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Abstract

The field of scientific visualization covers the study of visual representations of sci-
entific data. These data often consist of continuous scalar, vector, or second-order
tensor fields extending across a n—dimensional space, n > 1. While research efforts
aimed at developing efficient representations of scalar and vector data have led to
important achievements, this dissertation is the first extensive study of visualization

techniques for second-order tensor fields.

Tensor fields are multivariate; they can embed as much information as n? scalar
fields, or equivalently, n vector fields. Visualizing continuous tensor data is, there-
fore, difficult mainly because the underlying continuity must be rendered while visual
clutter has to be avoided. We develop a theoretical ground work for the visualization
of symmetric tensor fields by studying their geometry and their topological structure,
and by designing at each step appropriate icons to represent the information. We

also extend some of our concepts to asymmetric tensor data.

First, we design icons that emphasize the continuity of the tensor data, overcoming
some of the limitations of discrete point icons. A n-dimensional, symmetric tensor
field is equivalent to n orthogonal families of smooth and continuous curves that are
tangent to the eigenvector fields. For n = 2 we generate textures to render these
trajectories, and for n = 3 we use numerical integration. To fully represent the tensor
data, we surround the resulting trajectories by tubular surfaces that represent the
transverse eigenvectors—we call these surfaces hyperstreamlines. We also define the
concept of a solenoidal tensor field, and we show that its hyperstreamlines possess

geometric properties similar to the streamlines of solenoidal vector fields.

Then, we analyze the topology of symmetric tensor fields by using a formalism

v



which is analogous to the phase-space analysis of dynamical systems. As with vector
field topology, we derive a set of points and trajectories that embed global infor-
mation, representing the collective behavior of a continuous distribution of hyper-
streamlines. We call the points that underlie the topology of tensor fields degenerate
points, because the eigenvalues are equal to each other at these points. Depending
on the tensor gradients, degenerate points can be of various types that correspond
to different local patterns of the eigenvectors. We carry out a mathematical analysis
of degenerate points, identifying trisector points, wedge points, nodes, foci, saddle
points, dipoles, cusps, saddle-nodes, as well as other, more exotic patterns. We call
the trajectories that underlie the topology of tensor fields separatrices. They are
specific hyperstreamlines that are either limit cycles, or trajectories emanating from
degenerate points and lying on the border of hyperbolic sectors.

Separatrices and degenerate points are the basic constituents of tensor field topol-
ogy but they are not its only determinants. When a tensor field is defined across
a surface, the topology of the surface constrains the topology of the tensor field; it
limits the number and the nature of the degenerate points. We explore this relation,

transposing to tensor fields the Poincaré-Hopf Theorem for vector fields.
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Chapter 1
Introduction

Visualizing data involves using abstract pictures to show numbers. Surprisingly, this
is a relatively new way of presenting information; it was not until well into the eigh-
teenth century, long after René Descartes and his discovery of Cartesian coordinates,
that designers fully grasped the advantages of using abstract graphics to display in-
formation. William Playfair (1759-1823), a Scottish political economist, is acclaimed
as the inventor of modern graphical designs. In his book The Commercial and Polit-
ical Atlas (London, 1786), Playfair used for the first time x-y plots rather than tables
to visualize time-series data. He described the superiority of graphics over tables by
noting that “on inspecting any one of these Charts attentively, a sufficiently distinct
impression will be made, to remain unimpaired for a considerable time, and the idea

which does remain will be simple and complete [...]” (Reference [1]).

Various authors since Playfair have used a wealth of ingenuity and imagination
to make the graphical depiction of information as effective and aesthetic as possible.
A particularly challenging problem was, and still is, to find efficient ways of render-
ing multivariate information on a simple sheet of paper—the two-dimensional world
of Flatland illustrated in Edwin Abbott’s book (Reference [2]). Multivariate data
typically involve multiple information fields that eventually extend across multidi-
mensional domains, such as subsets of R”™ where n > 1. Many visualization pioneers
designed creative solutions to represent such data, partly overcoming Flatland’s low

dimensionality. For example, a famous map by the French engineer Charles Joseph



2 Introduction

v velocity
m = pv momentum density
S=V 7o vorticity
§=V/f |scalar gradient (f = p,p, T, etc.)

Table 1.1: Vector fields in fluid flows. p = mass density, p = pressure, and 1" =
temperature.

Minard (1781-1870) portrays the terrible fate of Napoleon’s army in Russia by simul-
taneously showing the evolution in time (n = 1) of six independent variables—freezing
temperatures on the Russian front, French army size, location, and direction of move-
ment. Another landmark idea was Chernoff’s use of cartoon faces (Reference [3]) to
represent multivariate data across a two-dimensional domain (n = 2). Chernoff as-
sumed that our well trained abilities at recognizing facial expressions would help us
to cluster the data. In their seminal work, Edward R. Tufte (References [1, 4]) and
Jacques Bertin (Reference [5, 6]) discuss many more visualization examples, drawing
a set of design principles that lead to accurate, effective, and aesthetic graphics—i.e.,

visualization excellence.

As today’s computer technology enables researchers to generate increasingly large
and complex data sets, there is a greater need for newer, faster, and more powerful
visualization technologies. Fortunately, computers do not only create needs. They
also provide solutions: by substituting machine computation and computer graphics
for conscious visual processing, computers help us to overcome our inherent cognitive
limitations. This motivated the National Science Foundation to initiate in 1987 a
multidisciplinary effort aimed at developing new computer technologies to visualize

scientific data (Reference [7]). Scientific visualization emerged as a new discipline.

Many scientific data are scalar, vector, or second-order tensor fields defined across
n-dimensional subsets of R". (Typically n = 1 to 4.) Such data are particularly
abundant in fluid flow physics, and a few examples of vector and tensor fields in fluid

flows are listed in Tables 1.1 and 1.2, respectively.

There are already effective ways of communicating scalar information, such as

isosurfaces (Reference [8]) or volume rendering (References [9, 10, 11]). Vector and



Objectives 3

Ji; = ou velocity gradient (a)
J
e; = Jiy; + Jji rate-of-strain tensor (s)

ol = peg + )\52;7'2%}; viscous stress tensor (s)

o = —pdij + o} stress tensor (s)

II7; = péi; + pvv; | reversible momentum-flux-density tensor (s)

IL;; = 1I}; — o; momentum-flux-density tensor (s)

Rij = p <wjv; > Reynolds-stress tensor (s)

Table 1.2: Cartesian components of second-order tensor fields in fluid flows. p =
pressure, p = mass density, v; and v; = velocity components, and g and A = viscosity
coefficients. ¢;; is the Kronecker symbol. v; and v’ are velocity fluctuations about the
mean, and < ... > are averages over time. (a) = asymmetric, (s) = symmetric.

second-order tensor fields, however, are more complex; they embed as much infor-
mation as n and n? independent scalar fields, respectively. And because computer
screens are still Flatland, the basic problems have not changed since Playfair and
Minard: How are we to represent large amounts of multivariate information on a

two-dimensional medium, in a form that is suitable to the human visual system?

1.1 Objectives

In this dissertation, we design representations of continuous, second-order tensor fields
and show connections with vector visualization techniques. We decided to undertake
this work after noticing that, although many visualization researchers stressed the
need for tensor visualization schemes (References [12] [13] [14] [15] [16]), actual at-
tempts were scarce and superficial. Clearly, no one really knew what tensor fields

looked like.

Our main objectives are as follows:
e to start an era of tensor visualization,
e to show that tensor fields contain simple topological structures, and

e to serve as a model for the visualization of other continuous multivariate data.
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1.1.1 A New Era

Much research effort is being devoted to the visualization of vector fields. Not much
has been undertaken, however, for second-order tensor fields. This is to be expected;
after all, tensor data are more complex and somewhat more “abstract” that their
vector counterparts. But this is also surprising.

Second-order tensor fields are central to many areas of physics. For example, most
of general relativity is based on tensor fields. The mechanical properties of solids are
expressed mainly as second-order tensor data—such as stresses and strains. In fluid
flows, stresses, strain rate, and Reynolds stresses are all tensor quantities (Table 1.2).
Even the momentum transfers are expressed as second-order tensor fields: the steady-

state Fuler’s equations, which govern ideal gas flows, can be simply written as
OII%.
—2 =0 1.1
> 5 (11)
where the only quantity involved is II7; (Table 1.2), a tensor field that represents
reversible momentum transfers (transfers due to the mechanical transport of fluid
particles or to the pressure forces). Likewise, the steady-state Navier-Stokes equa-

tions, which govern viscous flows, are equivalent to
o1l;;
22; 8—1:] =0 (1.2)
Again, there is only one quantity involved, the second-order tensor field II;; (Table 1.2)
which accounts for both reversible and irreversible momentum transfers.

Turbulence modeling is another area that calls for tensor visualization schemes.
The ability to plot tensor fields and to compare their topological structure is, indeed,
crucial to validate (or invalidate) widely used turbulence models such as the eddy-
viscosity model (Reference [17]).!

As shown by these examples, second-order tensor fields occur in many different
areas. Visualizing them can contribute to improving our understanding of various

physical processes. This dissertation fills the present lack of visualization techniques

for second-order tensor fields and discusses their geometric structure.

!The eddy-viscosity model assumes that the Reynolds-stress tensor is proportional to the rate-
of-strain tensor—an assumption which can be verified only by comparing the topology of these two

tensor fields (Table 1.2).
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1.1.2 The Topological Structure of Tensor Fields

Our second objective is to show that second-order tensor fields contain simple topo-
logical structures. Because this work is, to our knowledge, the first topological study
of second-order tensor fields, we adopt a general rather than case-specific approach
with the hope of being as widely relevant as possible. We would like to make three

points:

e A continuous tensor field is a continuum and must be visualized as such. In other
words, continuous tensor fields are best represented by using continuous rather
that discrete icons, by emphasizing the underlying continuity of the data rather

than cluttering the display with discrete, multidimensional information.

e Tensor fields present simple topological structures that outline their geometry. This
visual simplicity dramatically contrasts with the mathematical complexity of

tensor algebra.

e Data compression. By displaying the key topological features of tensor data, we
create simple depictions of complex multivariate information while achieving

significant data compression.

1.1.3 A Model for Continuous Multivariate Fields

We hope that this dissertation will serve as a model for the visualization of other
continuous multivariate data fields. We show strong similarities between challenges
and solutions in vector and tensor field visualization, and these similarities can serve

as guidelines for future research efforts on similar problems.

1.2 Second-Order Tensor Fields

In this section, we provide explicit mathematical definitions of the data to be inves-

tigated in the subsequent chapters.

Definition 1 (Second-Order Tensor Field) Let L(X,Y) be the set of all the lin-

ear transformations of the vector space X into the vector space Y, and let F be an
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Figure 1.1: 2-D and 3-D symmetric tensor fields. Orthogonal eigenvector fields v; are
represented as bidirectional arrows.

open subset of R". A second-order tensor field T(%) defined across E is a mapping
T : EF — L(R™,R™) that associates to each vector ¥ of E a linear transformation
of R™ into itself. If R™ is referenced by a Cartesian coordinate system, T(Z) can
be represented by m? Cartesian components T;;(Z), 1,7 = 1,...,m, that transform
according to
Ti/j = 21 ﬁipﬁqupq (13)
Pg=

under an orthonormal transformation 8 = {B;;} of the coordinate azes.

