UFAT — A Particle Tracer
for Time-Dependent Flow Fields

David A. Lane

Computer Sciences Corporation
NASA Ames Research Center
M/S T27A-2
Moftett Field, CA 94035

Abstract

Time-dependent (unsteady) flow fields are com-
monly generated in Computational Fluid Dynamics
(CFD) simulations; however, there are very few flow
visualization systems that generate particle traces in
unsteady flow fields. Most existing systems generate
particle traces in time-independent flow fields. A par-
ticle tracing system has been developed to generate par-
ticle traces in unsteady flow fields. The system was
used to visualize several 3D unsteady flow fields from
real-world problems, and it has provided useful insights
into the time-varying phenomena in the flow fields.
In this paper, the design requirements and the archi-
tecture of the system are described. Some examples of
particle traces computed by the system are also shown.

1 Introduction

Particle systems were introduced in [14] to model
fuzzy objects like fire, clouds, and water. For this type
of particle system, the motion of the particle is based
on some stochastic model. Extensions to this type
of particle system have included modeling of snow,
grass, smoke, and fireworks. In CFD, particle traces
can be used to visualize several time-varying phenom-
ena in the flow field. For example, vortex shedding,
formation, and separation [15]. When particle traces
are used in this context, the motion of the particle is
based on the physical velocity from the flow field.

An instantaneous streamline is a curve that is tan-
gent to the vector field at an instant in time. In time-
independent (steady) flow, instantaneous streamlines
are computed from the flow field at an instant in time.
A streakline is a line joining the positions at an instant
in time of all particles that have been released from
a fixed location, called the seed location. In unsteady
flow, streaklines are computed from several thousand

time steps. Streaklines are commonly simulated by
releasing particles continuously from the seed loca-
tions at each time step. In hydrodynamics, streaklines
are simulated by releasing hydrogen bubbles rapidly
from the seed locations. Instantaneous streamlines
and streaklines are identical in steady flow fields.

In this paper, I introduce a particle tracing sys-
tem called Unsteady Flow Analysis Toolkit (UFAT),
which generates particle traces in unsteady flow fields.
UFAT differs from existing systems in that it com-
putes streaklines from a large number of time steps,
performs particle tracing in flow fields with moving
grids, provides a save/restore option, and supports
playback. Preliminary results of UFAT were presented
in [10]. This paper describes the design requirements
and the architecture of UFAT. First, the basic problem
of particle tracing in unsteady flow fields is described.
The design requirements and the particle tracing al-
gorithms of UFAT are then described. Examples of
streaklines computed for three real-world problems are
shown, and the performance of UFAT is analyzed. Fi-
nally, future enhancements for UFAT are discussed.

2 Particle Tracing

The basic problem of particle tracing can be stated
as follows: assume that a vector function V(p,t) is
defined for all p in the domain D and t € [t1,t,],
where n is the number of time steps in the unsteady
flow. For any particle p € D, find the path of p. The
path of p is governed by the following equation:

V). 1)

The path of p can be found by numerically integrating
Equation (1). Several schemes can be used to inte-
grate the above equation. A common scheme is the



second-order Runge-Kutta integration with adaptive
stepsizing. Let pg be the initial point (the seed loca-
tion) of the particle p and k = 0. Then,

p* = pr + AV (pi, 1),
Prt1 = pr + AV (pr, 1) + V (", 1 + h))/2,

t=t+h and =k+1, (2)

—

where h = ¢/max(V(pr)), maz() is the maximum ve-
locity component of V(pk), and 0 < ¢ < 1. The con-
stant ¢ controls the step size of the particle. If ¢ is
small, then the particle will traverse many steps in
the grid cell. Small values of ¢ should be used for grid
regions with rapidly varying velocity. Otherwise, the
particle p may advance out of the domain in just a
few steps. The integration scheme stated above can
be performed in the physical coordinate space or in
the computational coordinate space. If the integra-
tion is performed in computational space, then it is
simple and fast. During the integration, a cell search
operation is performed to determine the grid cell that
Pr+1 lies in. Since the grid domain D is rectilinear
in computational space, the grid cell can be easily de-
termined by taking the integer computational coor-
dinates of pry1. For example, if the computational
coordinates of ppy1 are (€,1,(), then pg41 lies in grid
cell (int(€), int(n), int(¢)). In the physical coor-
dinate space, the grid domain D is curvilinear. The
cell search operation usually requires performing an
iterative algorithm to find the cell that ppyq lies in.
A common algorithm used is the Newton-Raphson
method. Although particle integration can be done
faster in the computational coordinate space than in
the physical coordinate space, integrating in compu-
tational space may be inaccurate if there are singular-
ities in the grid. For computational space integration,
physical velocities are transformed into computational
velocities. Singularities in the grid could result in infi-
nite transformed velocities [4]. For this reason, UFAT
performs particle integration in physical space.

