution can be more accurate than
the value of rcond would suggest.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine sysvx interface are the following:

a Holds the matrix 4 of size (n1, n).

b Holds the matrix B of size (n, nrhs).

x Holds the matrix X of size (n, nrhs).

ar Holds the matrix AF of size (n, n).

ipiv Holds the vector of length (n).

ferr Holds the vector of length (nrhs).

berr Holds the vector of length (nrhs).

uplo Must be 'U' or 'L'. The default value is 'U".

fact Must be 'N' or 'F'. The default value is 'N'. If fact = 'F', then both

arguments af and ipiv must be present; otherwise, an error is returned.

Application Notes

For real flavors, Iwork must be at least 3*n, and for complex flavors at least 2*n. For better
performance, try using lwork = n*blocksize, where blocksize is the optimal block size for
?sytrf.

3-239

3 Intel® Math Kernel Library Reference Manual

If you are in doubt how much workspace to supply, use Iwork =-1 for the first run. In this case, a
workspace query is assumed; the routine only calculates the optimal size of the work array, returns
this value as the first entry work (1) of the work array , and no error message related to Iwork is
issued by xerbla. On exit, examine work (1) and use this value for subsequent runs.

?hesv

Computes the solution to the system of linear equations
with a Hermitian matrix A and multiple right-hand

sides.

3-240

Syntax
Fortran 77:

call chesv(uplo, n, nrhs, a, lda, ipiv, b, 1db, work, lwork, info)

call zhesv(uplo, n, nrhs, a, lda, ipiv, b, 1db, work, lwork, info)
Fortran 95:

call hesv(a, b [,uplo]l [,ipiv] [,info])

Description

This routine solves for X the real or complex system of linear equations
AX = B, where A is an n-by-n symmetric matrix, the columns of matrix B are individual
right-hand sides, and the columns of X are the corresponding solutions.

The diagonal pivoting method is used to factor 4 as A= UD U or
A=LDLH , where U (or L) is a product of permutation and unit upper (lower) triangular matrices,
and D is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.

The factored form of 4 is then used to solve the system of equations 4AX = B.

Input Parameters

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates whether the upper or lower triangular part of 4 is stored and how 4 is
factored:

LAPACK Routines: Linear Equations 3

nrhs

a, b,

lda
1db

1lwork

work

If uplo= 'U", the array a stores the upper triangular part of the matrix 4, and
A is factored as UDU,

If uplo= 'L, the array a stores the lower triangular part of the matrix 4; A4 is
factored as LDL!.

INTEGER. The order of matrix 4 (nn=0).

INTEGER. The number of right-hand sides; the number of columns in B
(nrhs 20).

COMPLEX for chesv

DOUBLE COMPLEX for zhesv.

Arrays: a(1da, *), b(1db, *), work(1work).

The array a contains either the upper or the lower triangular part of the
Hermitian matrix 4 (see uplo).

The second dimension of a must be at least max(1, n).

The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations.

The second dimension of b must be at least max(1,nrhs).

work (1work) is a workspace array.

INTEGER. The first dimension of a; 1da = max(1, n).
INTEGER. The first dimension of b; 1db = max(1, n).

INTEGER. The size of the work array (1work = 1).

If 1work = -1, then a workspace query is assumed; the routine only calculates
the optimal size of the work array, returns this value as the first entry of the
work array, and no error message related to Iwork is issued by xerbla. See
Application Notes below for details and for the suggested value of 1work.

Output Parameters

a

ipiv

If info =0, a is overwritten by the block-diagonal matrix D and the
multipliers used to obtain the factor U (or L) from the factorization of 4 as
computed by ?hetrf.

If info =0, b is overwritten by the solution matrix X.

INTEGER.

Array, DIMENSION at least max(1,n).

Contains details of the interchanges and the block structure of D, as
determined by ?hetrf.

Ifipiv(i) = k>0, thend,; is a 1-by-1 diagonal block, and the ith row and
column of 4 was interchanged with the kth row and column.

3-241

3 Intel® Math Kernel Library Reference Manual

3-242

Ifuplo="'U'and ipiv(i) =ipiv(i-1) = -m<0, then D has a 2-by-2 block
in rows/columns i and i-1, and (i-1) th row and column of 4 was
interchanged with the mth row and column.

Ifuplo="'L'and ipiv(i) =ipiv(i+1) = -m<0,then D has a 2-by-2 block
in rows/columns i and i+1, and (i+1) th row and column of 4 was
interchanged with the mth row and column.

work (1) If info=0, on exit work (1) contains the minimum value of 1work required
for optimum performance. Use this 1work for subsequent runs.
info INTEGER. If info=0, the execution is successful.

If info = -1, the ith parameter had an illegal value.
If info=1,d;; is 0. The factorization has been completed, but D is exactly
singular, so the solution could not be computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine hesv interface are the following:

a Holds the matrix 4 of size (n1, n).

b Holds the matrix B of size (n, nrhs).

ipiv Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U".

Application Notes

For better performance, try using 1work = n*blocksize, where blocksize is a machine-dependent
value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use Iwork =-1 for the first run. In this case, a
workspace query is assumed; the routine only calculates the optimal size of the work array, returns
this value as the first entry work (1) of the work array , and no error message related to 1work is
issued by xerbla. On exit, examine work (1) and use this value for subsequent runs.