From now on we refer to second-order tensor fields simply as “tensor fields.” We also
confine our study to the case n = m = 2 or 3. That is, we discuss 2 x 2 tensor fields

defined across subsets of R?, and 3 x 3 tensor fields defined across subsets of R?.

Explicit Cartesian components of these tensor fields are as follows:

e 2-D symmetric tensor fields

(1.4)
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These data are fully equivalent to two orthogonal eigenvector fields
Ui (7) = Ni(D)e(T) (1.5)

where ¢ = 1,2. X(Z) (1 = 1,2) are the eigenvalues and €;(Z) (¢ = 1,2) the
corresponding unit eigenvectors. Both eigenvalues and eigenvectors are real.
We represent ¢; and ¢ in Figure 1.1 (left) as bidirectional arrows because of
the sign ambiguity of the eigenvectors. By convention, we order eigenvalues as
A (Z) > Ag(&), and because of this particular ordering, we refer to v and v as

the “major” and “minor” eigenvectors, respectively.

3-D symmetric tensor fields

Ty(z,y,2) Tia(z,y,2z) Tis(z,y,2)
T(7) = T(z,y,2) = | Tia(w,y,2) Taalz,y,z) Tas(z,y,z) (1.6)
Tys(z,y,2) Tas(,y,z) Tss(z,y,2)

These data are equivalent to three orthogonal eigenvector fields
U,(Z) = N\i(@)ei (@) (1.7)

where ¢ = 1,2,3. Both eigenvalues and eigenvectors are real. The eigenvectors
U;(Z) are represented as bidirectional arrows in Figure 1.1 (right). Again, we

order eigenvalues as A (Z) > Ay(Z) > A3(Z) and we refer to v, U3, and U3, as

” W Y

the “major,” “medium,” and “minor” eigenvectors, respectively.

3-D asymmetric tensor fields

Ti(z,y,2) Ti(r,y,z) Tws(z,y,2)
T(7) = T(z,y,2) = | Toulz,y,2) Talzx,y,z) Tu(z,y,z) (1.8)
Tsy(z,y,2) Tsa(w,y,2) Tss(z,y,2)

At least one of the following conditions is met: Tis(x,y,z) # Tu(zx,y,z),
Tis(x,y,z) # Ts1(x,y,2), or Tos(x,y, z) # Tsa(x,y, z). This case is complicated
by the possible occurrence of complex eigenvalues and complex, non-orthogonal

eigenvectors.
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Visualizing symmetric tensor fields is an important problem per se. It is also a
necessary step in order to visualize more complex asymmetric tensor data. Indeed,

an asymmetric tensor field T(Z) can always be decomposed as
T(Z) = S(Z¥) + A(%)

or as

T(7) = S(7)A(T)

where S(Z) is a symmetric tensor field and A(Z) is an antisymmetric tensor field.
One can show that A(Z) is equivalent to a vector field. Thus, by visualizing and
extracting the topology of vector and symmetric tensor fields, one can also display

general asymmetric tensor data. (More on this topic in Section 3.5.)

1.3 Framework for Scientific Visualization

Scientific visualization is a new discipline and the correlations between various tech-
niques are ill-defined, mainly due to the lack of a conceptual model for thinking about
multivariate data visualization (Reference [18]). However, the problem of represen-
tation tackled by scientific visualization—creating a mental image of the data—is
hardly a new subject; its theoretical and practical implications have been studied
extensively in various disciplines such as logic, linguistics, psychology, and sociology.
Visualization processes transform raw experimental or simulated data into a form
suitable for human understanding; they can take on many different forms, depend-
ing on the nature of the original data and the information that is to be extracted.
However, visualization processes can be generally subdivided into three main stages:
data preprocessing, visualization mapping, and rendering (References [12, 13]).
Data preprocessing involves diverse operations, such as interpolating irregular
data to a regular grid, filtering and smoothing raw data, or deriving functions of
measured or simulated quantities. Visualization mapping—in many ways the most
crucial and least automated stage of the visualization process—consists of designing
an adequate representation of the filtered data, an icon, which conveys efficiently the

relevant information. This often involves first deciding what aspects of the data carry
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meaningful information and then extracting data features such as singularities, vortex

cores, etc. Finally, icons must be rendered in order to communicate the information.

1.3.1 Icons

[cons in scientific visualization are often defined as geometric objects that encode
the data at a given point either through geometric characteristics, such as lengths or
angles, or through other visible attributes, such as color or opacity (Reference [19]).
In this dissertation however, an “icon” is a more general concept that relates to the
semiotics of data visualization. Visualization mappings construct intelligible repre-
sentations of the data by means of signs. That is to say, the data are expressed
semiologically by constituting a relation between an object (data) and its representa-
tion.

Signs, according to the logician C.S. Peirce, relate to the object in three different

ways—as an icon, an index, or a symbol (Reference [20]):

e an icon is based on a resemblance between the object and its representation. It
is not, however, affected by the object and has no “dynamic” connection to it.

Examples are chemical diagrams that represent molecules. On the other hand,

e an index “is a sign which refers to the object that it denotes by virtue of being
really affected by that object.” Typical examples include a clock indicating the
time of the day and the photograph of an object. In fact, an index is essentially

causal whereas an icon is mainly mimetic (Reference [21]). Finally,

e a symbol relates to the object by virtue of an arbitrary convention. For example,
the correspondence between the shape of letters in the roman alphabet and their

sound is largely arbitrary.

In order to characterize the nature of signs used in scientific visualization, consider
for example representing a vector at a given point in space by an arrow. The arrow in
itself is an icon; it has qualities in common with the data, such as direction and length.
However, for the visualization mapping to be useful, the orientation and length of the

arrow must be determined by the data. In other words, the representation is indexical,
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based on a causal—rather than mimetic or arbitrary—relation between the arrow and
the data. This index, it should be remembered, also involves an icon that embodies
the information.

Many more examples of such combined signs are discussed in the dissertation
(Tables 1.3 and 1.4). For simplicity, we conform to the prevailing usage of the term
“icon,” but it should be kept in mind that “icons” here are in fact “indices-involving-
icon” in respect to their semiological functions. The use of these complex signs is
a common property shared by diverse scientific visualization systems. It helps to
distinguish the discipline from other applications of computer graphics which usually

produce pure icons—as in architectural design or photorealistic studies.

1.3.2 Attributes of Icons

We can derive important features of visualization mappings from the attributes of

the associated icons—object, spatial domain, and embedded information level:

o Object. Icons are characterized by the object they represent: scalar, vector, or
tensor data. Object contraction consists in simplifying the visualization map-
ping by displaying derived data of lower multivariability—such as representing
a vector field by its scalar magnitude. Object contraction implies a loss of in-
formation which is compensated, however, by a considerable simplification of

the visualization mapping.

e Spatial domain. Icons represent their object across a spatial domain. An arrow,
for example, displays vector information at a single point. Overall, there are

point, line, surface, and volume icons.

e Information level. Perhaps the most fundamental attribute of icons, the infor-
mation level embedded in the representation is elementary, local, or global.?
Elementary icons represent their object strictly across the extent of their spa-

tial domain (point, line, etc.) For example, an arrow is an elementary point

?Embedded information levels correspond closely to those suggested by Bertin (Reference [5, 6])
in his work on the semiology of graphics, and were used more recently by Robertson (Reference [22])
in choosing an adequate methodology for representing 2-D bivariate data.
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Spatial Embedded Information
Domain | Elementary Local Global
arrows critical-point glyphs
Point wedges
hedgehogs
streamlines streamribbons vortex cores
Line streaklines streamtubes
particle traces
Surface | streamsurfaces 2-D vector topology
skin-friction topology
and
Volume separation surface,

helicity density (c),
or vortex cores

Table 1.3: Vector icons to be discussed in Chapter 2. (¢) means object contraction.

vector icon. On the other hand, local icons represent, in addition to elementary
information, a local distribution of the values of the data around the spatial
domain. Practically, this means that local icons display, at least partially, data
gradients—which are scalar, vector, or tensor gradients. Finally, global icons
show the structure of the complete data field. Global icons of multivariate
data are typically obtained by feature extraction. What makes them global is
therefore problem-specific since it requires those parts of the data that carry
structural information to be distinguished from those that can be neglected.
Designing global icons for data visualization is a complex but worthwhile en-
deavor. Because they represent multivariate information by means of a few
carefully selected points, lines, or surfaces, global icons result in significant

data compression.

Table 1.3 lists various vector icons to be discussed in Chapter 2. Table 1.4 sum-

marizes tensor icons to be designed in Chapters 3 and 4.7

3Vector gradients are tensors, so local vector icons display elementary tensor information. How-
ever, we do not assimilate local vector icons to elementary tensor icons because some attributes of
local vector icons, such as the position of critical-point glyphs or the trajectory of streamribbons and
streamtubes, are determined by a vector field, not a tensor field. Tensor icons are able to represent
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Spatial Embedded Information
Domain Elementary Local Global

Point ellipsoids degenerate points

tensor glyphs
Line trajectories (c)
hyperstreamlines

Surface 2-D tensor topology
Volume 3-D topological loci

Table 1.4: Tensor icons to be discussed in Chapters 3 and 4. (c¢) means object
contraction. Italicized items are icons to be designed in this dissertation.

—h
—h

/
v / 4 v
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Figure 1.2: Two compressive forces applied to the top surface of a semi-infinite elastic
material.

1.4 Overview of Tensor Visualization

In this section, we present an overview of our work by means of a simple example
of elasticity. This will explain how we designed our specific visualization mappings,
while illustrating the objectives stated above. The example consists of the elastic
stress-tensor in a material. These data are fairly simple, but they contain some of the
basic features that are encountered in more complex tensor fields. The geometry of
the problem is shown in Figure 1.2: two compressive forces are applied on the edge

of a semi-infinite plane, inducing elastic stresses in the material.*

any tensor data, including those that are not vector gradients.
4The data is a two-dimensional cut of a three-dimensional tensor field. Poisson modulus is 0.25.
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Figure 1.3: Contour lines of the components of the stress-tensor field induced by two
compressive forces.
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1.4.1 Overview

Tensor fields are usually visualized by drawing contour lines of individual compo-
nents, as in Figure 1.3. Although valuable information is represented, these images
suffer from three significant limitations. First, they do not teach us much about the
structure of the tensor field. Second, three plots are necessary to represent the tensor
field. (And in the case of 3-D data, we need six or nine of these plots.) Third, the
displayed information depends critically on the orientation of the coordinate axes.
For example, Figure 1.4 shows the same data as Figure 1.3, but after rotating the
coordinate axes by 45°. Clearly, there is not much in common between the two fig-
ures, apart from the fact that in each case tensor components are large in the area
where forces are applied. Of course, with such a simple geometry, it is only natural
to orient coordinate axes as in Figure 1.2. (This leads to the set of contour lines in
Figure 1.3.) But in more complex settings such as tensor fields in fluid flows, there
are no particular reasons for privileging a specific orientation of the coordinate axes.
Drawing contour lines is then not a suitable representation of tensor data; the infor-
mation embedded in individual tensor components is not only partial, it also varies

with the orientation of the coordinate axes (Equation 1.3).