If the grid is moving in time, then pg4q is likely
to be in a grid cell different from the cell that p lies
in. To determine the cell that pryq lies in, the cell
search operation discussed above is performed. If the
grid consists of several blocks (a type of grid known
as a multi-block grid), then pry1 may lie in a block
different from the block that pj lies in. If p; is near
the boundary of a block, then it is necessary to check

if pr+1 will be in a different block. This also requires a
cell search operation. For a detailed discussion of the
basic problems in particle tracing, see [5] and [13].

3 Related Work

Presently, many systems are available for steady
flow visualization. However, most of these systems
only provide instantaneous visualization of the flow
data. For example, instantaneous streamlines, isosur-
faces, and slicing planes. Several effective techniques
were recently developed for interactive interrogation
of instantaneous flow fields. Some of these techniques
are described in [6,8,11]. To date, there are very few
particle tracing systems that can generate streaklines
using a large number of time steps from unsteady flow
fields. Two of these are Virtual Wind Tunnel (VWT)
[3] and pV3 [7]. VWT provides interactive visualiza-
tion of particle traces in a virtual environment using
a stereo head-tracked display and a data glove. Al-
though VWT is an effective interactive tool for un-
steady flow visualization, it requires a preprocessing
of the flow data, and the number of time steps that
the user can visualize is determined by the memory
size of the system. pV3 allows interactive animation
of unsteady flow data by looping through an input file
that contains the names of the flow data files. This is
similar to an interactive scripting approach. pV3 does
not save the visualization results, hence, playback is
not supported and re-calculation is required to repeat
the animation.

4 Requirements

It is common to generate several thousand time
steps of flow data in a CFD simulation; however, it
is presently impossible to visualize flow data from all
these time steps at one time. Scientists sometimes
use one of the following approaches: (1) visualize the
data at some snapshots in time or (2) save every nth
time step of the data and then visualize the subset of
data. Regardless of the approach used, there are usu-
ally hundreds of time steps that need to be visualized
[10]. A requirement for UFAT is that it must be able
to compute streaklines from a large number of time
steps.

A complex grid usually consists of several grid
blocks. For some grids, one or more grid blocks may
move as a function of time, a characteristic of grids
with rigid-body motion. Moving grids are commonly
used in pitching airfoils, oscillating flaps, rotating tur-
bine fans of combustion engines, and rotating heli-
copter blades. Another requirement for UFAT is that



it must be able to compute particle traces in unsteady
flow with moving grids.

The ability to visualize a scalar quantity in the flow
data can be crucial for some flow analysis. Quantities
that are commonly computed are temperature, pres-
sure, mach number, and density. A requirement for
UFAT is that it must assign a color to each particle
based on the value of a specified quantity sampled at
the particle’s location. The color of the particle can
also be based on its position, the time at which it was
released, or the seed location where it was released.

Interactive visualization of large time-dependent
flow fields is difficult or nearly impossible due to the
data size. Sometimes, a scripting approach is used
to save the visualization results from each time step,
and the visualization results are then played back at a
later time. In some visualization systems, interactive
visualization is feasible by using one of the following
approaches: (1) preprocess the data so that a number
of time steps can be stored in memory or (2) sample
the flow data at a lower resolution so that the data
can be stored in memory. By storing the flow data
in memory, the data can be interactively visualized.
The latter approach is usually not desirable because
the accuracy of the flow data is lost when the data is
sampled at a lower resolution. With either approach,
the size of the physical memory dictates how much
flow data can be visualized interactively. Although
these two approaches can provide interactive visual-
ization, important features may not be detected be-
cause of the reduced representation of the flow data.
Using a scripting approach, the entire flow data can be
analyzed. Furthermore, once the visualization results
have been saved, the scientist can play back the results
repeatedly without any additional computation. Visu-
alization playback is another requirement for UFAT.

