Scientific Visualization
Overviews Methodologies
Technigues

G. Nielson, H. Mduller, and H. Hagen, editors

Chapter 5

Scientific Visualization of
Large-Scale Unsteady Fluid
Flows

David A. Lane

Abstract. In a numerical flow simulation, it is common to generate several thousand
time steps of unsteady (time-dependent) flow data. Each time step may require tens to hun-
dreds of megabytes of disk storage, and the entire unsteady flow data set may be hundreds
of gigabytes. Interactive visualization of unsteady flow data of this magnitude is impossible
with the current hardware capabilities. Particle tracing is an effective technique to visual-
ize unsteady flows. Streaklines, which are computed by tracking particles in unsteady flows,
depict time-varying phenomena that are sometimes difficult or impossible to see with other
flow visualization techniques. This chapter provides a tutorial for particle tracing in steady
and unsteady flows. First, the life cycle of a typical numerical flow simulation is outlined.
The current approaches for visualizing unsteady flows are then described. Many systems
exist for flow visualization, some of which are discussed. A tutorial for particle tracing is
then given. A particle tracing system called UFAT has been developed for unsteady flow
visualization. The features and implementation of UFAT are described. The steps for com-
puting streaklines are summarized. Several unsteady flow data sets were visualized using
UFAT, and the results are presented.

5.1 Introduction

The life cycle of a numerical flow simulation in Computational Fluid Dynamics (CFD) gen-
erally consists of three phases: grid generation, flow calculation, and visualization. First,
a numerical grid is constructed to enclose the boundaries of the object in the flow using a
grid generation tool. The grid may be rectilinear, curvilinear (structured), block structured,
unstructured, or a mix of the structured and unstructured (hybrid). In CFD, structured and
unstructured grids are commonly used. A multizoned curvilinear grid consists of one or

111

112 Scientific Visualization of Large-Scale Unsteady Fluid Flows

more structured grids (sometimes referred to as blocks or zones). Some blocks may over-
lap other blocks. Each cell in a 3D curvilinear grid has a hexahedron-like configuration
(warped bricks); the faces of the cell will not generally be planar. Figure 5.1 shows a
multizoned curvilinear grid. An unstructured grid consists of cells that are not necessarily
hexahedra. For example, the cells may be tetrahedra, prisms, or pyramids. For a good dis-
cussion of the types of grids used in scientific visualization, see Speray and Kennon [29].
In the second phase of the flow simulation, a system of Navier-Stokes equations that simu-
late the flow condition is solved. Euler equations are commonly used. The solution yields
momentum and other flow quantities such as density and stagnation energy. From these
quantities, velocity can be derived. Several methods can be used to set up the flow equa-
tions. Using a finite difference method, the flow quantities are solved at the grid points.
A finite volume method solves the flow quantities, usually at the grid cell centers instead
of at the grid points. Using a finite element method, the flow quantities in each cell are
represented by a set of basis functions. The calculation of the flow solution can be com-
putationally expensive, depending on the grid size. In the last phase, the velocity field and
other flow quantities computed from the flow calculation are analyzed using a number of
visualization techniques, including contour plots, particle traces, isosurfaces, and volume
rendering.

With the increase in computing power over the past decade, numerical simulations
of 3D unsteady flow fields are becoming more common. The disk requirements for 3D
unsteady flow simulations have also increased dramatically. The data generated from an
unsteady flow simulation is usually several orders of magnitude larger than the data gen-
erated from a steady flow simulation. Some unsteady flow data sets require hundreds of
gigabytes of disk space. Visualizing data of this magnitude is a Grand Challenge problem
in scientific visualization.

5.2 Problem

At NASA Ames Research Center, CFD scientists are performing complex 3D unsteady
flow simulations using the supercomputers located at the Numerical Aerodynamic Simula-
tion (NAS) facility. Table 5.1 shows five grids that were recently used in several simula-
tions.

Grid No. of Grid Points | No. of Blocks
Clipped Delta Wing 250 x 103 7
Descending Delta Wing 900 x 103 4
V-22 Tilt Rotor 1.3 x10° 25
Harrier Jet 2.8 x10° 18
SOFIA Airplane 3.2 x10° 35

Table5.1: Five multizoned curvilinear grids used for unsteady flow simulation.

Two types of files are usually generated in a simulation: the grid file contains the phys-
ical coordinates of the grid points and the solution file contains the momentum and other

5.2 Problem 113

Figure 5.1: A multizoned curvilinear grid surrounding a F18 aircraft, generated by
Yehia Rizk and Ken Gee, NASA Ames Research Center. Each sub-block is distinguished
by color.

flow quantities computed in the flow calculation. The size of the grid file depends on the
number of grid points and the size of the solution file depends on the flow quantities saved
from the flow calculation. If the grid consists of multiple blocks, then the grid file also
contains an integer code for each grid point that indicates if the point is in an overlapped
region or near a wall boundary (see “Particle Tracing in Multizonal Grids” below). In un-
steady flows, there is one solution file per time step. If the grid moves in time, then there is
also one grid file per time step. Table 5.2 shows the disk requirements for storing the grid
and solution files per time step for the grids given in Table 5.1. In Table 5.2, the solution
files assume that five flow quantities are saved: stagnation energy, density, and the z, y, z
components of momentum.

It is common to have thousands of time steps in an unsteady flow simulation. Table 5.3
shows the disk requirement for storing the data generated in one flow simulation for each
of the data sets shown in Table 5.2. For example, the descending delta wing consists of
90,000 time steps. The disk space required to save all of these time steps is 3,240 GB
(90,000x 36 MB). Clearly, it is impossible to interactively visualize data of this magnitude
with the current hardware capability.