How are we, then, to represent a tensor field in a way that is invariant under
rotation of the coordinate axes? Figure 1.5 shows one possibility. Ellipses represent
the two eigenvector fields @; (Figure 1.1—left) at coarsely-spaced points. (The ellipses’
principal directions lie along the eigenvectors ;.) The advantage of doing so lies in the
fact that the displayed information remains invariant upon rotation of the coordinate
axes. Ellipses, however, occupy a lot of screen space and they tend to produce visual
clutter. This is even more critical when we visualize three-dimensional tensor fields
by using ellipsoids. To avoid visual clutter, the density of displayed ellipsoids must
be kept so low, that interpolating the data at intermediate points becomes difficult,
if possible at all. The tensor field may be continuous, but ellipses or ellipsoids merely

render the data at discrete, coarsely-spaced points.

The continuity of tensor components causes the eigenvector fields @; to be con-

tinuous at most points. Thus, we can generate textures (References [23, 24]), such
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Figure 1.4: Contour lines of the tensor field in Figure 1.3, after a 45° rotation of the
coordinate axes.
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Figure 1.5: Ellipses with principal axes representing the two eigenvectors v; of an
elastic stress-tensor field.

as Figure 1.6, which represent the eigenvector fields in a continuous manner. Fig-
ure 1.6 (top) shows the minor eigenvector ¥5: the most compressive force in the
material; and Figure 1.6 (bottom) shows the major eigenvector vj: the least com-
pressive force. Color encodes the longitudinal eigenvalue, from highly compressive
(red), to mildly compressive (orange, yellow, green), and to little compressive or even
tensile in the case of ¥y (blue). Clearly, the representation in Figure 1.6 is continuous
and invariant under rotation of the coordinate axes.

The texture lines in Figure 1.6 are known in mechanics as “trajectories of the
principal stresses.” We call them “hyperstreamline trajectories,” for consistency with
the terms used in our design of 3-D tensor icons in Chapter 3. These trajectories
show the way forces are transmitted in the elastic material. They can be visualized
experimentally by using photoelasticity techniques (Reference [25]). However, these
experimental techniques are applicable only for transparent materials subjected to
planar stresses. By using computer visualization, we can generate these trajectories
for any numerically defined tensor field—stresses, strains, momentum flux density,
etc.

Textures reveal more of the structure of the tensor field than either contour lines
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Figure 1.6: Textures representing an elastic stress tensor induced by two compressive
forces; (top): most compressive (minor) eigenvector; (bottom): least compressive
(major) eigenvector. Color encodes the longitudinal eigenvalue according to color

scale 2 of Figure A.3 (Appendix A).
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or ellipses. In Figure 1.6 for example, the trajectories never cross each other, except
at one point. We call such a point a “degenerate point.” We will analyze the eigen-
vector fields in the vicinity of degenerate points and identify various patterns—such
as wedges, nodes, foci, dipoles, etc.

Trajectories that do not meet at degenerate points tend to converge towards a few
specific lines that emanate from degenerate points. We call such lines “separatrices.”
In Figure 1.7, we overlay the separatrices to the texture. This emphasizes the topology
of the eigenvector fields. These topological skeletons separate the domain into regions
where the eigenvectors are equivalent to uniform fields. From this simple set of lines,
one can easily infer the direction of the eigenvectors at any points in the plane.

Topological skeletons depict in a simple manner the geometric structure of tensor
data. They can also be used to correlate a tensor field with other data. In Figure 1.8
for example, we correlate elastic stresses and displacements by superimposing the
topological skeletons of the stress-tensor on textures of the displacement vector.

The example discussed in this section highlights some of the points to be developed
in the course of the dissertation. First, it is better to represent eigenvectors rather
than individual tensor components because the latter are tied to a particular orien-
tation of the coordinate axes. Second, visual clutter can be avoided by representing
multivariate information continuously rather than discretely. Finally, it is possible to
extract topological skeletons that encode schematically the structure of tensor fields.
A simple and austere depiction results from which the tensor data can be inferred at

any points of the domain.

1.4.2 Contributions

Up to now, there have been very few visualization mappings of tensor fields. Ex-
isting techniques, prior to this work, were confined to contour lines of individual
components—such as Figures 1.3 and 1.4—and elementary point icons—such as el-
lipses, ellipsoids (Reference [19]), or tensor glyphs (Reference [12, 13]). We already
discussed the drawbacks of using these techniques when visualizing any but the most
elementary tensor data.

In 1989, however, R. Dickinson recognized the need to use continuous rather than
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Figure 1.7: Topological skeletons representing of an elastic stress-tensor field induced
by two compressive forces. Minor (top) and major (bottom) eigenvectors.
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Figure 1.8: Correlation of the stress-tensor field (topological lines) with the dis-
placement field (texture). Color encodes the magnitude of the local displacement,
according to color scale 2 of Figure A.3 (Appendix A).
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discrete mappings (Reference [26]). In this dissertation, we draw on his suggestion,
expanding the range of available tensor visualization techniques. We also conduct
the first mathematical investigation of the geometry and the topology of second-
order tensor fields. The italicized items in Table 1.4 represent icons to be designed

in the following chapters. We may summarize the resulting contributions as follows:

e A framework for scientific visualization. This framework allows the classifica-
tion of many visualization mappings of vector and tensor fields. It develops a
unified structure and common vocabularies for the new discipline of scientific

visualization. It also points out new questions for future research.

o Textures. A recent major advance in the rendering of 2-D vector fields has been
the use of textures rather than numerical integration to represent streamlines.
We show that textures are important visualization tools for 2-D tensor data as

well.

e Hyperstreamlines. We design new icons that fully represent 3-D symmetric and
asymmetric tensor data along continuous trajectories—reducing the problems

related to visual clutter.

e Solenoidal tensor fields. We define solenoidal tensor fields and we show that the
geometric properties of their hyperstreamlines are in many ways similar to the

properties of streamlines of solenoidal vector fields.

e Topology of symmetric tensor fields. We define and analyze the topology of sym-
metric tensor fields. The tensor topology is based on the notions of degenerate
points, hyperstreamline separatrices, and limit cycles. We discuss the geometric
structures that are contained in symmetric tensor fields—broadening geometric

theories such as the phase-space analysis of dynamical systems.

1.5 Structure of the Dissertation

In Chapter 2, we specifically focus on the state of the art in vector field visualiza-

tion (Table 1.3). The review, however, raises general issues pertaining to continuous,
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multivariate data visualization in general, and lays a framework for our subsequent
theory of tensor field visualization (Table 1.4). In Chapter 3, we discuss elementary
icons of tensor fields. Our main concern is the design of line icons that overcome
the shortcomings of point icons. In Chapter 4, we discuss global tensor icons. We
define, analyze, and extract the topology of symmetric tensor fields, introducing new
concepts, such as degenerate points and separatrices of a tensor field. In Chapter 5,
we summarize our contributions and we outline further research issues. Tensor visu-
alization is in its first phase of development. This dissertation breaks new grounds,

but it also raises many new questions to be addressed in the future.



Chapter 2
Review of Vector Icons

In this chapter, we discuss visualization mappings of vector fields. Although we
strongly emphasize the case of fluid flow data—where most of the visualization work
has been carried out—the concepts to be reviewed here apply to a much wider variety
of vector fields.

The purpose of this chapter is threefold. First, we provide an extensive review of
recently developed techniques in continuous, multivariate data visualization, prior to
our work on tensor fields. Second, the chapter illustrates our claims that continuous,
multivariate information is better conveyed by using continuous, rather than discrete,
icons; and that problems related to visual clutter can be overcome by a schematic,
global depiction of the geometric structure of the data. Third, we fit numerous vector
mappings within the framework developed in Chapter 1, while simultaneously empha-
sizing issues that helped structuring our methodology for tensor-field visualization.

In the following, we review elementary (Section 2.1), local (Section 2.2), and
global (Section 2.3) icons of vector fields—all of which were summarized together
with their attributes in Table 1.3. It will be seen that elementary icons typically
mimic experimental flow visualization techniques, while local and global icons are
more abstract representations.

The interested reader can draw many analogies between the material to be dis-
cussed in Section 2.1 and Chapter 3, where we design elementary icons of tensor

fields. The discussion in Sections 2.2 and 2.3 are also useful introductions to global

23
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representations of tensor fields, to be developed in Chapter 4.

2.1 Elementary Icons

Elementary vector icons represent vector information strictly across their spatial
domain—which can be points, lines, or surfaces. First, point icons (and their limita-
tions) are described; then, we discuss line and surface icons that provide a continuous

representation of vector fields, therefore improving perception of the data.

2.1.1 Point Icons

The most straightforward vector mapping consists in drawing point icons, such as
arrows, at selected locations in the flow—a technique analogous to tufts or vanes
used by experimentalists (Reference [27]). Different point icons—such as wedges or
bulb-shaped hedgehogs—are sometimes used, but a comparative study shows that

simple arrowheads are most efficient at conveying vector information from volumetric

data sets (Reference [28]).

Arrows are useful in visualizing 2-D slices of 3-D vector fields, such as cutting
planes (Reference [29]); yet, they are impractical when applied to the entire volume.
This is because, in order to avoid visual clutter, the density of displayed arrows
must be kept very low—in which case, however, it is not possible to comprehend the
underlying structure of the vector field by mentally interpolating adjacent arrows,

except for very simple objects.

Figure 2.1, for example, shows the velocity field in the flow past a cylinder. For
improved perception, color maps kinetic energy density. Although valuable informa-
tion is represented, the display of merely 4% of the arrows renders the image overly
cluttered. Point icons do not represent the intrinsic continuity of the data, and the
displayed information is of too poor spatial resolution for elucidating important flow

features such as vortices.



Elementary Icons 25

Figure 2.1: Arrows depicting the velocity field in the flow past a cylinder. Blue, green,
yellow, and red correspond to increasing kinetic energy density.
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2.1.2 Particle Traces, Streaklines, and Streamlines

Line icons are more efficient in the sense that they provide a continuous representation
of the data, therefore avoiding mental interpolation of point icons. Consider a vector
field 9(#,t), where Z is the position in space and ¢ is the time; in the following we
discuss particle traces, streaklines, and streamlines—all of them are line icons that

emphasize different aspects of the flow.

Definitions

Particle traces are trajectories traversed by fluid elements over time. They are visu-
alized experimentally by injecting instantaneously a dye or smoke in the flow and by
taking a long exposure photograph. Numerically, the trace Z(t) of a particle originally

at position &, is the curve obtained by integrating the equation

Z—f = v(Z,1) (2.1)
with the initial condition Z(0) = Z,. A collection of particle traces, therefore, gives a
sense of the complete time evolution of the flow.

The streakline Z(%,,t,) passing through the point #, at time ¢, is formally defined
as the locus, at time t,, of all the fluid elements that have previously passed through
T,. Streaklines are obtained experimentally by injecting continuously a non-diffusive
tracer (such as hydrogen bubbles) at #,, and by taking a short exposure photograph
at time t,. Numerically, streaklines are computed by linking the endpoints of all the
trajectories obtained by integrating Equation 2.1 between times t; and ¢,, for every
value of ¢; such that 0 < ¢; < ¢,, and with initial conditions Z(¢;) = &,. Thus,
streaklines at time ¢, give information on the past history of the flow.

Finally, streamlines at time ¢, are integral curves satisfying

Z—j = v(Z,1,)
where ¢, is held constant and s is a parameter measuring distance along the path.

