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Abstract

Presently, there are very few visualization systems
available for time-dependent flow fields. Although
eristing visualization systems for instantaneous flow
fields may be used to view time-dependent flow fields at
discrete points in time, the time variable is usually not
considered in the visualization technique. We present
a simple and effective approach for visualizing time-
dependent flow fields using streaklines. A system was
developed to demonstrate this approach. The system
can process many time frames of flow fields without re-
quiring that all the data be in memory simultaneously,
and it also handles flow fields with moving grids. We
have used the system to visualize streaklines from sev-
eral large 3D time-dependent flow fields with moving
grids. The system was able to provide useful insights
to the physical phenomena in the flow fields.

1 Introduction

Flow visualization plays an important role in Com-
putational Fluid Dynamics (CFD) simulations. There
are several effective techniques for visualizing instan-
taneous flow fields: cutting planes, isosurfaces, and
volume rendering are some of the techniques for vi-
sualizing instantaneous scalar fields. Visualization of
scalar fields alone may not be sufficient in some flow
analyses; vector fields are often visualized simultane-
ously. Several techniques have also been developed
for visualizing instantaneous vector fields, and some of
them are described in [7,10,14,19]. Most of these tech-
niques are based on instantaneous streamlines. An
instantaneous streamline is a curve which is tangent
to the vector field at an instant in time [6]. Ribbons
are instantaneous streamlines with width and rota-
tional orientation based on the local vorticity. Stream
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tubes are formed by constructing a set of instanta-
neous streamlines through points on a closed curve.
Stream surfaces are constructed in the same manner
as stream tubes except the streamlines pass through
a set of points on a line segment called a rake [15].
Finally, stream polygons consist of particles which are
n-sided polygons oriented normal to the local vector
[18]. These techniques are considered to be instanta-
neous visualization techniques because they are based
on flow fields at some instant in time.

For time-dependent (unsteady) flow fields, dynamic
visualization techniques can reveal several physical
phenomena that sometimes cannot be seen in instanta-
neous visualization techniques. Pathlines and streak-
lines are two of the dynamic visualization techniques.
A pathline shows the trajectory of a particle released
from a given location. In an instantaneous flow field,
pathlines and streamlines are identical. A streakline
is a line joining the positions, at an instant in time, of
all particles that have been released previously from
a specified location [6]. Thus, a streakline through
a given location is the line joining all the particles
that have been released from that location. In hydro-
dynamics, streaklines are simulated by releasing hy-
drogen bubbles rapidly from a fixed location. Smoke
injection and dye advection are other techniques com-
monly used.

Because streamlines are computed from instanta-
neous flow fields, only one time step of the flow data
is needed in the calculation. However, pathlines and
streaklines require several time steps of the flow data
in the calculation. This requires more disk space and
physical memory in the system where the visualiza-
tion is performed. Some systems cannot provide un-
steady flow visualization because of the lack of disk
space and physical memory. In this paper, we present
a real-world problem in which large 3D unsteady flow
data sets are visualized using streaklines. First, two
unsteady flow data sets are described. Then, the nu-



merical methods for particle tracing in steady and un-
steady flow are described. A system which implements
the numerical model described was developed to com-
pute particle traces in unsteady flow. The implemen-
tation of this system is discussed. Finally, several im-
ages that depict streaklines computed from the two
unsteady flow data sets are shown.

2 Problem

Several large data sets of 3D unsteady flow fields
are currently being studied at NASA Ames Research
Center. This includes the Descending Delta Wing [5],
which consists of 900 thousand grid points, and the V-
22 Osprey tiltrotor aircraft [17], which consists of 1.3
million grid points. The geometry of these data sets
is represented using Chimera grids. This type of grid
allows an aircraft with complex geometry to be defined
using several sub-blocks [2]. Both the Delta Wing and
the V-22 tiltrotor data sets have moving grids; there
is one grid file per time step for both data sets. The
flow data, which contains the solutions of the Navier-
Stokes equations, is stored in a number of solution
files. There is one solution file per time step for each
data set. Table 1 shows the disk space required for
each time step of the two data sets.

Data Set Grid File Size | Solution File Size
Delta Wing 16 MB 20 MB
V-22 23 MB 29 MB

Table 1. The disk space (in megabytes) re-
quired for each time step of the Descending
Delta Wing and the V-22 tiltrotor.

In an unsteady flow simulation, solution files are gen-
erated for a number of time steps. The number of time
steps can reach thousands in some simulations. For
example, the Descending Delta Wing has 90,000 time
steps and the V-22 tiltrotor has 1,450 time steps per
rotor blade revolution. However, only a subset of the
data could be visualized because of the current hard-
ware limitation. For the Delta Wing, every 50th time
step of the data was used. Three rotor blade revolu-
tions of the V-22 tiltrotor were used and the data was
sub-sampled at every 15th time step. Table 2 shows
the disk space required to visualize the two data sets.