114 Scientific Visualization of Large-Scale Unsteady Fluid Flows

Grid Grid File | Solution File | Total Per Time Step
Clipped Delta Wing 4 MB 5MB 9 MB
Descending Delta Wing | 16 MB 20 MB 36 MB
V-22 Tilt Rotor 23 MB 29 MB 52 MB
Harrier Jet 45 MB 56 MB 101 MB
SOFIA Airplane 53 MB 66 MB 119 MB

Table5.2: The disk space, in megabytes (MB), required for each time step.

Grid Number of Time Steps Total Per Simulation
Clipped Delta Wing 5,000 per cycle for 3 cycles 135 GB
Descending Delta Wing 90,000 3,240 GB
V-22 Tilt Rotor 1,450 per cycle for 3 cycles 226 GB
Harrier Jet 1,000 101 GB
SOFIA Airplane 10,000 1,190 GB

Table 5.3: The disk space, in gigabytes (GB), required per flow simulation.

5.3 Current Approaches

For interactive visualization, it is ideal to store all time steps of the data in the physical
memory of the system so that the scientist can loop through the time steps interactively.
However, as shown in Table 5.3, some 3D unsteady flow data sets are too large to be
visualized interactively. Even the simple task of storing a few time steps of the flow data
becomes a problem due to insufficient disk space. Therefore, postvisualization is necessary.
For postvisualization, scientists often save their data during the flow calculation at fixed
time intervals. The flow data set that is extracted this way will be referred to as the saved
data set hereafter. For example, every 50th time step of the descending delta wing data
(see Table 5.2) was saved for postvisualization. The disk requirement for the saved data
set is 64.8 GB (90,000/50x 36 MB). Currently, it is difficult to find a system with tens of
gigabytes of memory for interactive visualization.

Two approaches for postvisualization are sometimes used. The first approach is to store
as many time steps of the saved data as possible in memory. If the size of the flow data
is small (that is, on the order of hundreds of megabytes), then this approach is attractive.
However, for large-scale data sets such as the V-22 and SOFIA data sets listed in Table 5.3,
this approach would allow only a few time steps to be visualized interactively. This is
unacceptable for most simulations. The second approach is to subsample the flow data at a
lower grid resolution so that more time steps can fit in memory. However, this is generally
not a good approach because the resolution of the flow is lost. For example, the presence
of a vortex may not be detected. Furthermore, additional preprocessing time is required for
subsampling. Both of these two approaches only allow the scientist to visualize a subset of
the saved data, and important characteristics of the flow may not be displayed.

A more effective approach is to use every time step of the saved data without subsam-

5.4 Flow Visualization Systems 115

pling. A requirement is that the system has enough memory to store at least a few time steps
of the data. The flow data are visualized by loading one time step of data into memory and
then applying the desired visualization techniques one time step at a time. For example,
compute color contours on a grid surface at each time step for all time steps. Visualizing
flow data at instants in time is sometimes referred to as instantaneous flow visualization.
A good survey of several instantaneous flow visualization techniques can be found in Post
and van Wijk [23].

The interactive rate of instantaneous flow visualization is limited by the disk 1/O perfor-
mance of the system. If the flow data at each time step is hundreds of megabytes, then the
time required to read each time step’s data could be a few seconds, depending on the sys-
tem’s disk 1/0 performance. For example, the Harrier jet requires 101 MB per time step for
both the grid and solution data files (see Table 5.2). It would take approximately one to two
seconds to read the grid and solution files at each time step if the disk 1/O rate ranges from
50 MB to 100 MB per second. In addition to the read time, computation time is required by
the visualization technique used; for example, particle tracing and isosurface calculation.
If there are thousands of particles, then it may take several more seconds or minutes for
the computation. For this reason, the interactive rate of instantaneous flow visualization of
large-scale flow data can be very slow. Although instantaneous flow visualization can be
effective (though slow) for some analysis, it may not reveal time-varying phenomena in the
flow. Effective unsteady flow visualization techniques should consider time as a parameter
in the calculation to depict flow phenomena that evolve in time. Time-dependent particle
tracing, which is described in Section 5.5, is an example of an unsteady flow visualization
technique.

It is also possible to incorporate visualization into the flow calculation phase. This
method generates the graphics objects (for example, particle traces) while the solutions are
being computed. The method would also reduce disk requirements because the solution
files do not need to be saved for postvisualization; however, when visualization parameters
(for example, seed locations) need to be changed, the flow would need to be recalculated,
which is computationally expensive.

5.4 Flow Visualization Systems

There are many existing systems that allow instantaneous flow visualization. PLOT3D
(Buning and Steger [6]) is a popular CFD visualization tool that provides several instan-
taneous visualization techniques. FAST (Bancroft et al. [1]) consists of a set of modules
that support PLOT3D functionalities and several other new features like topology, function
calculator, and animation. COMADI (Vollmers [31]), HIGHEND (Pagendarm [21]), Vi-
sual3 (Haimes and Giles [12]), and many other visualization systems also provide several
instantaneous visualization techniques. Most of these systems allow unsteady flow visual-
ization by looping through the time steps and visualizing the flow data one time step at a
time; however, many of them do not consider time as a parameter in the calculation.
Because simulations of large-scale 3D unsteady flows have only become possible
within the past decade, there are currently few systems developed specifically for unsteady
flow visualization. PLOT4D and Streaker developed by Smith et al. [28] perform unsteady
flow visualization by visualizing trivariate functions of two spatial variables and one time

116 Scientific Visualization of Large-Scale Unsteady Fluid Flows

variable. For example, f(z,y,t) or f(z, z,t). Jespersen and Levit [14] and Vaziri et al. [30]
have developed unsteady flow visualization systems using the CM5 for the calculation and
the results are sent over the network to a local graphics workstation for display. The Vir-
tual Wind Tunnel (Bryson and Levit [3]) performs distributed unsteady flow visualization
using a Convex C3240 system and an SGI graphics workstation. The particle traces are
computed on the Convex system and then sent over the network to the graphics worksta-
tion which displays the traces and provides local view manipulation. pV3 (Haimes [11])
distributes the computation to one or more servers using the P\VVM message-passing library.
A nice feature of pV3 is that it allows the user to view the solution while it is being com-
puted. This “plug-into/unplug” feature allows the user to monitor the flow calculation and
to terminate the calculation when necessary. Only a few of the systems mentioned above
compute streaklines, pathlines, and timelines.