LAPACK Routines: Linear Equations 3

?hesvx

Uses the diagonal pivoting factorization to compute
the solution to the complex system of linear equations
with a Hermitian matrix A, and provides error bounds
on the solution.

Syntax

Fortran 77:

call chesvx(fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, 1ldb, x, 1dx,
rcond, ferr, berr, work, lwork, rwork, info)

call zhesvx(fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, 1ldb, x, 1dx,
rcond, ferr, berr, work, lwork, rwork, info)
Fortran 95:

call hesvx(a, b, x [,uplo] [,af] [,ipiv] [, fact] [,ferr] [,berr] [,rcond]
[,infol)

Description

This routine uses the diagonal pivoting factorization to compute the solution to a complex system
of linear equations AX =B, where A is an n-by-n Hermitian matrix, the columns of matrix B are
individual right-hand sides, and the columns of X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.
The routine ?hesvx performs the following steps:

1. If fact ='N', the diagonal pivoting method is used to factor the matrix A. The form of the
factorizationis A = UD U or 4 = L D LY, where U (or L) is a product of permutation and unit
upper (lower) triangular matrices, and D is Hermitian and block diagonal with 1-by-1 and 2-by-2
diagonal blocks.

2. 1f some d; ; =0, so that D is exactly singular, then the routine returns with info=1.
Otherwise, the factored form of 4 is used to estimate the condition number of the matrix 4. If the
reciprocal of the condition number is less than machine precision, info=n + 1 is returned as a
warning, but the routine still goes on to solve for X and compute error bounds as described below.

3. The system of equations is solved for X using the factored form of 4.

3-243

3 Intel® Math Kernel Library Reference Manual

3-244

4. Tterative refinement is applied to improve the computed solution matrix and calculate error
bounds and backward error estimates for it.

Input Parameters

fact

uplo

n

nrhs

a,af,b,work

lda

CHARACTER*1. Mustbe 'F' or 'N'.

Specifies whether or not the factored form of the matrix 4 has been supplied on
entry.

If fact="'F': onentry, af and ipiv contain the factored form of 4. Arrays
a, af, and ipiv are not modified.

If fact = 'N', the matrix 4 is copied to af and factored.

CHARACTER*1. Mustbe 'U' or 'L"'.

Indicates whether the upper or lower triangular part of 4 is stored and how 4 is
factored:

If uplo='u", the array a stores the upper triangular part of the Hermitian
matrix 4, and A is factored as UDU.

If uplo= 'L, the array a stores the lower triangular part of the Hermitian
matrix 4; A is factored as LDLH.

INTEGER. The order of matrix 4 (n = 0).

INTEGER. The number of right-hand sides; the number of columns in B
(nrhs 2 0).

COMPLEX for chesvx
DOUBLE COMPLEX for zhesvx.
Arrays: a(lda,*), af(1daf,*), b(1db,*), work(*).

The array a contains either the upper or the lower triangular part of the
Hermitian matrix 4 (see uplo).
The second dimension of a must be at least max(1,n).

The array af is an input argument if fact ='F'. It contains he block diagonal
matrix D and the multipliers used to obtain the factor U or L from the
factorization 4 = UD U or4 =L D LM as computed by ?hetrf.

The second dimension of af must be at least max(1,n).

The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations. The second dimension of b must be at least
max(l,nrhs).

work (*) is a workspace array of dimension (Iwork).

INTEGER. The first dimension of a; 1da = max(1, n).

LAPACK Routines: Linear Equations 3

ldaf
1db

ipiv

1dx

1lwork

rwork

INTEGER. The first dimension of af; 1daf > max(1, n).
INTEGER. The first dimension of b; 1db = max(1, n).

INTEGER.

Array, DIMENSION at least max(1,n).

The array ipivis an input argument if fact ='F'.

It contains details of the interchanges and the block structure of D, as
determined by ?hetrf.

If ipiv(i) = k>0, thend,; is a 1-by-1 diagonal block, and the ith row and
column of 4 was interchanged with the kth row and column.
Ifuplo="'U'and ipiv(i) =ipiv(i-1) = -m<0,then D has a 2-by-2 block
in rows/columns i and i-1, and (i-1) th row and column of 4 was
interchanged with the mth row and column.

Ifuplo="'L'and ipiv(i) =ipiv(i+1) =-m<0,then D has a 2-by-2 block
in rows/columns i and i+1, and (i+1) th row and column of 4 was
interchanged with the mth row and column.

INTEGER. The leading dimension of the output array x; 1dx = max(1, n).

INTEGER. The size of the work array .

If 1work = -1, then a workspace query is assumed; the routine only calculates
the optimal size of the work array, returns this value as the first entry of the
work array, and no error message related to Iwork is issued by xerbla. See
Application Notes below for details and for the suggested value of 1work.

REAL for chesvx;
DOUBLE PRECISION for zhesvx.
Workspace array, DIMENSION at least max(1, n).

Output Parameters

X

af, ipiv

COMPLEX for chesvx
DOUBLE COMPLEX for zhesvx.
Array, DIMENSION (ldx, *).

If info=0o0r info=n + 1, the array x contains the solution matrix X to the