NCCS System Environment

COMPUTE

"Discover" Cluster
- 65 TF Peak, 6,656 cores, 10.8 TB main memory, Infiniband interconnect
- Base Unit:
 - 128 nodes 3.2 GHz Xeon Dempsey (Dual Socket/Dual Core)
- SCU1 and SCU2:
 - 512 nodes 2.6 GHz Xeon Woodcrest (Dual Socket/Dual Core)
- SCU3 and SCU4:
 - 512 nodes 2.5 GHz Xeon Harpertown (Dual Socket/Quad Core)

STORAGE

Mass Storage Archive
- SGI Front-End
 - DMF managed
 - SGI Altix BX2
 - 64 CPUs
 - 128 GB main memory
- StorageTek
 - 16.5 PB capacity
 - T10K, 9940 tape drives
 - 9310, SL8500 tape libraries

Shared Storage
- 400 TB
- GPFS managed
- nobackup/scratch filesystems

USER INTERFACE

Analysis & Visualization
- Linux
 - 16 nodes
 - NVIDIA GPUs
- Software Tools
 - IDL, Matlab GrADS, ferret

Data Portal
- HP Blade Server
 - 128 CPUs
 - 128 GB main memory
 - 100 TB network storage (GPFS)
 - NFS served to compute hosts
- Software Tools
 - IDL, Matlab, GrADS
 - Web services
 - scp, ftp, bftp

NETWORK CONNECTIONS

NAS
- NLR
- NISN
- SNS
- Other Govt. Agencies
- Universities
- Other NASA Centers

FOR MORE INFORMATION

Dr. W. Phillip Webster

NCCS Project
Computational and Information Sciences and Technology Office
Code 606

NASA Goddard Space Flight Center
Greenbelt, MD 20771

http://www.nccs.nasa.gov
Who We Are
The NASA Center for Computational Sciences (NCCS), located at NASA Goddard Space Flight Center, is a High End Computing (HEC) facility that provides a range of supercomputing and data services to scientists throughout NASA’s Science Mission Directorate (SMD). The NCCS is part of the NASA HEC Program, together with its sister facility, the NASA Advanced Supercomputing (NAS) facility located at NASA Ames Research Center.

NCCS is funded by the SMD. Scientists request supercomputing resources from NASA HQ as part of the scientific proposal process via programs such as ROSES, MAP, NEWS, AURA, etc. Based on the specific needs of each science project, SMD allocates NCCS and/or NAS hours depending on the types of computing services required.

Our User Community
NCCS supports modeling and analysis activities for SMD users in Earth, space, and solar research including:
- **Atmospheric modeling** for climate and weather research
- **Ocean modeling** for climate, chemistry, and biology
- **Land surface modeling** for agriculture, land use, and water resource management
- **Space and solar modeling** for fundamental physics and astronomy, space weather, and gravitational wave studies
- **Coupled models** and **systems of models** in support of collaborative science efforts
- **Observing system studies** to enhance the use and design of space instruments

NCCS Support Services

Computing
- Multiple large-scale high performance clusters
- Tools for job scheduling & monitoring
- Portal to National Leadership Class System at NASA/ARC

Data Archival & Stewardship
- Large-capacity storage
- Tools to manage and protect data
- Data migration support

Code Development
- Environment for code development & test
- Code repository for collaboration
- Code porting & optimization support
- Earth System Modeling Framework (ESMF) assistance

Networks
- Internal NCCS high-speed interconnects for HEC components
- Center high-bandwidth access to NCCS for GSFC-based users
- Multi-gigabit network supports on-demand data transfers between NCCS and NAS

Analysis & Visualization
- Interactive analysis environment
- Software tools for image display
- Easy access to data archive
- Specialized data visualization support

Data Sharing
- Capability to share data & results
- Supports community based development
- Facilitates data distribution and publishing

User Services
- Help Desk
- Account support
- User teleconferences
- Training & tutorials