I have developed a particle tracing system called the Unsteady Flow Analysis Toolkit
(UFAT) which computes particle traces in unsteady flow [17, 18]. UFAT is unique from
existing systems in that it computes particle traces from a large number of time steps,
performs particle tracing in unsteady flow with moving curvilinear grids, supports a
save/restore option, and allows playback (see Section 5.6).

5.5 Particle Tracing

An effective way to visualize unsteady flow is to compute particle traces. In steady flows,
a streamline is a field line tangent to the velocity field at an instant in time. For unsteady
flows, three types of particle traces can be computed: pathlines, streaklines, and timelines.
A pathline shows the trajectory of a single particle released from one fixed location, called
the seed location. A streakline is a line joining the positions, at an instant in time, of all par-
ticles that have been previously released from a seed location. Streaklines can be simulated
by releasing particles continuously from the seed locations at each time step. In hydro-
dynamics, streaklines can be simulated by releasing small hydrogen bubbles rapidly from
the seed locations. For streakline calculation, particles are released from specified seed
locations and tracked through the given time steps. A timeline is a line connecting particles
that have been released at the same time. In an instantaneous flow field, streamlines, path-
lines, and streaklines are identical (Schlichting [26]). In experimental flow visualization,
timelines are simulated by releasing a line of particles simultaneously at some time inter-
val. Figures 5.2 and 5.3 show streamlines, pathlines, streaklines, and timelines computed
near an oscillating 2D airfoil. Streaklines can reveal very different information than those
shown with instantaneous streamlines. The vortices behind the airfoil are visible with the
streaklines shown in Figure 5.3, but the streamlines shown in Figure 5.2 do not reveal them
clearly. Furthermore, animated streaklines effectively show the development of flow phe-
nomena in time. There are many research papers on the subject of particle tracing in steady
flows; however, few of them discuss time-dependent particle tracing. This section provides
a tutorial for particle tracing in steady and unsteady flows.

5.5 Particle Tracing 117

Oscillating Airfoil
Time Step: 128

Streamlines

Pathlines

Figure 5.2: Streamlines and pathlines pass through an oscillating airfoil. Particle traces
are colored by release location.

5.5.1 Numerical Models

Most existing methods for particle tracing are based on numerical integration schemes.
There are implicit methods for computing streamlines using stream functions (see Ken-
wright and Mallinson [16]); however, most of these methods have not been extended for
unsteady flows. In the next section, a multistage method based on the fourth-order Runge-
Kutta (RK4) integration is described for particle tracing in steady flows. In the following
section, the method is then extended for unsteady flows.

Particle Tracing in Steady Flows

Given a vector function v(p) defined for all p in the grid domain G, the path of a mass-
less particle at position p can be determined by solving the following ordinary differential
equation:

D — vipl). 6.

118 Scientific Visualization of Large-Scale Unsteady Fluid Flows

Oscillating Airfoil
Time Step: 128

Streaklines

Timelines

Figure 5.3: Streaklines and timelines pass through an oscillating airfoil. Streaklines are
colored by release location and timelines are colored by release time.

Function p(t), which represents the position of the particle at time ¢, can be computed by
integrating (5.1). Hence, the particle position after time A¢ is as follows:

t+ At
p(t + At) = p(t) +/t v(p(t))dt. (5.2)

Equation (5.2) can be evaluated using a numerical integration scheme. A common scheme
is the RK4 method. Let & = 0 and py be the current position of the particle. Then, for
pr € G, let

a=hv(px), b=hv(pr +a/2), c=hv(psg+b/2), d= hv(ps +c¢),
Pi+1 =Pk + (a+2b+2c+d)/6, and k=4k+1, (5.3)

where h = At is the step size. To obtain the path of the particle at pg, (5.3) is evaluated
repeatedly until py leaves the grid domain G.

5.5 Particle Tracing 119

Particle Tracing in Unsteady Flows

In unsteady flows, velocity changes in time, so v is a function of space and time. Suppose
the vector function v(p, t) is defined forall p € G and ¢ € [ty,t,], where n is the number
of time steps in the unsteady flow. The path of a particle at position p can be computed by
solving the following equation:

dp
o = VP01, (5.4)
Integrating (5.4) yields:
t+At
pt+A) =p()+ [vip(t) 0 (55)

As with steady flows, we can integrate (5.5) numerically using the RK4 method. Let¢ = ¢4,
k = 0, and p;, be the current position of the particle. Then, fort < ¢, and px € G, let

a= hv(pg,t), b=hv(ps+a/2,t+h/2),
c=hv(pr +b/2,t+ h/2), d=hv(pg+c,t+h),
Pk+1=Pr+(a+2b+2c+d)/6, t=t+h, k=k+1. (5.6)

Equation (5.6) is evaluated repeatedly until p, leaves the grid domain G or¢ > ¢,,.

5.5.2 Particle Tracing Issues

There are several fundamental issues in particle tracing: physical versus computational
space tracing, cell search, step size selection, and velocity interpolation; see Buning [4, 5]
and Post and van Walsum [22]. All of these are concerned with the accuracy and speed of
particle tracing. In Murman and Powell [20], a first-order integration scheme was shown to
produce inaccurate particle traces. They found that using large step size in the integration
is undesirable and that the step size should be a fraction of the cell size. Shirayama [27]
also concluded that the first-order integration scheme could lead to erroneous results and
suggested that a higher-order integration be used. Sadarjoen et al. [25] compared the ac-
curacy and speed of physical space and computational space tracing methods. Trilinear
interpolation, inverse distance weighting, and volume weighting schemes for velocity in-
terpolation were evaluated. In Darmofal and Haimes [9], several multistage and multistep
integration schemes were compared, and the accuracy and memory requirements of the
two schemes were discussed. They concluded that the step size should be adaptive and
that a fourth-order interpolation and integration scheme should be used. In the following
sections, | review these issues and discuss additional considerations for unsteady flows.