Streamlines at time ¢, are everywhere tangent to the steady flow ¢(%,t,); a collec-

tion of such streamlines provides an instantaneous “picture” of the flow at time ¢,.
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Streamlines in unsteady flows are by nature transitory, but they can be visualized
experimentally by injecting a large number of tracer particles in the flow and taking
a short-time exposure photograph.

In general, particle traces, streaklines, and streamlines are distinct from each
other, but these three families of trajectories coincide in steady flows.

Figure 2.2 represents streamlines of the flow in Figure 2.1. Two pairs of vortices,
that are completely hidden in Figure 2.1, are clearly shown in Figure 2.2; when
comparing the two figures, it is clear that line icons reveal more of the flow structure
than point icons. The same streamlines are rendered as thin tubes with finite cross-
section in Figure 2.3. By exploiting our intrinsic ability to use hidden surfaces as
perceptual cues, the display in Figure 2.3 improves our perception of the spatial
arrangement of the trajectories. As we show in Section 2.3.3, however, important

flow features are still hidden in Figure 2.3.

Accuracy and Interactivity

The simulation of the planet Jupiter for the movie “2010” required the computa-
tion of approximately 10 million 2-D particle traces that were blended in a moving
texture (References [30, 31]). Fortunately, photo-realism is not the goal of scien-
tific visualization, and a more modest number of particles—say a few tens to a few
hundreds—suffices for representing fluid flows. Accuracy and interactivity, on the
other hand, are primary concerns.

The complexity of most interesting 3-D flows is reflected by intricate trajectories,
and integration must be handled with care in order to avoid excessive numerical
errors. This is especially relevant in turbulent flows, where the distance between
adjacent fluid elements is known to grow exponentially with time (Reference [32]).
Any numerical error is therefore dramatically enhanced as integration proceeds.

The integration scheme is an important source of numerical errors. Straightfor-
ward integration techniques, like the simple (but fast) Euler explicit scheme, are in-
adequate. Acceptable results, however, are found using a second-order Runge-Kutta
algorithm with step size based on cell dimensions and inverse of vector magnitude

(Reference [33]). Higher-order integration techniques, such as fourth-order adaptive
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Figure 2.2: Streamlines of the steady flow in Figure 2.1. Color maps kinetic energy
density according to scale 1 in Figure A.3 (Appendix A).
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Figure 2.3: Same streamlines as in Figure 2.2, but rendered as thin tubes with finite
cross-section.



30 Review of Vector lcons

Runge-Kutta, are more accurate, but lead to increased computational loads.

Numerical errors also occur due to vector field interpolation between grid nodes.
In fact, simple trilinear interpolation is the main source of errors in turbulent flows
(Reference [34]), and higher-order interpolation schemes, such as cubic splines, while

being more accurate, impose a strong performance penalty.

Researchers in flow visualization are exploring new hardware configurations that
improve both speed and accuracy. An example is distributed particle tracing, where
trajectories are computed with a supercomputer and communicated to a front-end
workstation handling all the graphics operations (Reference [35]). This configuration,
which is being implemented in virtual reality-based systems, such as the Virtual Wind
Tunnel (Reference [36]), leads to speedups of an overall factor of 7 during typical

visualization sessions.

Recent algorithmic enhancements also improve speed and accuracy. These algo-
rithms exploit the fact that streamlines of 2-D incompressible flows can be computed
as contour lines of a stream function (Reference [37]), and that streamlines of 3-D
steady flows are intersection curves of the isosurfaces of two stream functions (Refer-
ence [38]). In both cases, streamlines are quickly obtained by means of scalar map-
pings that do not require any error-prone numerical integration of trajectories. An

obvious drawback of these methods is the need to precompute the stream functions.

Textures

A recent major improvement, however, was made by adopting a new rendering tech-
nique, namely anisotropic textures. By generating textures, we render 2-D streamlines
directly, without the need for integrating the vector field (Reference [24]). Among
other benefits, textures provide an adequate solution to problems of accuracy. Some
texture algorithms, however, use vector integration along short distances—a technique
which is supposed to yield improved results (Reference [23]). We discuss textures in

more detail in Section 3.2.1, as we use them for visualizing tensor fields.
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2.1.3 Streamsurfaces

Because they do not require a mental interpolation of adjacent point icons, streamlines
improve the perception of the flow and emphasize the continuity of the vector field.
The next logical step is to design surface icons—or streamsurfaces—that are tangent
to the vector field at each of their points. Similar to streamlines which are created
by advecting one fluid particle, streamsurfaces are obtained by advecting a material

line segment—i.e., a front of particles.

Figure 2.4 shows a streamsurface and its polygonal tiling in the flow around a post.
The original line segment is made up of six fluid particles and is drawn in black at the
bottom of the figure. The algorithm (Reference [39]) models the surface as a collection
of ribbons, obtained by building polygonal tilings of pairs of adjacent streamlines.
As opposed to earlier algorithms which typically postprocessed previously computed
streamlines (References [40, 41]), tiling is performed during advection of the particle

front.

As pointed out earlier, adjacent streamlines in divergent flows tend to spread.
The algorithm then adaptively adds particles to the advancing front, so oversized
polygons can be avoided. A few instances of these “ribbon splitting” events can
be seen in Figure 2.4. Also, the front is severed into two independent advancing
fronts wherever it becomes too stretched, for example at the boundary of an obstacle.
Finally, the tiling of individual ribbons is done with care in order to avoid long
and skinny polygons in sheared flows, in which neighboring particles are advected at

substantially different speeds.

Generating streamsurfaces does not especially require a polygonal tiling. For
example, we can render directly an advected front of “surface particles”—i.e., small
facets modeled as points with a normal vector (Reference [42]). Surface particles are
shaded according to their normal vector. Then, each particle is blurred, filtered, and
scan-converted. No geometry is generated. A large number of surface particles gives
the appearance of a continuous surface. However, holes can appear if there is no

adaptive control of the density of particles.
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Figure 2.4: Streamsurface in the flow around a post.

Image courtesy of J.P.M. Hultquist (Reference [39]).
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2.2 Local Icons

Local vector icons represent information about vector gradients. Existing local vec-
tor icons include point icons, such as critical-point glyphs, and line icons, such as

streamribbons and streamtubes.

2.2.1 Critical Points and Their Glyphs

Phase-space techniques used in analyzing differential equations can be applied to
visualize fluid flows. Among these techniques, important features of vector fields are
critical points—i.e., points in the flow where the magnitude of the vector field vanishes
and where the slope of streamlines is locally indeterminate. Streamlines never cross
each other except at critical points (References [43, 44, 45]).

Critical points are rarely used by themselves for visualization purposes; they are
generally embedded in a topological representation of vector fields—a global icon to
be discussed in Section 2.3. However, as primary constituents of vector field topology,
they are often displayed together with a glyph representing vector field gradients. In
this respect, critical points are local icons and are therefore discussed in this section.
We start with 2-D critical points, which are important for both 2-D vector fields
(Sections 2.3.1 and 2.3.2) and 3-D vector fields (Sections 2.3.3). Then, we extend the

discussion to 3-D critical points.

2-D Critical Points

Since a vector field vanishes at a critical point, the behavior of nearby streamlines is
determined by the first order partial derivatives of the vector field. More precisely,
the 2-D vector field ¥ = (vy,vy) near a critical point is given, in most cases, by the

first-order expansion

T2
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where dx; and dx, are small distance increments from the critical point position.

Thus, the nearby flow pattern is completely determined by the 2 x 2 Jacobian matrix
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Figure 2.5: 2-D critical points. R1 and R2 denote the real parts of the eigenvalues of
J, Il and 12 the imaginary parts.

J, whose elements
o,
Jyj = o

! 837]'

(2.2)

(¢,7 = 1,2), are evaluated at the critical point position.

Different patterns arise that are characterized by the invariants of the matrix J,
or equivalently by its eigenvalues. Figure 2.5 shows how the eigenvalues of J classity a
critical point as an attracting node, a repelling node, an attracting focus, a repelling
focus, a center, or a saddle. Real eigenvectors of J are tangent to the streamlines
ending at the critical point. A positive eigenvalue defines an outgoing direction and
a negative eigenvalue corresponds to an incoming direction. When the eigenvalues
are complex, the streamlines circulate about the critical point; the direction of the
motion is inward if the real part of the eigenvalues is negative, and outward if it is

positive.
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Critical points sometimes occur so close together that it is difficult to distinguish
among them. In fact, they act as elementary building blocks of the vector field,
meaning that a combination of critical points looks like a single critical point in the
far field. For example, the combination {node, saddle, node}, which occurs frequently,

is similar to a pure node in the far field.

3-D Critical Points

The former classification of 2-D critical points can be extended to 3-D vector fields
defined over 3-D domains, ¢ = (v1,v2,v3). The Jacobian J is now a 3 x 3 matrix
whose elements are given by Equation 2.2, for ¢,7 = 1,2,3. However, J has three
eigenvalues and three eigenvectors. Again, real eigenvectors are tangent to streamlines
ending at the critical point, and complex eigenvalues (which always occur in pairs)
denote circulation. Thus, possible 3-D patterns include repelling nodes (eigenvalues
are all real and positive), which behaves as 2-D repelling nodes in each of the three
planes spanned by pairs of eigenvectors; attracting nodes (eigenvalues are all real and
negative), which behaves as 2-D attracting nodes in each of the planes; saddle/sad-
dle/nodes (eigenvalues are all real, but one has a different sign), which behaves as 2-D
saddles in two planes and as a 2-D node in the third plane; and spiral nodes (one real
and two complex conjugate eigenvalues), which have an attractive or repelling third
direction. Figure 2.6, for example, shows a saddle/saddle/node. This type of critical
points plays an important role in flow separation (Section 2.3.3). An algorithm for

locating and extracting critical points is detailed in Reference [46].

3-D critical-point glyphs. We usually display critical points together with a glyph
that characterizes local flow patterns (References [46, 40]). An example is given
in Figure 2.7, which shows some of the 3-D critical points in the velocity field of
Figure 2.1.

The arrows are oriented in the direction of the real eigenvectors of J and show
incoming or outgoing directions that correspond to negative or positive eigenvalues,
respectively. The disks are in planes spanned by pairs of complex eigenvectors, where

circulation occurs. Dark blue or yellow disks represent positive or negative real parts.
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Figure 2.6: 3-D saddle/saddle/node.

Light blue or red disks represent imaginary parts.

The glyphs in Figure 2.7 are point local icons that visualize vector field gradients
Ji; at critical points. In addition, we can use these glyphs to represent .J;; at other
points in the flow, where ¥ does not vanish. In this case, the glyphs represent local
flow patterns seen by a massless observer moving with the flow. That is, they encode

the behavior of neighboring streamlines relative to the observer’s own trajectory.

Unsteady Flow Fields. Critical points in unsteady vector fields move and eventu-
ally merge or split. These phenomena are studied by tracking and representing their
trajectories over time (Reference [47]), or by locating interactively critical points in

nearby space-time regions (Reference [48]).
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Figure 2.7: Local characterization of the velocity field in Figure 2.1.