Data Set # of TS Used | Disk Space Used
Delta Wing 1,800 64.8 GB
V-22 290 15.1 GB

Table 2. The number of time steps and the
disk space (in gigabytes) used.

Currently, Plot3D [4] and FAST [1] are used to vi-
sualize these data sets. However, both Plot3D and
FAST do not compute streaklines. For some analy-
ses, it is desirable to compute streaklines that provide
unsteady flow visualization. One of our challenges is
to use as many time steps of flow data as possible in
the calculation of streaklines. Another challenge is to
compute streaklines in moving grids.

3 Related Work

There are several unsteady flow visualization sys-
tems. Plot4D [20] visualizes 3D unsteady flow by us-
ing variables in two-dimensional computational planes
with time as the third coordinate. Thus, several time
slices of a computational plane from the 3D flow data
can be visualized. The Virtual Wind Tunnel (VWT)
[3] allows interactive interrogation of unsteady flow
fields using a stereo head-tracked display and a data
glove. VWT allows the user to interactively inves-
tigate the flow data in a virtual environment. Al-
though Plot4dD and VWT are effective tools for in-
teractive visualization of unsteady flow data, they re-
quire a preprocessing of the input data such that a
number of time steps of flow data is stored in one in-
put file. For very large unsteady flow data sets with
thousands of time steps, it is sometimes impossible to
preprocess a large number of time steps in the flow
data. In [16], unsteady flow visualization is demon-
strated on a massively parallel machine. The system
saves particles traces at the end of each integration
step, and the file is then later retrieved for visualiza-
tion. The system does not allow adaptive time step in
particle integration, which is often required when ve-
locity changes rapidly between two consecutive time
steps. Visual3 [13] is a system for visualizing steady
and unsteady flow data. The system reads unstruc-
tured and structured grids. Visual3 can easily pro-
cess many time steps because it does not require any
preprocessing of the data. However, Visual3 runs lo-
cally on a workstation and the size of the flow data
is limited. Recently, a distributed architecture for vi-
sualizing large unsteady flow data using multiple con-
current processors across the network was proposed in
[12]. In [11], unsteady flow visualization is obtained
by animating the results computed from a number of
instantaneous visualization techniques. A discussion
of two visualization packages used for their animation
is also presented in [11]. A new model was proposed
in [9] for unsteady flow visualization. This model uses
“extracts” to express the flow data, where extracts
are N-dimensional fields that can be used to generate
graphics objects.



Though all of the systems mentioned above can vi-
sualize unsteady flow data, the size of the flow data is
often limited and some systems do no provide adap-
tive time step in particle integration. Furthermore,
many of them do not allow particle integration in flow
fields with moving grids. In this paper, we present a
system that computes streaklines from unsteady flow
data. The system is different from the other systems
mentioned earlier in that it can handle a very large
number of time steps in the flow data, and it allows
particle integration in flow fields with moving grids.
The system also allows adaptive time steps in particle
integration.

4 Numerical Model

This section describes the numerical methods for
computing particle traces in steady and unsteady flow
fields.

4.1 Steady Flow

Assume that the vector function V(p) is defined for
all p in the domain D. The path of a particle at the
point p can then be defined parametrically as
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The particle path can be computed by numerically in-
tegrating (1). Depending on the desired accuracy, dif-
ferent integration methods can be used. A discussion
on the accuracy of particle integration is presented in
[8]. A simple scheme is the second-order Runge-Kutta
integration with adaptive time steps. Let £ = 0 and
po be the initial position of the particle. Then, for
pr € D and V(pk) #0, let

p* =+ S(oe)V(pr),
pes1 = o + Spe)(V(px) + V(p*))/2, and

where S(pr) = ¢||[V(pr)|| and 0 < ¢ < 1. The scalar
factor ¢ controls the step size of the particle. Small
values of ¢ yield small step sizes. Since the vector
field V only has quantities at some discrete points in
the grid, a trilinear interpolation is commonly used to
interpolate V(p) when p does not coincide with a grid
point.

4.2 Unsteady Flow

Assume that the vector function V(p,t) is defined
for all p € D and t € [t1,1,], where n is the number of
time steps in the unsteady flow. The path of a particle
at the point p at time ¢ is then defined as
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Using the second-order Runge-Kutta scheme with
adaptive time steps, Equation (3) can be numerically
integrated as follows. Let t = tg, £ = 0, and py be
the initial position of the particle. Then, for ¢ < ¢,,
pr € D, and V(pg,t) # 0, let

—

h=S(pr), p"=pr+hV(pe,t),
Prt1 = pr + AV (pr, 1) + V(0" 1 + h))/2,

t=t+h,and k=k+ 1. (4)

Since V(p,t) is known only at discrete points in the
grid and at some time steps, if t £¢; fori =1,... n,
then an interpolation in time is performed. If p does
not coincide with a grid point, then a trilinear inter-
polation in space is also performed.