Physical Space Versus Computational Space Tracing

In physical space, the grid is curvilinear and the grid cells are warped bricks. The curvi-
linear grid is defined by a set of points: {(zijx, Yijk, zijk), 1 = 1,... ,ng, j = 1,... 0y,
k=1,...,n;}. Inflow calculation, the grid is transformed to computational space, where
each grid cell is a unit cube. The transformed grid consists of the following set of points:

120 Scientific Visualization of Large-Scale Unsteady Fluid Flows

{(4,4,k),t =1,...,nz, 5 =1,...,ny, k =1,...,n,}. During particle integration, it
is necessary to determine the grid cell that a particle currently lies in. This requires cell
search (also referred to as point location). In computational space, the grid is uniform and
the cell in which the particle currently lies can be easily determined. For example, suppose
the computational coordinates of the particle’s position are (¢, n,¢), then the particle lies
ingrid cell (i nt (£), i nt (n),i nt (¢)). Although cell search is fast and simple in computa-
tional space, there are some disadvantages for tracing in computational space. Firstly, the
velocity is usually given in physical space. In order to perform integration in computational
space, the velocity needs to be converted into computational space. This requires additional
calculation time for the velocity transformation. Secondly, during the transformation, ac-
curacy may be lost due to the transformation scheme used. Lastly, if the grid cell is badly
deformed (irregularities exist), then the transformed velocity may be infinite [5]. For these
reasons, particle tracing is commonly performed in physical space.

The main reason for tracing in physical space is accuracy. The disadvantage is that cell
search is more time consuming in physical space than in computational space. From simple
code profiling, Kenwright and Lane found the time spent in cell search could require more
than 25 percent of the particle tracing time [15]. Cell search is required whenever the parti-
cle moves to a new position. For a multistage integration method such as the RK4 method
described earlier, cell search is required at the intermediate stages of the integration. For
example, cell search is required for px + a/2, px + b/2, and px + ¢ in Equations (5.3)
and (5.6). If the step size A is relatively small, then the particle is likely to move within
the current cell or jump no more than one cell. Hence, a local cell search can be performed
to find the new position. If the grid is multizoned, then a global cell search is required
when the particle moves to a new block (referred to as grid jumping). Because global cell
search is more computationally expensive than local cell search, grid jumping can increase
the particle tracing time considerably. In Hultquist [13], techniques were suggested for
speeding up particle tracing in physical space. These include cell caching, extrapolation
in cell search, and cell tagging for grid jumping. Recently, Kenwright and Lane [15] were
able to improve the speed of particle tracing in physical space by several factors. By de-
composing the grid cell into tetrahedra, cell search time was reduced. Furthermore, particle
integration, velocity interpolation, and step size control were performed in physical space.

Cell Search

Given p in the physical space, the problem is to find the corresponding point ¢ in the
computational space. The first step is to find the grid cell that p lies in. An intuitive method
would be to search for the closest point in the grid using all points. However, this could be
expensive if the grid consists of millions of points. Buning [5] suggested searching along
edges of the grid cells to find the closest grid point, and then using a “stencil walk” approach
to find the exact offset of the particle inside the grid cell. The stencil walk approach, which
is based on the Newton-Raphson approach, is summarized below:

1. Select the center of the grid cell (¢, 7, k) as the initial guess of ¢, where (%, j, k) is the
closest grid point to p. Thus, let ¢ = (¢,7,¢), where ¢ =i+ 0.5, 7 = j + 0.5, and
(=k+0.5.

5.5 Particle Tracing 121

2. Convert (¢, 1, ¢) to its corresponding physical point p(&, 5, ¢) using trilinear inter-
polation.

P& n.¢) = [(Pijns(l—a)+Ppiy1jra)(l—7)
+(Pij+1,6(1 — @) + Pit1j4+1,62)Bl(1 —7)
H(Pijr+1(l — @) + Pig1jrs12)(1 = B)
H(Pij+1k+1(1 = @) + Pit1j+1 5+12) 017, (5.7

wherea =¢ —i,3=n—j,andy = — k.

3. Compute the difference vector Ap, where Ap = p—p(&, n,¢). This vector indicates
how close p(&, i, {) is to p in physical space.

4. Convert Ap to Ac, where Ac is the difference vector mapped into computational

space. Let Ap = (Az, Ay, Az) and Ac = (Aa, AF, Av). Then,

Aa Az
A | =J7 Y| Ay |, where
A~y Az
Te Ty I &e gy &,
J=1 v w and Jl'=|m ny ns |- (5.8)
Ze Rn o R¢ Cx Cy (s

The metric terms in J~! are

§o = D(ynzc — yczn), &y = D(xcey —2pzc), & = D(pyc — 2cyn),
Mo = D(ycze — Yezc), ny = D(@eze — 2cze), m: = D(@cye — zeyc),
Co = D(Yezn — Ynze), Cy = D(wyze — wezy), G = D(eyn — 2pye), (5.9)

where D is the determinant of the Jacobian matrix .J and

D =1/(zeypzc — meyczn — Ye®nzc + BcYezn + TnYcze — TcYnze). (5.10)

The partial derivatives in the Jacobian matrix J are the partial derivatives of (5.7),

where p = (ps, py, p2). FOr example, z; = 0p,/0E, ye = Opy /0, z¢ = Op. /¢,
and so on.