Image courtesy of J. Helman (Reference [40]).
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2.2.2 Streamribbons and Streamtubes

Fluid elements moving along streamlines of nonuniform vector fields undergo local
deformations due to vector field gradients. These deformations are expressed math-
ematically by the components of the matrix J (Equation 2.2) along the trajectories.
Two distinct additive deformation mechanisms arise: strain and rigid body rotation.
Strain changes the shape and volume of fluid elements, and is expressed locally by
the symmetric part of J—i.e., the rate-of-strain tensor ¢; (Table 1.2). Rigid body
rotation, on the other hand, is described by the antisymmetric component of J, which
is equivalent to the vorticity vector, & (Table 1.1).

The critical-point glyphs of Section 2.2.1 represent J at isolated points. In the
following, we discuss streamribbons (References [49, 50, 51, 52]) and streamtubes
(References [51, 52]), both of which are local line icons representing, at least partially,
deformations along streamlines. More complex tensor icons, such as those to be

discussed in Section 3.5, must be used for a complete depiction of deformations.

Streamribbons

Streamribbons are narrow surfaces defined by two adjacent streamlines. An example
is given in Figure 2.8, where streamribbons are used to visualize the flow near the
surface of the cylinder in Figure 2.1. (The cylinder’s surface is outlined by dots.)
Streamribbons are, in fact, streamsurfaces built from a front of only two particles.!
They nevertheless are local icons, since their width reflects local flow divergence, and
their twist rate encodes local streamwise vorticity. Indeed, the rotation of a ribbon

sheet per unit length is given by

(2.3)

where s is the distance along the streamline. The right-hand side is half the streamwise

vorticity. Adjacent streamlines in vortical regions wrap around each other, therefore

!Streamribbons are generated by using simplified versions of the streamsurface algorithm dis-
cussed in Section 2.1.3. Another technique, which is detailed in Reference [50], consists in inter-
polating the two constituent streamlines for additional intervening lines that are clustered together
to give the appearance of a surface. This technique is useful for drawing streamribbons that are
transparent, or with plotting devices capable of line plots only.
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Figure 2.8: Streamribbons near the surface of the body in Figure 2.1. The twist of the
ribbons encodes streamwise vorticity, and their width reflects cross-flow divergence.
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creating streamribbons with high twist rate.

Streamribbons in divergent flows may become too wide; in this case they must be
discarded since the twist rate no longer correctly reflects the streamwise vorticity along
the trajectory. To remedy this, streamribbons in Figure 2.8 are built by adding to a
single streamline, a narrow strip of polygons whose twist is obtained by integrating
Equation 2.3 along the trajectory. This avoids problems related to flow divergence,

and produces streamribbons that always have the correct twist (Reference [52]).

Streamtubes

Combined effects of streamwise vorticity and transverse strains can be visualized by
linking N streamribbons and forming a streamtube, as in Figure 2.9 (top) where N =
4. The technique amounts to sweeping along a streamline a N-sided polygon? that is
deformed locally by the matrix J. In a streamtube, the rotation of the edges reflects
both streamwise vorticity and transverse strains,” whereas the expansion of the cross-
section encodes cross-flow divergence. Figure 2.9 (bottom) compares a streamline, a
streamribbon, and a streamtube with N = 6, respectively. Alternate faces of the
streamtube are colored with flow temperature and flow pressure.

Again, problems in diverging flows can be avoided by computing only one stream-
line, and surrounding it by a tubular surface whose cross-section varies as a function

of the cross-flow divergence along the trajectory (References [51, 52]).

2.3 Global Icons

As shown in Figure 2.1, arrows must be coarsely distributed in space to avoid visual
clutter. Comprehending the global structure of the vector field is then made difficult
because of the need to interpolate the displayed information. In this respect, line
icons such as streamlines are more appropriate. Understanding complex flows, how-

ever, requires many streamlines which clutter the display without guaranteeing the

ZHence the name “streampolygon” of this technique (Reference [51]).

3Discriminating between both effects is somewhat difficult. A palliative solution consists in adding
to the surface a narrow colored stripe with techniques similar to those in Reference [51]. If the stripe
is forced to rotate according to Equation 2.3, the effect of streamwise vorticity can be isolated.
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Figure 2.9: Streamtube colored with air pressure, visualizing the flow in a room (top);
comparison of a streamline, a streamribbon, and a streamtube (bottom).

Image courtesy of W.J. Schroeder (Reference [51]).
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detection of all important features of the flow.

These problems typically arise from using elementary icons. With global icons,
we render the structure of the complete data field by producing a simplified and
more abstract representation. We prevent visual clutter by discarding unnecessary
information, while keeping only those features that are structurally relevant. By
using global icons and reducing the multivariate data field to a set of points, lines, or
surfaces, we achieve significant data compression. Also, due to their simplicity and
abstract nature, global icons are suitable input to automated data analysis systems
(Reference [53]).

There is no universal method for designing global icons and each solution is
problem-specific. In the following, we focus on flows past a body, which play a

central role in aerodynamics, and we discuss their topological representation.

2.3.1 2-D Vector Field Topology

Vector field topology is conceptualized as a schematic depiction of the behavior of a

large collection of streamlines. The basic constituents of vector field topology are
e the critical points (Section 2.2.1) and
o the set of their connecting streamlines.

Among critical points, saddle points are distinct in that there are only four tangent
curves which actually hit the point itself (Figure 2.5). These tangent curves are
called “separatrices” because streamlines that are arbitrarily close to each other on
either side of a separatrix are diverted to very different regions in the flow. In 2-D
flows, critical points near the surface of a body have a similar property. Indeed, near
walls where the velocity is constrained to be zero* the flow is mainly tangential and
streamlines propagate parallel to the surface. However, there are points where the
tangential velocity field vanishes and a streamline, instead of being deflected parallel
to the body, suddenly originates or terminates on the surface. These points are known

as “detachment” and “attachment” points, respectively (Reference [54]). They play

4No-slip condition.
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Figure 2.10: Topological representation of the 2-D flow past a circular cylinder at two
different time steps. The flow is coming from the left; at = attachment point; de =
detachment point; sp = saddle point; ce = center.

Image courtesy of J. Helman (Reference [40]).

the same role as saddle points in the sense that adjacent streamlines can be deflected
in opposite directions.

Figure 2.10 shows topological skeletons of the 2-D flow past a cylinder at two
different time steps. They are obtained by locating critical points, and by integrating
streamlines from the saddle, attachment, and detachment points along the principal
directions of their respective Jacobian matrices J given by Equation 2.2 (streamlines
in the incoming directions are integrated backward).

The topological skeletons divide the field into regions topologically equivalent to
uniform flow. The representation is highly effective, due to the ease of inferring from
these simplified graphs the instantaneous behavior of every streamline in the flow.
Also, comparing the flow at different time steps is greatly facilitated and can be auto-
mated using syntactic pattern recognition (Reference [53]). The flow in Figure 2.10,
for example, underwent a topological transition between the two represented time

steps—the attachment-detachment bubble on the left having developed into a paired
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saddle and center on the right.

2.3.2 2-D Time-Dependent Vector Field Topology

Global icons of vector fields that depend on time, Reynolds number, or any other
parameter, must represent not only the “instantaneous” structure of the flow but also
topological transitions that may occur between consecutive steps. For 2-D vector
fields, such icons can be obtained by stacking instantaneous topological skeletons
(Reference [55]).

Figure 2.11 evinces the complete spatiotemporal evolution of the flow previously
shown at two individual time steps in Figure 2.10. Adjacent skeletons are joined by
linking their corresponding critical points and connecting streamlines, and the stacked
topologies are displayed as a set of surfaces with the third dimension corresponding
to time. Yellow and blue surfaces correspond to incoming and outgoing separatrices
of the saddle points, respectively; surfaces from attachment points are colored orange
and those from detachment points are colored purple. The periodic vortex shedding
can be seen in the repeated development and movement downstream of saddle-center

pairs. This clearly evinces the spatiotemporal structure of the flow.

2.3.3 3-D Separated Flows

3-D separated flows play a significant role in aerodynamics because of the close rela-
tionship between separation and vortices, which are important structures of the flow
far from the body (Reference [54]).

As in the 2-D example of Figures 2.10 and 2.11, the fluid in 3-D separated flows
moves parallel to the body and then suddenly detaches from the surface, creating
vortices in the wake. The fluid can also reattach, causing recirculation regions similar
to the bubble in Figure 2.10. However, detachment and attachment in 3-D flows
do not arise at isolated points on the surface of the body, but are distributed along
entire lines that extend into surfaces in the flow. Theoretical papers have been written
on the subject (References [56, 57, 54]), but computer visualization techniques are

necessary for accurately depicting both the surface of separation and the associated
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Figure 2.11: Topological surfaces depicting the time evolution of the 2-D flow past a
circular cylinder. Time increases from back to front.

Image courtesy of J. Helman (Reference [40]).
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vortices. In this section, we discuss several complementary global icons. First, we
display the skin-friction topology, that characterizes the flow near the surface of the
body. Then, we represent topological extensions in the flow, namely the surface of
separation and associated vortices.

Since there is no agreement on a universal definition of vortex and vortex core,
resulting visualization techniques are varied and numerous. Batchelor, for example,
defines a vortex core as “a region with a finite cross-sectional area of relatively con-

”

centrated vorticity (Reference [58]),” while Chong et al. suggest that “a vortex core is
a region of space where the vorticity [ (Table 1.1)] is sufficiently strong to cause the
rate-of-strain tensor [€;, (Table 1.2)] to be dominated by the rotation tensor—i.e., the

... [velocity gradient] has complex eigenvalues (Reference [45]).”

As pointed out by
Yates et al., “in ... [3-D] separated flows, ...there are no discontinuities that define
the extent of the vortices and their cores (Reference [59]).” The problem of detecting
and representing vortices is therefore complex. We close the discussion on separation
by two vortex detection techniques that are gaining wide acceptance: representation
by means of helicity density (which involves object contraction), and line icons for

vortex core tracing.

Skin-Friction Topology

The first step in visualizing 3-D separated flows consists in depicting the structure of
the vector field near the body, for which an adequate description is inferred from the
skin-friction field—i.e., the 2-D tangential velocity field one grid plane away from the
surface of the body.?

Experimentally, the skin-friction field is studied by examining the streaks that
form in an oil film on the surface of a body in a wind tunnel (Reference [27]). In
computer visualization, similar information is derived by integrating 2-D streamlines
of the skin-friction field or, preferably, by extracting its 2-D topological skeleton. The
skin-friction topology of the flow in Figure 2.1 is represented in Figure 2.12 which
shows outgoing separatrices, incoming separatrices, as well as 2-D nodes (N), foci (F),

and saddles (S). The main difference with former topological examples is that critical

5Velocity vanishes right on body.
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Figure 2.12: Skin-friction topology on the upper hemisphere of the cylinder in Fig-
ure 2.1. Sa, Ss = saddles of attachment and separation; Na, Ns = nodes of attachment
and separation; Fa, Fs = spiral nodes of attachement and separation.
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points are now truly three-dimensional. Hence, they always have a principal direction
that cuts the surface, and along which the flow is either outgoing (attachment points),

or incoming (detachment or separation points).

Surface of Separation

The surface of separation and the associated vortices are extensions in the flow of the
skin-friction topology. Among skin-friction critical points, saddles of separation (Ss)
play indeed a particular role. As shown in Figure 2.6, their 3-D structure is really
saddle/saddle/repelling node. Hence, there is always an entire plane of outgoing
trajectories that emanate from them and that leave the surface of the body.® In fact,
the surface of separation intersects the body along the outgoing separatrices of the
saddles of separation, which are therefore called “lines of separation.” Note that these
lines always connect saddle points to nodes or foci, but not to other saddles because
such connections are structurally unstable.