4.3 Moving Grid

Let the vector function V(p,t,g(p,t)) be defined
forall p € D, t € [t1,t,], and g(p,t) € [G1,Gy], where
g(p:t) = {(mu; Yu, Zw); R ($u+1; Yu+1, Zw+1)} is the
grid cell that p lies in at time ¢, G; is the grid of the
flow data at time ¢;, G; € D, and n is the number
of time steps in the flow data. The grid cell g(p,?)
is represented by the eight vertices of the cell and a
search for the cell is sometimes required, especially
when the grid is a function of time. If ¢ = ¢;, where
1 < i < n, then g(p,t) can be computed by searching
for p in the current grid G;. However, if t # t;, for i =
1,...,n, then interpolation in space is required. This
can be done as follows. During particle integration,
the computational coordinates of p, which is denoted
by (&,7,(), is often known. The grid cell g(p, ) can be
computed by interpolating the grid cells that (¢, 7,¢)
lies in at time ¢; and ¢;41, where ¢; <t < t;41. Let
g(p,t;) and g(p,ti+1) be the grid cells that p lies in at
time ¢; and t;41, respectively, where g(p,t;) € G; and
9(p,ti+1) € Giz1. Then, g(p,t) = (1 — a)g(p,ti) +
ag(p,tit1), where a = (¢t — t;)/(ti+1 — ¢;). This will



require eight linear interpolations, one interpolation
for each vertex of the grid cell. The quantities for p*
and pr41 in (4) then become

P* = Pk +h‘7(Pk;tag(Pk:t)) and

—

Pet1 = pr+h(V(pr,t,9(pr, 1))
+V (" t+hg(p" i+ h)))/2. (5)

5 Implementation

A system was developed to compute streamlines,
pathlines; and streaklines using the numerical model
described in the previous section. This system was
developed using C, and the integration methods were
implemented in FORTRAN. Plot3D’s particle tracing
library, which handles Chimera grids, was used to de-
velop an unsteady particle tracing library. The Plot3D
library computes particle traces in steady flow using
the second-order Runge-Kutta adaptive time scheme
described in (2). In order to compute particle traces
in unsteady flow, new subroutines were written to im-
plement the time-dependent integration given in (4).
At any time during the integration, there are at most
two consecutive time steps of flow data stored in mem-
ory. The flow data in memory is updated as soon as
time is advanced to the next time step. The reason
that two time steps are stored in memory is because
during particle integration, interpolation between two
consecutive time steps is required. In addition, if the
flow field has moving grids, then the grid cells are in-
terpolated in time.

For pathline calculation, particles are released from
a set of points, which are referred to as the seed lo-
cations, at the first time step and the trajectories of
the particles are computed using (4). In streakline
calculation, new particles are released from the seed
locations at each time step and the current position
of all active particles are computed. The previous po-
sitions of the particles are not stored. If the grid is
moving in time, then particles are released at new lo-
cations as the grid moves and (5) is used to compute
the path of the new particles.

Our system saves the computed particle traces in
a graphics metafile. This is implemented for two rea-
sons: (1) a large number of time steps of flow data can
be visualized and (2) the computed particle traces can
be animated repeatedly without any re-calculation. A
disadvantage is that a graphics metafile must be cre-
ated. We found that this is not a significant problem
for most flow data sets, since the size of the graph-
ics metafile is considerably smaller than the size of

the flow data. The graphics primitives used in the
graphics metafile are very simple. Since we are only
interested in rendering particles, the following graph-
ics primitives are needed: color(), move(), draw(), and
point(). This made the system very easy to port to
other systems.

We have built our system on a Cray Y-MP, a Con-
vex C3240, and an SGI 4D graphics workstation. The
data sets given in Table 2 are stored on the Convex
(C3240. The Convex C3240 in the Numerical Aero-
dynamic Simulation (NAS) facility is configured with
100 gigabytes of disk storage and one gigabyte of main
memory. The graphics metafile generated on the Con-
vex is transferred to the SGI 4D workstation where vi-
sualization is performed. For small unsteady flow data
sets, the system can run on the graphics workstation,
and the particle traces can be visualized locally on the
workstation.

6 Visualization

We used an existing graphics system to render par-
ticle traces. One of our requirements for the graphics
system is that it provides an animation utility. An-
other requirement is that the graphics system can ren-
der Chimera grids. FAST met both requirements and
was used for the visualization. FAST also has a util-
ity that allows us to record the animation for video
production.