. Leta=a+Aa,f=F+Af,andy = v+ Ay. If a, 3,4 € [0,1], then p is outside
the current cell. Increase ¢ by 1 if « > 1 or decrease ¢ by 1 if o < 0. Update j and &
according to 3 and +, respectively, then go to step 1.

Leté =&+ Aa,p =+ AB, ¢ = ¢+ Ay. If|Ac| < ¢, where ¢ is the chosen
tolerance, then p(&, 1, {) is close enough to p and its corresponding point (¢, n,¢) in
computational space has been found. Otherwise, go to step 2.

122 Scientific Visualization of Large-Scale Unsteady Fluid Flows

Step Size Selection

The distance that the particle traverses at each integration step is based on the step size A
and the velocity at p. The larger h is, the further p traverses. If A is too large, then the
resulting particle trace can be inaccurate because the particle may have missed important
flow features. This is especially true if the flow changes direction rapidly. Likewise, if h is
too small, then particles may unnecessarily take too many steps to traverse the grid, which
would increase the computation time. A good rule for selecting A is based on the velocity at
the current grid cell: If the velocity is large, then h should be small. Buning [5] suggested
letting h = ¢/max(|U|, |V], |W]), where (U, V, W) represent the computational velocity
at p and

U u
Vii=J1 v |. (5.11)
%74 w

Matrix J~1 is given in (5.8). The computational velocity is used so that the number of steps
in each cell is consistent. For example, if ¢ = 0.2, then the particle will traverse no more
than one-fifth of a computational cell at each step. Small ¢ yields small steps. A common
scheme for adaptively setting & is step doubling, which successively reduces A until some
desired accuracy is obtained (see Press et al. [10]). Another scheme for determining A is
to base it on the curvature of the particle trace. If the curvature is high, then A should be
small.

Velocity Interpolation

In particle tracing, the velocity at the current position of the particle is required to advance
the particle. \Velocity interpolation is performed at each stage of the RK4 integration. The
velocity at p can be interpolated using the velocities at the corners of the grid cell that
contains p. A fast and simple scheme is trilinear interpolation. If p is in grid cell (4, j, k)
and p has the fractional offsets («, 3, v) from the grid point at (¢, j, k), then

viito,j+8k+y) = [(vije(l—a)+vigrjra)(l—0)
+(Vig+1,e(1 —) + Vigr jp1,60) B](1 — 7)
+H(vijr+1(1 — @) + vigr jep10) (1 = B)
+(Vig+1p41(1 — @) + Vi1 jp1e410) 8y, (5.12)

where v; ; 5 is the velocity at grid point (4, j, k). The trilinear interpolant assumes that
the velocity varies linearly across the edges of the cell. Though trilinear interpolation is
simple, accuracy may be lost if the grid cell is deformed. In Yeung and Pope [32], higher-
order interpolations were compared to linear interpolation. They showed that cubic spline
interpolation gives more accurate results than linear interpolation in turbulent flows, and
that inaccuracy due to interpolation was greater than that due to integration when small
step size is used. The disadvantage of using a cubic spline interpolant is that it is more
expensive and requires velocities from 64 nodes versus eight nodes.

Steady flows do not change in time and we can assume that the number of time steps is
infinite. Thus, the velocity function is defined for any ¢. However, unsteady flows vary in

5.5 Particle Tracing 123

time and the velocity function is known only at time steps ¢1,... ,t,. Attimet, ift # ¢,
forl =1,...,n, then a temporal interpolation of velocity is performed prior to the spatial
interpolation given in (5.12). If ¢; < ¢ < #;41, then let

Vijk(d) = (L= 0Vl + Vit and 8= (1—1)/(tr — 1),

K3

tively. After the above temporal interpolation of velocity, Equation (5.12) can then be
evaluated by letting v; ; x = v; ; (). The above interpolation assumes that the flow
varies linearly between the time steps and that it is only second-order accurate in time over
a complete RK4 integration. Darmofal and Haimes [9] suggested a double time-step RK4
method, which is fourth-order accurate in time and does not require temporal interpolation
of velocity. The method uses the velocities at the given time steps for the intermediate
stages of the RK4 integration, and h is the delta time between two consecutive time steps.
Thus, Equation (5.6) becomes

where vt-‘j 5 and vf.’*; are the velocities at grid point (¢, 7, k) at time ¢; and #;41, respec-

a=2hv(pi,t), b=2hv(pr+a/2,t+h),
c=2hv(pr +b/2,t+ h), d=2hv(pg+c,t+2h),
Pk+1=Pr+(a+2b+2c+d)/6, t=t+2h, k=k+1.

Although this method is attractive, the step size is uniform and the accuracy of the integra-
tion is dictated by the temporal resolution of the saved time steps. For large unsteady flow
data sets, the data are usually saved at some fixed time interval (such as every 50th time
step) which may not have sufficient resolution for this method. Furthermore, particles are
saved only at every other time step.

Particle Tracing in Multizoned Grids

When tracing particles in a multizoned grid, special consideration is required to track the
particles from one block to another. A common grid generation technique used for multi-
zoned grids is the 3D Chimera grid-embedding scheme [2]. The output grid generated by
this scheme is used by PLOT3D and FAST. The Chimera scheme stores an integer code
called iblank at each grid point. The iblank of a grid point indicates whether the grid point
lies in more than one block. The iblank may also indicate whether the grid point is near a
wall boundary or that the velocity at a grid point is invalid. When a particle leaves the cur-
rent block, the iblanks at the corners of the grid cell are checked to determine if the particle
can continue to another block. If this is possible, then a global cell search is performed to
find the grid cell in the new block where the particle lies.

Particle Tracing in Moving Grids

For unsteady flow simulations, the grid may move in time. Particle tracing in moving grids
requires additional interpolations. In cell search, to find the current grid cell containing p
at time ¢, an interpolated grid cell is generated. The grid cell is simply a linear interpolation
of the grid cells at ¢; and #;1 if#; <+ < #;41. Itis not necessary to interpolate the entire
grid, only the current grid cell in which p lies. Thus, at each intermediate stage of the RK4
integration, an interpolated grid cell is computed for velocity interpolation and cell search.