The surface of separation is the streamsurface computed by advecting (as in Sec-
tion 2.1.3) a front of particles initially positioned along the lines of separation. For
example, Figure 2.13 shows parts of the surface of separation whose rolled up form

delineates vortices. (Compare Figure 2.13 to Figure 2.3.)

Object contraction and helicity density. Drawing the surface of separation is
appropriate for detecting vortices. Yet it is complex and requires critical points and
lines of separation to exist in the skin-friction field—in which case the separation is
termed “global” (Reference [56]). As opposed to this, the skin-friction field in “local””
separations does not possess such features. The flow exhibits all the characteristics of
separation downstream from the surface of the body, but not right on it. It is there-
fore not possible to compute surfaces of local separations with the aforementioned
technique.

Object contraction offers a simple and reliable alternative. Instead of representing

6The same situation arises for 3-D nodes and spiral nodes that are repelling in every direction;
however, these nodes do not appear in incompressible or steady compressible flows because they are
not compatible with the continuity equation.

"Also called “cross-flow” (Reference [57]).
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Figure 2.13: Streamsurfaces depicting separation topology.

Image courtesy of J. Helman (Reference [40]).
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vector fields such as velocity ¢ or vorticity &, one can display a scalar function, the

helicity density defined by Moffat (Reference [60]) as
Hy =0 & =|0||d] cos ¢

where ¢ is the angle between @ and &. Contour lines of H; are shown in Figure 2.14.
The advantage of displaying Hy rather than other scalar functions, such as vorticity
magnitude (|@3|) or enstrophy density (£|&3|?), is that both its magnitude and sign are
relevant. Indeed, large positive values of Hy reflect large velocity and vorticity mag-
nitudes together with small values of p—a configuration that denotes right-handed
vortices. Conversely, large negative values of H; indicate left-handed vortices. The
contour lines in Figure 2.14 allow us to discriminate between primary and smaller
secondary vortices—they have opposite swirl (color)—and reveal structures hidden
in all of Figures 2.1, 2.2, and 2.3. Figure 2.14 also illustrates the correlation between

changes in swirl direction and skin-friction lines, a fact noted in Reference [61].

Line icons for vortex core detection. Instead of drawing the entire surface of
separation, one can further simplify the display and draw only vortex cores—i.e., vor-
tex center lines. In global separations, vortex cores are streamlines lying at the edges
of the separation sheet. They are often associated with spiral nodes (Section 2.2.1)
either in the flow above the body® or on its surface.!” In both cases, vortex cores are
found by integrating from spiral nodes streamlines in the direction of the real eigen-
vector. Vortex cores obtained by this technique are shown in magenta in Figure 2.14;
they are in good agreement with the contour lines of H;. However, no vortex core is
found for the secondary separation, which is local and therefore not associated with
any critical point. In this case, other core detection techniques are applicable. For
example, streamlines can be integrated from points in the flow where scalar func-
tions, such as velocity magnitude, normalized helicity,! or streamline curvature, are

extremum. Each method generally yields slightly different results (Reference [59]),

8Using Hg is obviously not restricted to local separations and applies equally well to global
separations, such as the primary separation in Figure 2.14.

“Type 1 separation (Reference [57]).

10T ype 1I separation (Reference [57]).

1The normalized helicity H, = IUFIIﬁ is discussed in Reference [61].
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Figure 2.14: Contour lines of helicity density H, (red/white = right-handed vortices;
blue/black = left-handed vortices), together with skin-friction topology (blue and
yellow lines) and vortex cores (magenta lines).
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suggesting that a precise and universal definition, as well as a method for detecting

vortex cores, is still open to question.

2.4 Chapter Summary

In this chapter, we review state-of-the-art visualization techniques for vector fields,
with a special emphasis towards fluid flow data. We use the framework laid out
in Chapter 1 as a guide to the exposé. (In subsequent chapters, we use the same
methodology to develop tensor-field visualization mappings.)

First, we discuss elementary vector icons, which represent vector data strictly
across the extent of their spatial domain. Using point icons (arrows) often results in
visually cluttered displays, but using continuous icons can produce better representa-
tions. These include line icons—such as particle traces, streaklines, and streamlines—
and surface icons—such as streamsurfaces. The underlying continuity of vector fields
is clearly better conveyed this way, although important flow features, such as small
vortices, can still be missed. We also demonstrate the benefits of using tubes with fi-
nite cross-section rather than thin lines to comprehend the (possibly complex) spatial
arrangement of a large number of streamlines displayed simultaneously. This review
of elementary vector icons lays out a basis for designing elementary tensor icons in
Chapter 3.

Then, we discuss local vector icons, which display vector gradients in addition to
elementary information. We provide a classification of critical points—i.e., points in
the flow where velocity vanishes. Critical points are typically drawn with a glyph that
represents local streamline patterns (velocity gradients). When moving along their
trajectories, fluid elements undergo deformations caused by velocity gradients. We
can represent these deformations, at least partially, by drawing local line icons—i.e.,
surfaces built around streamlines and representing aspects of both the rate-of-strain
tensor and the vorticity vector. We do not discuss local surface icons, which are yet to
be designed. The analysis and classification of critical points is a useful introduction to
the study of local tensor patterns around degenerate points—a topic to be developed

in detail in Chapter 4.
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Finally, we discuss global representations of vector fields, restricting the scope
to the case of flow fields past bodies. After reviewing 2-D vector field topology,
which is based on critical points and the set of their connecting separatrices, we
derive a topological representation of 2-D time-dependent vector fields by stacking
instantaneous topological skeletons. Then, we deal with the topology of 3-D separated
flows—in which case basic topological constituents are skin-friction topology and
3-D topological extensions. The skin-friction topology is the topology of the 2-D
vector field tangent to the body’s surface, and 3-D topological extensions are the
separation surface and vortices. We discuss vortex-detection techniques, including
helicity density and line icons. Many parallels will emerge in Chapter 4, where we

define and analyze global icons of tensor fields.



Chapter 3
Elementary Tensor Icons

In this chapter, we develop elementary icons of continuous tensor fields. Instead of
visualizing the data at discrete, coarsely spaced points, we represent tensor fields
along lines, so as to render the underlying continuity of the data while reducing
visual clutter. We restrict the discussion to line icons, as surface icons are yet to
be designed. Conceptualizing tensor fields as a network of line icons enables us to
analyze their geometric properties; the material discussed here lays the foundation
for the topological analysis of tensor fields to be developed in Chapter 4.

We refer the reader to Section 1.2 for equations that show explicitly the data to be
visualized. In Section 3.1, we prove that symmetric tensor fields with continuous com-
ponents have eigenvectors that are continuous “almost everywhere”—an important
fact for the design of continuous icons. In these regions, we can conceptualize con-
tinuous, symmetric tensor fields as several orthogonal families of continuous, smooth,
and non-intersecting curves. In Section 3.2, we discuss textures to render these curves
in the case of 2-D symmetric tensor fields (Equation 1.4) which are fully equivalent

to the two orthogonal eigenvector fields
172 = )\Z €;

where ¢ = 1,2. In Section 3.3, we develop line icons of 3-D symmetric tensor fields

(Equation 1.6) to which correspond three orthogonal eigenvector fields
172 = )\2'62'
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Figure 3.1: Point icons of 2-D and 3-D symmetric tensor fields.

where 2 = 1,2,3. In Section 3.5, we briefly discuss line icons of 3-D asymmetric tensor
data (Equation 1.8), a case which is complicated by the possible occurrence of complex
eigenvalues and complex, non-orthogonal eigenvectors. Finally, we summarize the

results in Section 3.6.

3.1 Continuous Icons versus Point Icons

Consider a n-dimensional symmetric tensor field, T. Its simplest and most natu-
ral representation is a set of n orthogonal eigenvectors, v; (Equation 1.5 or 1.7).
Figure 3.1 shows elementary point icons that represent T for n = 2 and n = 3,
respectively. Figenvectors are drawn as bidirectional arrows due to their sign indeter-
minacy. There are other point icons equivalent to those in Figure 3.1. In Figure 1.5
for example, ellipses with principal axes lying along the eigenvectors ¥; were used to
visualize T at coarsely spaced points. Likewise in three dimensions, we can visualize
three eigenvector fields either with ellipsoids or with Haber’s tensor glyphs, which
are slightly more sophisticated point icons designed to improve the perception of the

eigenvectors (References [12, 13]).
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However, using point icons to represent tensor fields inevitably produces severe
visual clutter. (When compared to vector arrows, visual clutter is enhanced; imagine
Figure 2.1 with ellipsoids instead of arrows!) To avoid cluttered images, the density
of displayed icons must be kept so low that it becomes impossible to comprehend the
structure of the tensor data by mentally interpolating adjacent icons.

Fortunately, most tensor fields encountered in practice are spatially continuous
and we can obtain better representations by using icons that embed the underlying

continuity in their very design.

Definition 2 (Continuity of Tensor Fields) Let £ be an open subset of R™, and
let T: E— L(R",R") be a tensor field defined across E. We define

TeCHE) (k>0)

iff the n? partial derivatives

T, .
— (i,75=1,...,n
ale . ax]k ( 7.} bl bl )
exist and are continuous across E. (Each of the indices ji,...,J, belongs to the set

{1,...,n}.)
For example, tensor data defined on a regular grid and linearly interpolated in between
vertices belong to at least C''(E).

Because tensor icons represent the eigenvector fields, we discuss in the follow-
ing the relation between continuity and differentiability of the tensor components
(T3;), and continuity and smoothness of the eigenvectors (v;). (The sign of ¥; be-
ing indeterminate, by “continuity and smoothness of ©;” we really mean continuity
and differentiability of ¥;’s magnitude—\;—and v;’s direction—any angles that un-
ambiguously characterize the orientation of an undirected line segment lying along
U;.)

Let 3;; be the coefficients of an orthonormal transformation that diagonalizes a
symmetric tensor field T = {T};}, 7,7 = 1,...,n. From Equation 1.3 and from the
orthonormality of the coefficients f;;,

Tij = Zﬁpiﬁpj)‘p (lvj =1,.. '7n) (31)

p=1
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where A,, p = 1,...,n, are the eigenvalues of T. Equations 3.1 provide relations

between tensor components, eigenvalues, and orientation of the eigenvectors (3;; is the
sth

J"-component of the unit eigenvector €;). T is symmetric (7;; = T};), so there are only
%n(n + 1) independent tensor components which we denote by X7, ..., Xnms1y. There
2

are n eigenvalues, A;, and %n(n— 1) independent angles, «;, that define the orientation
of the eigenvectors (or equivalently, the coefficients 3;;). Thus, Equations 3.1 can be

written as a system of in(n 4 1) equations

1
Fr(Xq,... ,Xngn2+1) A, A ag, . ,angn;n) =0 (k=1,..., En(n +1)) (3.2)

Equations 3.2 implicitly define the n eigenvalues \; and the %n(n — 1) angles «; in
terms of the %n(n + 1) tensor components X;.