Our system allows simultaneous visualization of
scalar and vector fields. The system assigns color to
the particles with respect to a specified scalar quan-
tity. The scalar quantity can be any one of the follow-
ing: (x, y, or z) coordinate of the particle, the time
at which the particle was released, or a scalar func-
tion computed from the given scalar quantities stored
in the solution files. For the visualization, we col-
ored the particles by the time of their release. This is
very useful for visualizing particle trajectories. It also
shows how fast the particles travel in the unsteady flow
field. Sometimes, when there are many seed locations
it may be difficult to determine the seed location in
which a particle was released from. Our system allows
the user to assign colors to the particles based on their
seed locations.

Sometimes it may not be possible to store all time
steps of an unsteady flow data set in the system be-
cause of the available disk space. It is desirable to
save the particles at the end of a run and resume the
particle tracing at a later run. This feature was im-
plemented in our system, and it allowed users to visu-
alize their unsteady flow data sets without requiring
all time steps to be available on the disk at once.



When the number of particles becomes too large,
they may be difficult to visualize because they ob-
struct one another. The number of particles gener-
ated is a function of the number of time steps and the
seed locations. At each time step, new particles are
released from the seed locations. A feature that keeps
particles from the last n time steps was implemented,
where n is the specified by the user. Any particles
that were released in the previous n — 1 time steps are
removed from the particle trace. This feature is use-
ful especially when the particles circulate in a closed
volume.

7 Results

In this section, we show several snapshots from the
animation of the streaklines computed using the two
data sets given in Table 2. The streaklines are sim-
ulated by releasing particles from a number of seed
locations at each time step. Our first example is the
Descending Delta Wing which has two thrust-reverser
jets in descent with a descent rate of Mach 0.004. The
Mach number of the jet itself is 1.0. A total of 139
time steps was used in the animation. Figure 1 shows
the geometry of the Delta Wing with the initial seed
locations where the particles were released. A total of
340 seed locations was placed near the ground, on the
leading edge of the Delta Wing, and near the two jet
exits. Figure 2 shows the streaklines at time 138. The
particles are colored by the time of their release from
the seed locations. Blue represents the earliest time
and magenta represents the most recent time. At each
time step, 340 particles are released from the seed lo-
cations. Hence, at time 138 there are at most 139x340
particles (time starts at 0). Some particles may not be
shown because they reached the grid boundary. The
seed locations near the jet exits and on the ground
were chosen so that the interaction of the particles re-
leased from the jet and from the ground could be seen.
This interaction is very evident in the animation.

Our second example is the V-22 tiltrotor aircraft.
This aircraft has two propellers that rotate in opposite
directions. Figure 3 shows a partial geometry of the
V-22 tiltrotor with two rectangular patches of seed lo-
cations positioned near a rotor blade in each propeller.
Particles are released relative to the rotor blade’s po-
sition. There are 400 seed locations. Figure 4 shows
the simulated streaklines at time 49, at which the ro-
tor blades have made one-half revolution. At this time,
there are approximately 20,000 particles (400 particles
x 50 time steps.) Figure 5 shows the streaklines at
time 98, at which the rotor blades have made one full
revolution. It can seen that the tip of a rotor blade has

cut through several patches of particles. This is visi-
ble from the particles that were released during time
steps 70-80 (the light-green particles); see the color bar
shown in the figure. Figure 6 depicts the streaklines at
time 196, at which the rotor blades have made another
full revolution. The breakup of particles by the tip of a
rotor blade is also visible from the particles that were
released during time steps 170-180 (the dark-red par-
ticles). Furthermore, the particles that were released
from earlier time steps have moved downstream.

8 Conclusions

We have developed a post-processing system to
compute streaklines from large 3D unsteady flow
fields. Because of the data sizes involved (see Table
2), it is impossible to store all time steps in the phys-
ical memory of the system. However, in order to ob-
tain a reasonable animation rate, ideally all time steps
should be available in memory. A possible approach is
to preprocess the data so that only a number of time
steps can be visualized. This type of approach was
implemented in [3,20]. The maximum number of time
steps is then determined by the size of the physical
memory. This technique is attractive because it allows
the user to interactively examine the flow field. How-
ever, this approach limits the number of time steps
that can be visualized. We used an approach where at
most two time steps of flow data are stored in mem-
ory at any time. This removes the limitation on the
number of time steps that the system can visualize.
The accuracy of the integration scheme implemented
in our system is only second order. A higher order in-
tegration scheme is currently being implemented. We
are also developing an interactive visualization sys-
tem that will allow the user to view the particle traces
while they are being generated.
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