5 Unsteady Flow Analysis Toolkit

UFAT was developed to compute streaklines using a
large number of time steps in 3D unsteady flow fields.
It handles single and multi- block curvilinear grids,
and the grid may have rigid-body motion. Particles
are released continuously from the specified seed lo-
cations at each time step. The particles are advected
through all time steps until they leave the grid domain.
UFAT saves the current positions of the particles at
each time step; thus, the particle traces can be played
back at a later time. Particles are colored according
to a scalar quantity. The quantity may be a physical
quantity of the flow (e.g. pressure, temperature, and
density), a position coordinate (x, y, or z) of the parti-
cle, the time at which the particle was released, or the

seed location where the particle was released. UFAT
uses an adaptive-time integration scheme to advect
the particles in the physical coordinate space. The
integration scheme can be of second or fourth order.
UFAT also allows particles to be traced along the grid
surface. This type of particle trace simulates oil flow
on a surface. Sometimes, the available disk on a sys-
tem may not be able to store all time steps of flow
data. UFAT provides a save/restore option so that
particle tracing can be performed in several run ses-
sions. This allows particle traces to be computed from
many time steps without requiring all time steps to be
online at one time.

5.1 Data Structure

In order to advect particles through all time steps,
UFAT stores the two most recent time steps of the flow
data in memory. Particles are successively advected
from the current time step to the next time step. The
particle traces are stored in a two-dimensional array
of size N; x N;, where N, is the number of seed lo-
cations and N; is the number of time steps. FEach
entry in the array is a structure that contains the
physical and computational coordinates of the parti-
cle and the time at which the particle was released
from the seed location. There is also an array of size
N, that stores the number of particles in each trace.
Let T'race_Length[s] denote the number of particles in
trace s, and it is initialized to zero. At each time step,
a new particle is released from the seed location and
Trace_Length[s] is incremented by one. When a parti-
cle in trace s leaves the grid domain, Trace_Length|s]
is decremented by one.

5.2 Algorithm

This section outlines the particle tracing al-
gorithm in UFAT. The following procedures in
the algorithm are described: Step_Through Time(),
Advect_Trace(), and Advect Particle(). Proce-
dure Step_Through Time() steps through all time
steps in the given flow data and calls Advect _Trace().
The main task of procedure Advect_Trace() is to
advect the active particles in all traces from the
current time step to the next time step. The ac-
tual particle integration is performed in procedure
Advect Particle(). For brevity, let current_time de-
note the current time step and nezt_time denote the
next time step. For each procedure, a description is
given followed by the pseudocode of the procedure.

Procedure Step_Through Time() begins by loading
the first two time steps of the flow and grid data



into memory. If the grid is fixed, then only one
grid is loaded into memory. Then, it steps through
all time steps in the flow data. For each time step,
the following tasks are performed: (1) Call procedure
Advect _Trace() to advect particles in every trace
from current_time to next_time. (2) Write the cur-
rent particle traces to the trace file. A frame marker
is also written to denote the end of each time step.
(3) Read the next time step’s flow. If the grid is mov-
ing in time, then read the next time step’s grid. The
pseudocode for this procedure is given below:

Procedure Step_Through Time ()
Read first two time steps of flow and grid data
For t=1 to N;—1 do
Advect _Trace(t, t+1)
Write current traces to the trace file
Read the next time step’s flow data
If moving grid then
Read the next time step’s grid
End for

Procedure Advect_Trace() advects particles in ev-
ery trace from current_time to next_time. The pro-
cedure performs the following steps for each trace:
(1) Copy all particles in the trace to a working trace
array w. (2) Call procedure Advect Particle() to
advect each particle in the working trace w from
current_time to next_time. If the particle is inside
the grid domain D after the advection, then the par-
ticle is saved to the trace. Otherwise, the particle is
considered to be inactive and it is discarded. (3) Re-
lease a new particle from the trace’s seed location and
save the particle in the trace. The pseudocode for this
procedure is as follows:

Procedure Advect_Trace(current_time, next_time)
For s=1 to N, do
Copy trace s to working trace w
W _Length = Trace_Length[s]
Remove all particles in trace s
Trace_Length[s] = 0
For 1 =1 to W_Length do
p = the ith particle in working trace w
Advect Particle(current_time, nezxt_time, p)
If p€ D then
Store p in trace s
Trace_Length[s] = Trace_Length[s] + 1
End if
End for
Release a new particle from seed s and
store it in trace s
Trace_Length[s] = Trace_Length[s] + 1
End for