Assume that T € C'(FE)—i.e., that all the partial derivatives

0X; . 1
r=1,....,=n(n+1
St (i1 galn+ 1)
exist and are continuous across the domain F. (x,, p = 1,...,n, are position coor-

dinates.) Then, according to the Implicit Function Theorem (Reference [62]), the set
of implicitly defined functions

)\Z'(Xl,...,XngnH)) (Lzl,,n)

2

and
, 1
ai(X1,...7Xn£n2+l)) (121,...,§n(n—1))

are unique, continuous, and differentiable with respect to position coordinates at

every point & of £ where the %n(n +1) x %n(n + 1) Jacobian determinant

OF L oOF) o . ok
D1 OAn day da n(n—1)
mnh—=
T S (3.3)
8F‘n(nz-l-l) 8F‘n(n2-|-1) aF‘n(n2-|-1) 8F‘n(nQ—I-l)
EDW, e n o R E
2

We can show that this determinant vanishes only at points where

)\1—)\2:0
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Figure 3.2: Representation of a continuous and symmetric tensor field as orthogonal
families of smooth, non-intersecting curves for the case n = 2. This analogy holds in
regions that do not comprise degenerate points.

for n = 2, and

(A — A) (e — As)(As — M) =0

for n = 3. Thus, the unsigned eigenvectors v; are uniquely defined, continuous, and
smoothly varying in space, at every point & of £ where eigenvalues are distinct from
each other.

We call “degenerate points” the points where two or more eigenvalues are equal.
In Chapter 4, we develop a theory of tensor field topology based on degenerate points

but for the remaining of this chapter, we restrict our analysis to areas that do not

!The proof goes as follows. For n = 2, Equations 3.2 consist of three relations linking three
independent tensor components (X, = 711, Xo = T12, and X3 = Ty3), two eigenvalues (A; and As),
and one angle a; (0 < a; < 7) that determines the orientation of the eigenvectors. Accordingly,
Bi1 = cosay, B2 = sinay, B2 = —sinag, and Bag = cosay. After expliciting the G;;’s in Equa-
tions 3.1, the 3 x 3 determinant in Equation 3.3 can be shown to be equal to Ay — Ay. The n =3
case is similar in essence but involves more complex mathematics; the determinant in Equation 3.3
is now 6 x 6. Equations 3.2 consist of six implicit relations, with X; = Ty, Xo = 112, X3 = 113,
Xy = Ty, X5 = Ty3, and X¢ = T33. There are three eigenvalues, A;, Az, and Az. Three angles,
a1, az, and ag, are necessary to determine the orientation of the eigenvectors. By expanding the
coefficients 3;; in terms of Euler’s angles—precession, nutation, and gyration—we can compute the
6 x 6 determinant in Equation 3.3.
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comprise degenerate points. Within these regions, the tensor field can be thought
of as a set of n orthogonal families of curves that are continuous, smooth, and that
do not intersect each other (Figure 3.2). Each family of curves is tangent to an
eigenvector field. The very purpose of line icons is to render and cross-correlate the

n eigenvalues with these n families of curves.

3.2 2-D Symmetric Tensor Fields

In this section, we discuss line icons of 2-D symmetric tensor fields. The data are
equivalent to two orthogonal eigenvector fields v;, ¢ = 1,2 (Equation 1.5). Instead of
drawing point icons at coarsely spaced points, we render two orthogonal families of
curves (Figure 3.2) together with the corresponding eigenvalues.

We select one eigenvector field—which we refer to as the longitudinal eigenvector,
U—and we render its tangent curves. We call these curves “hyperstreamline trajec-
tories” for consistency with the 3-D icons to be discussed in Section 3.3. By using
color to encode the longitudinal eigenvalue, we represent @) completely. We can simi-
larly process the other eigenvector field to obtain a complementary set of orthogonal
trajectories.

Hyperstreamline trajectories integrate a continuous distribution of point icons,
such as the cross in Figure 3.1 (left); they show, for example, how forces are trans-
mitted in a stress-tensor field and how momentum is transferred in a momentum-

flux-density tensor field.

3.2.1 Texture Generation

To draw hyperstreamline trajectories, we can use numerical techniques to integrate
the longitudinal eigenvector, get a list of points that define the trajectories, and scan-
convert the resulting line segments. In the following, we discuss yet another technique
which consists of generating anisotropic textures to render a continuous distribution
of hyperstreamline trajectories. Compared to numerical integration, the resolution of

the display is not improved. Textures, however, have considerable advantages.
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e Textures are space filling. Numerical integration of the longitudinal eigenvector
field yields only a few trajectories that are essentially determined by the location
of the starting points; integrating trajectories merely samples the tensor field,
bearing the risk of missing important data features. Conversely, we generate
textures by sequentially processing each pixel, yielding a complete picture of

the data (at texture resolution).

e Textures do not require an integration of the eigenvector fields, a process signifi-
cantly complicated by the eigenvectors’ sign indeterminacy and by degenerate

eigenvalues (see 3-D hyperstreamlines in Section 3.3).

e Textures create visually appealing images, which are among other uses suitable

for presentations outside of the scientific community.

A drawback of textures, however, is that they are viewpoint dependent. This makes
otherwise straightforward geometric operations costly—such as translating, rotating,
and zooming.

To create a texture, we assign to each pixel (z,y) a color g(x,y) and an opac-
ity O(z,y). We then blend the color on a black background to yield a pixel value
73(56, y) = O(z, y)é(m, y). The color 5(7;, y) is determined by the longitudinal eigen-
value (or by any other user-defined function of the tensor field). The opacity O(z,y)
is computed by convolving a 2-D band-limited noise with a spatial filter kernel.

The band-limited noise is a 2-D version of Perlin’s noise function (Reference [63])—
i.e., a sum of pseudorandom spline knots, one for each vertex of an integer lattice of
R?. Let A, and A, be the lattice interspacing in x and y directions, respectively. The
knot €2;; at lattice point (¢A,, 7A,) is a pseudorandom linear gradient g_;j = (G5, 6%)

weighted in each dimension by a smooth drop-off function w(¢). That is,

s, 0) = w(w)(v)(Gu + Gio)

where
T — 1\,
U =
A,
and .
, y— 14,
v
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w(t) is the cubic function

21 =31t*+1 |t <1
w(t) =
0 [t>1

which is a spline of support 2. Thus, the noise function at (z,y) is given by

(2 +1 L2+ . .
. d g T — ZAm Yy — .]A
nozse(m,y) = Z Qij( A A y)
T Yy

i=l 2] =2

where “|---]” denotes the floor function. For spatially varying tensor data, the filter
kernel to be convolved with the noise function is space-variant; its orientation changes
across the image. We use for filter kernel a pyramid function of support 2L
min(|ul, L

a1 e
that extends spatially in the direction of the longitudinal eigenvector (L is a user-
controlled parameter). Thus, the opacity O(x,y) at pixel (z,y) is given by

O(z,y) = /Oo Ap(u)notse(x — ucos a(z,y),y — usina(z, y))du

where a(z,y) is the angle between the x-axis and the longitudinal eigenvector at
(z,y).

We can use filter kernels with different supports—such as elongated ellipses,
rectangles, or curved hyperstreamline segments. The latter adapts to tensor fields
Cabral’s “Line Integral Convolution” algorithm for vector fields (Reference [23]). This
algorithm, however, requires a local integration of the longitudinal eigenvector.

As an example, we consider the Reynolds-stress tensor in a 2-D flow past a circular
cylinder. Reynolds stresses are induced by turbulent motion; they represent the net
statistical effect of small-scale velocity fluctuations on particles moving with the mean
flow. (Modeling turbulence usually involves modeling the Reynolds stresses; most
turbulent flow solvers seek solutions to Navier-Stokes equations for the mean flow,
with a modified stress-tensor field to account for the Reynolds stresses.)

The textures in Figure 3.3 represent the major (¢;) and minor (v3) eigenvector

fields, respectively. Color encodes the longitudinal eigenvalue according to color scale
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Figure 3.3: Reynolds-stress tensor in a 2-D flow past a circular cylinder; major (top)
and minor (bottom) eigenvector fields. Color scale 2 of Figure A.3 (Appendix A) is
used to encode the longitudinal eigenvalue.
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2 of Figure A.3 (Appendix A). Both eigenvalues are positive, so v and v, lie in
directions of maximum and minimum tension, respectively. Textures in Figure 3.3
exhibit interesting geometric features which would not appear by simply displaying
contour plots of tensor components. Chapter 4 provides the tools necessary for a

detailed analysis of these structures.

3.2.2 Trivariate Data Visualization

Equation 1.4 shows that 2-D symmetric tensor data are trivariate. When generating
textures of individual eigenvector fields, we visualize this information in two separate
images. If the goal is to correlate full tensor information in a single image, one must

visualize simultaneously two eigenvalues and the orientation of the eigenvectors.

The “Natural Scene Paradigm” is useful to choose an adequate representation.
This paradigm stipulates that bivariate data are best represented by using two infor-
mation channels which we perceive as being mutually orthogonal—such as the height

of terrain and its color (Reference [22]).

Here we apply the same paradigm to trivariate data, using texture as a third
perceptual dimension. The tensor field in Figure 3.3 is shown again in Figure 3.4,
where texture, color, and elevation of a surface are used as independent information
channels that encode eigenvector direction, longitudinal eigenvalue, and transverse
eigenvalue, respectively.? The display allows us to decouple information relevant to
each eigenvalue and to each eigenvector direction, and provides a simple and inte-
grated view of tensor data at the same time. It is interesting to note that much of
the geometric structure (i.e., the singularities in the direction of the eigenvectors)
correlates with high values of the minor eigenvalue (color), while it does not seem to

depend much on the major eigenvalue (height).

2The vertical stretching creates an unwanted distortion of the texture which can be compensated
for by techniques such as those described in Reference [64].
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Figure 3.4: Trivariate data visualization to fully represent the Reynolds-stress tensor
field corresponding to Figure 3.3.
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3.3 3-D Symmetric Tensor Fields

In this section, we discuss line icons of 3-D symmetric tensor fields (Equation 1.6)
to which correspond three orthogonal eigenvector fields v;, 1 = 1,2,3 (Equation 1.7).
Away from degenerate points, the data consist of three eigenvalues and three orthogo-
nal families of continuous, smooth, and non-intersecting curves. We seek visualization

mappings that embed this multivariate information along trajectories in 3-D space.

3.3.1 3-D Hyperstreamlines

As for 2-D data, we select a longitudinal eigenvector field, v;, and we integrate its
tangent curves. We surround the trajectories by tubular surfaces, which we call
“hyperstreamlines,” so as to encode the two transverse eigenvectors, vy, and v;,. We

build hyperstreamlines as follows:

Definition 3 (Hyperstreamline) A geometric primitive of finite size sweeps along
the longitudinal eigenvector field, U;, while stretching in the transverse plane under
the combined action of the two transverse eigenvectors, vy, and Uy,. Hyperstreamlines
are surfaces that envelop the stretched primitives along the trajectories. We color
hyperstreamlines by means of a user-defined function of the three eigenvalues, usually

the amplitude of the longitudinal eigenvalue.

Color and trajectory of hyperstreamlines represent the longitudinal eigenvector field
and cross-sections encode the transverse eigenvectors. Thus, hyperstreamlines fully
represent tensor data along continuous trajectories. We refer to hyperstreamlines

” @

as “major,” “medium,” or “minor,” depending on the corresponding longitudinal

eigenvector field that defines their trajectories.