124 Scientific Visualization of Large-Scale Unsteady Fluid Flows

To transform the velocity from physical space to computational space in unsteady flows
with moving grids, Equations (5.8) and (5.11) need to be modified to consider ¢ [24] and
the grid velocity (=, y,, z,). Let

U u
V —1 v
%4 =J w |’
T t
Te Ty T¢ ETr & &y & &
_ Ye Yn Y¢ Yr -1 _ Ne Ny Nz Nt
J= and J =
% &g ¢ Zr Cx Cy ¢ G
tE t77 tC iy Te Ty Tz Tt

The partial derivatives ¢¢, ¢,, t. are all zero, ¢, = #;41 — #;, and

(:ETJ yT;ZT) = ptH‘1 (6;77,() - ptl(ga Uac)a

where p’(&,7,¢) and p'+1 (€, 1, ¢) are p(&, n, ¢) at time ¢; and ¢,4.; respectively. The nine
metric terms in the upper-left corner of 7~ are the same as those given in (5.9), and the
remaining terms are

£t = (_ITgx - yTEy - ZT&:Z)/tTDa Nt = (_ITHI‘ - y7'77y - ZTﬂz)/trDa
Gt = (_$TC1/‘ - yTCy - ZTCZ)/t,—D, e =0, Ty = 0, =0, and 7 = 1/t7,

where the determinant D is given in (5.10).

5.6 Unsteady Flow Analysis Toolkit

A particle tracing system called Unsteady Flow Analysis Toolkit (UFAT) has been devel-
oped to compute particle traces in unsteady flows [18]. UFAT has been used to generate
streaklines from several large 3D unsteady flows with multizoned curvilinear grids. Some
of these grids move in time. UFAT was developed specifically for unsteady flows with a
large number of time steps. The major features in UFAT are listed below:

o Computes streamlines, streaklines, pathlines, and timelines

o Performs particle tracing in multizoned curvilinear grids with rigid-body motion
o Allows particle tracing of unsteady flows with hundreds of time steps

e Assigns color to particles based on position, time, or a scalar quantity

o Provides RK2 and RK4 integration schemes with adaptive step size

o Allows particle tracing restricted to a grid surface (oil flow)

o Saves particle traces to a graphics metafile for playback

¢ Provides save-and-restore option for nonconsecutive run sessions. This feature al-
lows particle traces to be computed from many time steps without requiring all time
steps of the flow data to be on line at the same time.

5.6 Unsteady Flow Analysis Toolkit 125

5.6.1 Implementation

Because it is usually impossible to keep all time steps of an unsteady flow data set in
memory, UFAT stores only two consecutive time steps of the data in memory. The flow
data at time steps ¢; and ¢;4, are used to integrate particles from ¢; to ;1. UFAT uses
PLOT3D’s particle tracing library for cell search and grid jumping algorithms. | have
modified the library to support these and other algorithms in unsteady flows.

UFAT releases particles from the user-specified seed locations at a given time-step in-
terval and tracks the particles. For streaklines, particles are released from the seed locations
at each time step. For streamlines, particle traces are computed for the specified seed lo-
cations at the given time steps; thus, a set of streamlines is computed for each time step.
For pathlines, particles are released from the seed locations at the first time step only, and
are then tracked through the given time steps. Pathlines show the trajectories of particles
released from the seed locations. For timelines, particles are tracked in the same manner as
streaklines, however, they are represented in a different form. For timelines, particles that
are released simultaneously are connected (see Figure 5.3).

UFAT currently runs on the Cray, Convex, and SGI systems. The output of UFAT is a
graphics metafile. This metafile can then be rendered using a graphics program. Currently,
the metafile is written in a format that can be displayed by FAST.

5.6.2 Algorithms

Below is a basic procedure for tracing a given particle p in the grid domain G and the
steady velocity field v.

Procedure Trace_Particle(p, G Vv)
c = Search Cell(p, G)
Wiile p € G do

vp = Interpolate(p, ¢, G v)
Compute_Step_Size(p, ¢, G vp)
Advance(p, h, vp, QG
Search_Cell (p, G)

O T o

@ 1 oInon

End Wil

Sear ch_Cel | () searches for the grid cell that p lies in. I nt er pol at e() interpolates
the velocity at p. Based on the interpolated velocity at p, Conput e St ep_Si ze() com-
putes the step size h. Advance() advances particle p using the RK4 method described
in Section 5.5.1. For time-dependent particle tracing in a static grid, the above procedure
needs to be modified to consider velocity as a function of time. Let Q = {(¢;,v;),! =
1,...,n}, where v; is the velocity field at time ¢; and n is the number of time steps in the
unsteady flow. The procedure for tracing particle p from time ¢, to ¢,, is given below.

Procedure Trace_Ti me_Dependent _Particle(p, G)

t :tl
=1
¢ = Search Cell(p, G)

Wile (p € G and (t <t,) do
v_p = Interpolate(p, ¢, G t, ti tip1, Vi, Vig1)

126 Scientific Visualization of Large-Scale Unsteady Fluid Flows

h = Conpute_Step_Size(p, ¢, G vp)
p = Advance(p, h, vp, G t, ty, tiy1, Vi, Vig1)
¢ = Search_Cell (p, G)
t =t +h
if (t >tl+1) =1+ 1
End Wil e

Inl nt erpol at e(), the velocity is interpolated in time and space. If the grid moves in
time (unsteady grid), then it is also necessary to interpolate the grid cell at each ¢. This
implies that Sear ch_Cel | () also needs to interpolate the grid cell in time.