Procedure Advect Particle() advects the given
particle p from current_time to next_time. The pseu-
docode shown below uses the second-order Runge-
Kutta integration scheme given in Equation (2) and
is based on a predictor-corrector algorithm used in
PLOT3D [5]. The flow data is only given at some
number of time steps. If t # ¢; for ¢ = 1,..., Ny,
then an interpolation in time is performed. Since the
velocity is known only at discrete points in the grid,
when p does not coincide with a grid point, a trilinear
interpolation in physical space is also performed. Fol-
lowing are the steps in procedure Advect Particle():
(1) Initialize t to current_time. The variable ¢ is in-
cremented at each advection and the procedure exits
when t = neat_time or when the particle has left the
grid domain D. (2) Interpolate the velocity V at p. (3)
Compute the time increment h, where h = c/ma:v(ff)
and ¢ is a fraction of the grid cell that each particle
must take inside the cell. The constant ¢ can be con-
sidered as a normalized stepsize and 0 < ¢ < 1. For
example, if the particle must traverse five steps in a
cell, then let ¢ = 0.2. (4) Increment ¢ by h. (5) Com-
pute the predictor p*. (6) Interpolate the velocity v+
at p*. (7) Compute the corrector, which is the posi-
tion of p after the advection. Below is the pseudocode
for procedure Advect Particle().

Procedure Advect Particle(current_time,next_time,p)
t = current_time
While (¢t < mezt_time AND p € D ) do
V = Interpolate Velocity(p, t, current_time,
next_time)
Adjust:
h = c/maz(V)
If (t+ h > nezt_time) h = next_time — 1
t=t+h
{ Predictor step }
pr=p+hxV
V* = Interpolate Velocity(p*, t+ h,
current_time, next_time)
{ Adaptive stepsizing }
‘Zotal = (‘7 + ‘7*)/2
If (h* maz(‘zotaz) > ¢) then
‘7 = ‘_/'total
t=t—h
Goto Adjust
Endif
{ Corrector step }
p=p+hx(V+V")/2
End while

Although the pseudocode shown above only pro-
vides a second-order integration scheme, a fourth-
order integration scheme has also been implemented in



UFAT. Procedure Interpolate Velocity(), which is
not shown, interpolates velocity in time followed by a
trilinear interpolation in the physical space. When a
new position for p is computed, a cell search step is
performed to determine the grid cell that p lies in (see
Section 2).

5.3 Animation

The most effective method to view streaklines is to
animate the particle traces. UFAT saves streaklines
at each given time step to a trace file, which can then
be animated with a visualization system. Although
particles may traverse in non-uniform time steps, the
positions of the particles are sampled at uniform time
steps (i.e. the given time steps). The particle trace
file contains basic graphics primitives such as points
and lines. These basic primitives can be written in
a format so that they can be easily read by other vi-
sualization systems such as AVS, IRIS Explorer, and
FAST [2]. The only requirement for the visualization
system is that it must be able to animate the streak-
lines through a given sequence of time steps.

6 Distributed Visualization

It is common that an unsteady flow data set is too
large to be stored locally on a graphics workstation.
The flow data set is often stored on a remote system
with a large disk capacity. The computation is then
performed on the remote system while the results are
sent over the network to the graphics workstation for
interactive visualization. The data transfer rate on
the network must be fast enough so that the image
on the graphics workstation can be updated at least
15 frames per second for a reasonable animation. The
size of the particle traces at each time step is relatively
small compared to the size of the grid file. Thus, the
particle traces at each time step can be sent over the
network in a reasonably short period of time. If the
grid is moving in time, then a new grid must also
be sent over the network at each time step. It may
take several seconds to transfer a grid consisting of
several million grid points, depending on the speed of
the network. Hence, distributed flow visualization is
practical if the data transfer rate of the network is fast
enough to handle the amount of data that will be sent
over the network.

7 Results

This section shows some streaklines that were com-
puted by UFAT for three unsteady flow data sets. Al-

though the examples shown in this section are only
from CFD applications, other applications with time-
dependent flow data can easily use UFAT to gener-
ate streaklines. The input data must consist of the
grid geometry and the flow quantities sampled at the
grid points. Currently, UFAT only supports curvilin-
ear grids.

The first data set is a clipped Delta Wing with con-
trol surfaces, which oscillate at a frequency of eight
Hertz (Hz) and with an amplitude of 6.65 degrees.
Each oscillation cycle consists of 5,000 time steps. For
visualization purpose every 50th time step is saved,
for a total of 100 time steps per cycle. The clipped
Delta Wing grid consists of 250 thousand points in
seven blocks. For this CFD simulation, the scientists
evaluated a new zoning method called “virtual zones,”
which is used for grids with time-varying boundary
conditions. Virtual zones simplify the grid genera-
tion problem for complex geometries and for time-
dependent geometries [9]. Figure 1 shows the seed
locations, which are colored by position, at the lead-
ing edge of the clipped Delta Wing. Figure 2 shows
streaklines at time step 7, where the control surfaces
have deflected 2 degrees up. The evenly spaced parti-
cle traces (colored in cyan) near the center of the wing
indicates that the flow is relatively steady in that re-
gion. However, the flow is very turbulent near the
tip of the wing. Figure 3 shows the streaklines after
the control surfaces have completed one oscillation. At
this time, the control surfaces have deflected 5 degrees
up. This figure shows that some particles (colored in
red), which were released from the outer part of the
leading edge of the wing, have moved toward the tip
of the wing due to the control surfaces. This behavior
can be seen clearly in an animation of the streaklines.

The second data set is an arrow wing configuration
of a supersonic transport in transonic regime. Tran-
sonic flutter is known as a design problem on this con-
figuration. Scientists want to develop a computational
tool to examine the influence of control surface oscil-
lations on the lift of the transport for the suppression
of the flutter. The arrow wing grid consists of ap-
proximately one million points in four blocks. The
control surfaces oscillate at a frequency of 15 Hz and
with an amplitude of 8 degrees. Figure 4 shows streak-
lines surrounding the transport at time steps 25 and
175. The particles are colored by their seed locations,
where the particles were released. It can be seen that
there is vortical separation from the leading edges of
the wing. From the simulation, it was found that
the symmetric oscillation produces higher lift than the
anti-symmetric oscillation [12].



The third data set is the proposed airborne observa-
tory known as the Stratospheric Observatory For In-
frared Astronomy (SOFIA). SOFIA is a modified Boe-
ing 747SP transport with a large cavity that holds a
three-meter class telescope. The CFD scientists want
to assess the safety and optical performance of a large
cavity in the 747SP [1]. SOFIA would be the successor
to the Kuiper Airborne Observatory (KAO), which is
the only aircraft in the world that currently provides
this type of infrared observing capability. SOFIA con-
sists of approximately four million points in 41 grids.
A total of 50 time steps were saved for the visual-
ization. Figure 5 shows streaklines surrounding the
SOFTA airborne observatory at time step 40. In the
figure, the telescope (partially visible) inside the cav-
ity of the jet is colored in cyan. The particles are
colored by the time of their release from a rake posi-
tioned in the aperture of the cavity. Blue represents
the earliest time and orange represents the most re-
cent time. Figure 6 shows a close-up view of the tele-
scope without the aircraft body. The floating object
(colored in gray) above the telescope is the secondary
mirror of the telescope. The cavity is represented by
the semitransparent surface enclosing the telescope.
Note that some particles are trapped inside the cavity,
while some have escaped and passed the empennage.

8 Performance

The performance of UFAT depends on three fac-
tors: (1) the grid size, (2) the number of time steps,
and (3) the number of seed locations. At each time
step, UFAT reads the flow data file (and the grid file
if the grid is moving in time). Depending on the disk
I/O rate and the grid size, it could take from several
seconds up to several minutes to read the flow and
grid files at each time step. For example, if the disk
I/O rate is 10 megabytes per second, then it would
take approximately 1.2 seconds to read a grid file with
one million grid points, assuming that there are three
physical coordinates (x, y, and z) for each grid point.
If the flow data file (solution file) contains five scalar
quantities, then it would take approximately 2.0 sec-
onds to read the file. Thus, it would require a total of
3.2 seconds per time step to read the grid and solu-
tion data. The number of particles that UFAT advects
at each time step increases linearly. If there are 100
seed locations and 1,000 time steps, then the maxi-
mum number of particles that UFAT can advect at
time step 1,000 is 100,000 particles. Using the clipped
Delta Wing as an example, it took approximately 2.3
seconds to read a grid file and 3.0 seconds to read
a solution file at each time step on a Silicon Graph-

ics 320 VGX graphics workstation. The size of the
grid file is four megabytes and the solution file is five
megabytes. It took approximately 21 minutes to com-
pute streaklines from 100 time steps and with 36 seed
locations using a single 33-megahertz processor on the
VGX graphics workstation. This includes the time
to read the grid and solution files at each time step.
The size of the trace file generated by UFAT is 2.5
megabytes.