5.6.3 Summary of Steps for Streaklines

Below is a summary of the steps for computing streaklines from an unsteady flow data set.
1. Release one particle from every seed location.
2. Read the first time step’s grid and solution files.
3. For the remaining time steps, do the following:

3.1 Read the current time step’s grid (if unsteady grid) and solution files.
3.2 Advance all particles from the previous time step to the current time step.
3.3 Release one particle from every seed location.

3.4 Compute color values of all particles based on their positions, time at release,
or a specified scalar quantity.

3.5 Save all active particles and their color values to the graphics metafile.

5.7 Examples

This section depicts streaklines computed from several unsteady flow data sets given in
Section 5.2. The flow calculations were performed on Cray YMP and C90 supercomputers.
The streaklines were computed using UFAT on a Convex C3240 system and animated
using FAST on a Silicon Graphics Reality Engine. The streaklines shown in this section
are snapshots from the animation, which is an effective way to visualize streaklines. The
streaklines are represented by individual particles instead of “connected” particles, because
when adjacent particles are too far apart, streaklines can become jagged. Figure 5.4 shows
streaklines computed from a simulation of the Harrier jet at time step 106. Particles, which
are released from the two exhaust pipes of the jet, are colored by time at release. Blue
represents the earliest time and magenta represents the most recent time.

The second example is a delta wing in descent. For this simulation, the effects of
two thrust-reverser jets in slow-speed flight near the ground are studied (Chawla and
van Dalsem [8]). Figure 5.5 shows streaklines surrounding the delta wing at time step
135. The particles are colored by time at release. At each time step, particles are released
near the ground and the two jet exits. In the animation, the interactions of the particles
released from the jet exits and those released near the ground are clearly visible.

5.7 Examples 127

Time Step

Figure 5.4: Streaklines released from two jet exits of the Harrier jet. Particles are colored
by time at release.

128 Scientific Visualization of Large-Scale Unsteady Fluid Flows

Time Step

Figure 5.5: Interactions of particles released from the two jets of a descending delta wing
and those released near the surface of the ground are shown. Particles are colored by time
at release.

5.7 Examples 129

Figure 5.6 shows streaklines surrounding the V-22 tilt rotor aircraft after three blade
revolutions. The V-22 aircraft has two propellers that rotate in opposite directions. The
simulation studies the use of Chimera overset grid methods for computing viscous flow
about a complete tilt rotor aircraft (Meakin [19]). In the simulation, there are 1,450 time
steps in one blade revolution and each time step requires 52 MB for the grid and solution
files (see Table 5.2). Thus, a total of 75.4 GB is required per revolution. Three revolutions
are calculated in the simulation. Because there was not enough disk space to store 226.2
GB (3x75.4 GB) of flow data, the data were saved at every 15th time step during the flow
calculation. This results in 97 time steps per revolution and 15 GB (3x97x52 MB) of data
were used for the visualization. Particles are released near a rotor blade and the nacelle.
In Figure 5.6, the surface of the V-22 aircraft is colored by pressure and the particles are
colored by time at release. At each time step, 400 particles are released.

Figure 5.6: Streaklines surrounding the V-22 tilt rotor aircraft after three blade revolutions.
The V-22 is colored by pressure and the particles are colored by time at release.

Figure 5.7 shows particles released near the noise of a delta wing with wing rock mo-
tion. Particles are represented by spheres to give a better depth perception. The surface
of the delta wing is colored by pressure. The simulation is for the development of an
experimentally validated CFD tool, which will be used to predict and analyze high-angle-
of-attack maneuver aerodynamics (Chaderjian and Schiff [7]).

130 Scientific Visualization of Large-Scale Unsteady Fluid Flows

Figure 5.7: Particles released near the noise of a delta wing with wing rock motion. Spiral
flow is evident above the left wing and vortex breakdown is visible above the right wing.

5.8 Conclusions

Unsteady flow visualization is a relatively new problem in scientific visualization. The
time-dependent nature and the large-scale magnitude of the data make unsteady flow visu-
alization challenging and interesting. Because most existing flow visualization techniques
were developed for steady flow data, there is a current need for unsteady flow visualization
techniques. The technique described in this chapter uses streaklines to depict time-varying
phenomena in unsteady flows. Presently, unsteady flow visualization is likely to rely on
scripting and subsampling approaches because of limited hardware capabilities. The size
of unsteady flow data sets will continue to increase in the future. There is a continuing
need to increase the storage, networking, and computing capabilities as numerical flow
simulations become more complex.

Acknowledgments

This work was performed in the Numerical Aerodynamic Simulation Systems Division at
NASA Ames Research Center under contract NAS 2-12961. | thank Jill Dunbar, David

BIBLIOGRAPHY 131

Kenwright, Gregory Nielson, and the reviewers for their helpful comments. | also thank
many colleagues at the NAS division for their support. | thank the following CFD scien-
tists for providing their data sets: Neal Chaderjian and Lewis Schiff (rolling delta wing),
Kalpana Chawla (descending delta wing), Sungho Ko (oscillating airfoil), Robert Meakin
(\V-22 aircraft), and Merritt Smith (Harrier jet). The geometry of the V-22 aircraft was
provided by Bell Helicopter Textron Inc. and Boeing Helicopters.

Bibliography

[1] G. Bancroft, F. Merritt, T. Plessel, P. Kelaita, K. McCabe, and A. Globus. FAST: A
multi-processed environment for visualization of computational fluid dynamics. In
A. Kaufman, editor, Proceedings of Visualization *90, pages 14-27, San Francisco,
CA, Oct. 1990.

[2] J. Benek, P. Buning, and J. Steger. A 3-d chimera grid embedding technique. In 7th
Computational Fluid Dynamics Conference, number AIAA 85-1523, Cincinnati, OH,
July 1985.

[3] S. Bryson and C. Levit. The virtual wind tunnel. IEEE Computer Graphics and
Applications, 12(4):25-34, July 1992.

[4] P. Buning. Sources of error in the graphical analysis of CFD results. Journal of
Scientific Computing, 3(2):149-164, 1988.