9 Future Work

A disadvantage of the current version of UFAT is
that it performs particle tracing sequentially. Particle
tracing is an “embarrassingly” parallel application. It
would be ideal to take advantage of multiple proces-
sors to perform particle tracing in parallel since each
particle trace can be computed independently. A par-
allel version of UFAT has been developed on the Cray
C90, Convex €3240, and SGI systems. The initial re-
sults indicate that the performance can be improved
by several factors, depending on the number of proces-
sors used. Another enhancement that is currently be-
ing investigated is how to distribute the particle trac-
ing task to a cluster of heterogeneous systems using a
message passing library. An issue to be worked out is
how to minimize the amount of data that each system
needs for particle trace computation. The goal is to
have a distributed parallel version of UFAT that would
provide interactive particle tracing in large-scale un-
steady flow fields.

Acknowledgments

The flow data sets were provided by Chris Atwood,
Goetz Klopfer, Steve Klotz, and Shigeru Obayashi.
This work was supported by NASA under contract
NAS 2-12961.

References

[1] Atwood, C. and van Dalsem, W., Flowfield Sim-
ulation about the Stratospheric Observatory for
Infrared Astronomy, ATAA Journal of Auwrcraft,
Monterey, California, September 1993, pp. 719-
727.

[2] Bancroft, G., Merritt, F., Plessel, T., Kelaita, P.,
McCabe, K., and Globus, A., FAST: A Multi-
Processed Environment for Visualization of Com-
putational Fluid Dynamics, in: A. Kaufman, ed.,
Proceedings of Visualization ’90, San Francisco,

California, October 1990, pp. 14-27.



(3]

[6]

[9]

[10]

[13]

Bryson, S. and Levit, C., The Virtual Wind Tun-
nel, IEEE Computer Graphics & Applications,
Vol. 12, No. 4, July 1992, pp. 25-34.

Buning, P., Sources of error in the graphical anal-
ysis of CFD results, Journal of Scientific Comput-
ing, Vol. 3, No. 2, 1988, pp. 149-164.

Buning, P. and Steger, J., Graphics and Flow
Visualization in Computational Fluid Dynamics,
7th Computational Fluid Dynamics Conference,
Cincinnati, Ohio, July 1985, ATAA 85-1507.

de Leeuw, W. and van Wijk, J., A Probe for Local
Flow Field Visualization, in: G. Nielson and D.
Bergeron, eds., Proceedings of Visualization 93,

San Jose, California, October 1993, pp. 39-45.

Haimes, R., pV3: A Distributed System for
Large-Scale Unsteady CFD Visualization, 32nd
ATAA Aerospace Sciences Meeting and Ezhibit,
Reno, Nevada, January 1994.

Hin, A. and Post, F., Visualization of Turbulent
Flow with Particles, in: G. Nielson and D. Berg-

eron, eds., Proceedings of Visualization ’93, San
Jose, California, October 1993, pp. 46-52.

Klopfer, G. and Obayashi, S., Virtual Zone
Navier-Stokes Computations for Oscillating Con-
trol Surfaces, 11th Computational Fluid Dynam-
tcs Conference, Orlando, Florida, July 1993,
ATAA 93-3363-CP.

Lane, D., Visualization of Time-Dependent Flow
Fields, in: G. Nielson and D. Bergeron, eds., Pro-
ceedings of Visualization 93, San Jose, Califor-

nia, October 1993, pp. 32-38.

Max, N., Becker, B., and Crawfis, R., Flow Vol-
umes for Interactive Vector Field Visualization,
in: G. Nielson and D. Bergeron, eds., Proceedings
of Visualization 93, San Jose, California, Octo-

ber 1993, pp. 19-24.

Obayashi, S., Chui, 1., and Guruswamy, G.,
Navier-Stokes Computations on Full-Span Wing-
Body Configuration with Oscillating Control Sur-
faces, AIAA Atmospheric Flight Mechanics Con-
ference, August 1993, ATAA-93-3687.

Post, F. and van Walsum, T., Fluid Flow Visual-
ization, in: H. Hagen, H. Mueller, and G. Nielson,
eds., Focus on Scientific Visualization, Springer,
Berlin, 1993, pp. 1-40.

[14] Reeves, W., Particle Systems - A Technique for
Modeling a Class of Fuzzy Objects, ACM Trans-
action on Graphics, Vol. 2, 1983, pp. 91-108.

[15] Schlichting, H., Boundary Layer-Theory, Mec-
Graw Hill, New York, 1979.