[5] P. Buning. Numerical algorithms in CFD post-processing, computer graphics and
flow visualization in computational fluid dynamics, von karman institute for fluid
dynamics lecture series 1989-07, 1989.

[6] P. Buning and J. Steger. Graphics and flow visualization in computational fluid dy-
namics. In 7th Computational Fluid Dynamics Conference, number AIAA 85-1507,
Cincinnati, Ohio, July 1985.

[7]1 N. Chaderjian and L. Schiff. Navier-stokes prediction of large-amplitude forced and
free-to-roll delta-wing oscillations, AIAA paper 94-1884-cp, June 1994.

[8] K. Chawla and W. van Dalsem. Numerical simulation of stol operations using thrust-
vectoring. In AIAA Aircraft Design Systems Meeting, number AIAA 92-4254, Hilton
Head, SC, Aug. 1992.

[9] D. Darmofal and R. Haimes. An analysis of 3-D particle path integration algorithms.
Submitted to 12th Computational Fluid Dynamics Conference, San Diego, CA, June
1995.

[10] W. Press et al. Numerical Recipes. Cambridge University Press, 1986.

[11] R. Haimes. pV3: A distributed system for large-scale unsteady CFD visualiza-
tion. Technical report, 32nd AIAA Aerospace Sciences Meeting and Exhibit, Reno,
Nevada, Jan. 1994,

132

Scientific Visualization of Large-Scale Unsteady Fluid Flows

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

R. Haimes and M. Giles. VISUALS3: Interactive unsteady unstructured 3d visualiza-
tion. Technical Report AIAA 91-0794, 29th AIAA Aerospace Sciences Meeting and
Exhibit, Reno, Nevada, Jan. 1991.

J. Hultquist. Improving the performance of particle tracing in curvilinear grids. Tech-
nical Report AIAA 94-0324, 32nd AIAA Aerospace Sciences Meeting and Exhibit,
Reno, Nevada, Jan. 1994,

D. Jespersen and C. Levit. Numerical simulation of flow past a tapered cylinder. Tech-
nical Report AIAA 91-0801, 29th AIAA Aerospace Sciences Meeting and Exhibit,
Reno, Nevada, Jan. 1991.

D. Kenwright and D. Lane. Optimization of time-dependent particle tracing using
tetrahedral decomposition. In G. Nielson and D. Silver, editors, Proceedings of Visu-
alization "95, pages 321-328, Atlanta, GA, Oct. 1995.

D. Kenwright and G. Mallinson. A 3-D streamline tracking algorithm using dual
stream functions. In A. Kaufman and G. Nielson, editors, Proceedings of Visualiza-
tion ’92, pages 62-68, Boston, MA, Oct. 1992.

D. Lane. Visualization of time-dependent flow fields. In G. Nielson and D. Bergeron,
editors, Proceedings of Visualization 93, pages 32-38, San Jose, CA, Oct. 1993.

D. Lane. UFAT—a particle tracer for time-dependent flow fields. In D. Bergeron and
A. Kaufman, editors, Proceedings of Visualization *94, pages 257-264, Washington,
DC, Oct. 1994.

R. Meakin. Moving body overset grid methods for complete aircraft tiltrotor simula-
tions. In 11th AIAA Computational Fluid Dynamics Conference, Orlando, FL, July
1993.

E. Murman and K. Powell. Trajectory integration in vortical flows. AIAA Journal,
27(7):982-984, July 1989.

H. Pagendarm. HIGHEND, a visualization system for 3d data with special support
for postprocessing of fluid dynamics data. In M. Grave, Y. LeLous, and W. Hewitt,
editors, Visualization in Scientific Computing. Springer-Verlag, Heidelberg, 1993.

F. Post and T. van Walsum. Fluid flow visualization. In H. Hagen, H. Mueller, and
G. Nielson, editors, Focus on Scientific Visualization, pages 1-40. Springer, Berlin,
1993.

F. Post and J. van Wijk. Visual representation of vector fields: Recent developments
and research directions. In L. Rosenblum et al., editor, Scientific Visualization: Ad-
vances and Challenges, pages 367—-390. Academic Press, San Diego, 1993.

T. Pulliam. Efficient solution methods for navier-stokes equations, von karman insti-
tute for fluid dynamics lecture series, 1986.

BIBLIOGRAPHY 133

[25] A. Sadarjoen, T. van Walsum, A. Hin, and F. Post. Particle tracing algorithms for
3D curvilinear grids. In 5th Eurographics Workshop on Visualization in Scientific
Computing, Rostock, Germany, May 1994.

[26] H. Schlichting. Boundary Layer-Theory. McGraw Hill, New York, 1979.

[27] S. Shirayama. Processing of computed vector fields for visualization. Journal of
Computational Physics, 106:30-41, 1993.

[28] M. Smith, W. van Dalsem, F. Dougherty, and P. Buning. Analysis and visualization
of complex unsteady three-dimensional flows. Technical Report AIAA 89-0139, 27th
AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, Jan. 1989.

[29] D. Speray and S. Kennon. Volume probes. Proceedings of San Diego Workshop on
Volume Visualization, Computer Graphics, 24(5):5-12, Nov. 1990.

[30] A. Vaziri, M. Kremenetsky, M. Fitzgibbon, and C. Levit. Experiences with CM/AVS
to visualize and compute simulation data on the CM-5. NAS Applied Research Tech-
nical Report RNR 94-005, NASA Ames Research Center, 1994.

[31] H. Vollmers. The recovering of flow features from large numerical data bases, vki
lecture series on computer graphics and flow visualization in computational fluid dy-
namics, von karman institute for fluid dynamics lecture series, 1991.

[32] P. Yeung and S. Pope. An algorithm for tracking fluid particles in numerical simu-
lations of homogeneous turbulence. Journal of Computational Physics, 79:373-416,
1988.