Hyperstreamline Trajectories

Figure 3.5 shows hyperstreamline trajectories in the elastic stress tensor induced
by two compressive forces on the top surface of a cube. (Calculations are carried
assuming a semi-infinite cube.) The trajectories show the transmission of forces inside

the material. The curves directed upward are along the most compressive direction,
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Figure 3.5: Stress tensor induced by two compressive forces; hyperstreamline trajec-
tories. Color scale 1 of Figure A.3 is used.
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the minor eigenvector U3, and converge towards regions of high stresses where forces
are applied. Their color encodes the magnitude of the most compressive eigenvalue,
Az, according to color scale 1 of Figure A.3 (Appendix A). Note the sudden divergence
of close trajectories on each side of the plane of symmetry. Similarly, trajectories along
the two other eigenvector fields delineate a surface shown near the bottom face of the
cube. This surface is everywhere perpendicular to the most compressive direction.
The tensor field in Figure 3.6 is an example of “solenoidal” tensor field; its hyper-

streamline trajectories obey specific geometric rules to be discussed in Section 3.4.

Hyperstreamline Cross-Sections

A hyperstreamline is further characterized by its cross-section, the geometric primitive
that sweeps along the trajectory to encode transverse eigenvectors. We consider two

types of primitives:

e a circle that stretches into an ellipse while sweeping along the longitudinal

eigenvector field, and that generates a hyperstreamline called a “tube”; and

e a cross that generates a hyperstreamline called a “helix.”

For example, Figure 3.6 shows two minor tubes that propagate upward and four
medium and major helices of the stress-tensor field corresponding to Figure 3.5. In a
tube, the principal axes of each elliptical cross-section lie along the transverse eigen-
vectors, Uy, and Uy,; their length is proportional to the magnitude of the transverse
eigenvalues, Ay, and \;,. The same property holds for a helix, whose arms are pro-
portional to the transverse eigenvectors. (Helices owe their name to the spiraling
pattern of their arms that can be observed in some cases.) In this manner, both di-
rectional and amplitude information are encoded along the trajectory. The local sign
of the transverse eigenvalues can be comprehended by examining the singularities of
the cross-sections; wherever a transverse eigenvalue changes sign, the cross-section is
reduced to a single line or to a point.

Tubes and helices encode the same information about the tensor field, but some
aspects of the data are better perceived with one hyperstreamline type than with the

other. Tubes, for instance, are superior at indicating locations where the tensor is
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Figure 3.6: Stress tensor induced by two compressive forces; minor tubes, medium
and major helices. Color scale 1 of Figure A.3 is used.
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degenerate in the transverse plane, since recognizing that an ellipse is circular is easier
than comparing the length of two perpendicular line segments. Further, if the tensor
field is transversely degenerate in a whole region of space, helices are not adequate
since the direction of transverse eigenvectors is not determined. Helices, however,

provide better precision for perceiving the direction of the transverse eigenvectors.

To illustrate the type of information that is embedded in a hyperstreamline cross-
section, Figure 3.7 displays four different stages of a minor tube in a stress-tensor
field. The data are similar to the tensor represented in Figures 3.5 and 3.6, but we
added an extra tension force to the surface of the cube. In the top-left, the cross-
section is circular, showing that the transverse stresses have uniform magnitude. The
top-right shows an increasing anisotropy of the transverse stresses, together with a
decrease of the longitudinal eigenvalue (color). In the bottom-left, the cross-section is
reduced to a straight line; one transverse eigenvalue vanishes and stresses are locally
two-dimensional. In the bottom-right, stresses are three-dimensional once again; the
eigenvectors undergo a rapid rotation and a substantial stretching revealing important

gradients of shear and pressure in the region.

Integrating Hyperstreamlines

To compute hyperstreamline trajectories, we integrate the longitudinal eigenvector
field using an adaptive Runge-Kutta algorithm (Reference [65]). A series of factors

must be taken into account in order to perform this integration correctly:

e Trilinear interpolation of tensor data. For tensor data defined across a regular grid,
the integration algorithm often requests the longitudinal eigenvector at locations
in between vertices. However, we cannot simply interpolate eigenvectors because
of their sign indeterminacy. So, we first perform a trilinear interpolation of
tensor components, and then we diagonalize the interpolated data to yield the

requested eigenvector.
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Figure 3.7: Four different stages of a minor tube in an elastic stress-tensor field. Color
scale 1 of Figure A.3 (Appendix A) is used.
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o Degenerate eigenvalues. Degenerate eigenvalues can occur along a computed
trajectory, at and in between sampling points requested by the integration al-
gorithm. The longitudinal eigenvector is not defined at points where the longi-
tudinal eigenvalue equals one of the transverse eigenvalues. Dealing with such
points is a complex issue. The best approach consists of using the techniques
to be discussed in Chapter 4, namely detecting beforehand points where the
longitudinal eigenvalue is degenerate, classifying eigenvector patterns around
these points, and deciding whether to terminate hyperstreamline trajectories at

these points or not. (See Section 4.4 for details.)

e Sign indeterminacy of eigenvectors. The integration algorithm avoids jagged tra-
jectories by selecting the sign of the longitudinal eigenvector that minimizes the

angle between eigenvectors at consecutive points in the trajectory.

e Singularities of the cross-section. We also detect points where the transverse
eigenvalues vanish so we do not miss singular hyperstreamline cross-sections

(line segments or points).

3.3.2 Correlating Vector and Scalar data

An example of fluid flow visualization illustrates how hyperstreamlines may be used
to correlate several different physical quantities. For the reversible part of the mo-
mentum-flux-density tensor, 11" (Table 1.2), one may correlate pressure p, velocity
direction, and kinetic energy density %pv2 (p is the mass density and v is the velocity

magnitude). Indeed, the tensor field II” can be diagonalized as

p+ /)'02 0 0
II" = 0 p 0
0 0 p

The major eigenvalue of II" is \; = p + pv? and the associated unit eigenvector is
the velocity direction. The other eigenvalues are degenerate and equal to pressure
(A2 = A3 = p) in the whole space. It follows that only major tubes can be used.

Their trajectories are everywhere tangent to the velocity field and correspond to
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streamlines of the velocity field. The tubes’ cross-sections are circular with a diameter
proportional to the pressure p. In addition, we determine the tubes’ color by the
function

color ~ A = 0'53\2 + ) = %pvz (3.4)

which is the kinetic energy density. Thus, trajectory, diameter, and color of major

tubes encode velocity direction, pressure, and kinetic energy density, respectively.
Figure 3.8 shows II" in the flow past a hemisphere cylinder. The direction of
the incoming flow is 5° to the left of the hemisphere axis. The detachment at the
end of the cylinder is clearly visible. The pattern of hyperstreamlines indicates that
momentum is transferred from the tip of the body to the end fairly uniformly with
a globally decreasing kinetic energy, as shown by color variations. However, there is
a sudden change of kinetic energy (color) and pressure (diameter) associated with a

significant variation of the direction of the first five tubes.

3.3.3 Color Coding Schemes

Usually we encode the longitudinal eigenvalue as color in order to fully represent
symmetric tensor data along hyperstreamline trajectories. Sometimes we can modity
the color coding scheme to reveal other aspects of the data. An example is the color
coding function of Equation 3.4 which decouples pressure and kinetic energy density
when visualizing reversible momentum transfers in a flow. For stresses in solids or
viscous stresses in fluids, color can be used to discriminate between compressive and
tensile directions in the cross-section of a tube. This is done by coloring the tube
according to

color ~ cos ¢ (3.5)

where ¢ is the angle between the normal 77 to the elliptical cross-section of a tube
and the force f: T7i acting on it—i.e.,
n - (Tn)
COSQ = ——r—==
72| |'T7i]
Figure 3.9 represents the same minor tube as in Figure 3.7, but colored according

to Equation 3.5. Red corresponds to ¢ = 0°; it indicates that the corresponding



3-D Symmetric Tensor Fields 73

Figure 3.8: Reversible momentum flux density tensor in the flow past a hemisphere
cylinder. Color scale 1 of Figure A.3 is used.
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Figure 3.9: The minor tube of Figure 3.7 colored as a function of the normal stress.
Color scale 2 of Figure A.3 is used.
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directions 7 are in pure tension. Green reveals pure shear (¢ = 90°), and blue
indicates purely compressive directions (¢ = 180°).

When using the color function of Equation 3.5 for other tensor data, the meaning
of compressive and tensile directions is lost. However, this scheme still encodes the
sign of the transverse eigenvalues; a principal direction of the elliptical cross-section

is red if the corresponding eigenvalue is positive, and blue if otherwise.

3.4 Solenoidal Tensor Fields

In this section, we consider hyperstreamlines colored in function of the longitudi-
nal eigenvalue. In some tensor fields color then captures the behavior of neighbor-
ing trajectories; variations of the longitudinal eigenvalue along a trajectory reflect
the local geometry of a surrounding hyperstreamline bundle. We call these tensor
fields “solenoidal” because their hyperstreamlines have properties similar to those of
streamlines in solenoidal vector fields.

A n-dimensional vector field (%) : E C R™ — R is solenoidal iff it is divergence-

free—i.e.,
n avi
=0

=1

Examples of 3-D solenoidal vector fields include the velocity in incompressible flows
(conservation of mass) and the vorticity. Much of the structure of solenoidal vector
fields derives from their property of having a constant flux inside a streamtube; the
vector magnitude increases in regions where streamlines converge towards each other
and decreases where streamlines diverge from each other. A similar property holds

for hyperstreamlines of solenoidal tensor fields, which we define as follows:

Definition 4 (Solenoidal Tensor Fields) Let T € C'(FE), where E is an open

subset of R", be a symmetric tensor field with Cartesian components T;; =Ty, 1,5 =

1,...,n. T is a solenoidal tensor field iff the n conditions
n 8Tij .
=0 j57=1,... 3.6
; 9o, j=1....n (3.6)

are satisfied across F.
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Equations 3.6 imply that the n vector fields obtained by multiplying T with n con-
stant, orthogonal directions, are solenoidal vector fields.

Solenoidal tensor fields are not rare mathematical objects. Rather they are fun-
damental to fluid and solid-state mechanics. For example, the stress tensor o;; in
solids at rest (in regions where no external forces are applied) and the momentum-
flux-density tensor II;; in gravity-free,® steady-state flows (Table 1.2) both satisfy
Equations 3.6 and are solenoidal tensor fields. In the latter case, Equations 3.6 are
equivalent to the Navier-Stokes equations expressing the conservation of momentum
(Equations 1.2). In ideal flows, Equations 3.6 reduce to the Euler’s equations (Equa-
tion 1.1) that govern the reversible momentum-flux-density tensor, II7; (Table 1.2).
Stresses and viscous stresses in flows, however, are not solenoidal.

Hyperstreamlines of solenoidal tensor fields have a convergence/divergence prop-
erty similar to the property of streamlines in solenoidal vector fields. We analyze this

property in two and three dimensions, respectively.

3.4.1 2-D Solenoidal Tensor Fields

The following theorem rules the behavior of hyperstreamlines in 2-D solenoidal tensor

fields.

Theorem 1 Let T € C'(E) be a 2-D solenoidal tensor field, where E is an open
subset of R%. Consider the set HS; of hyperstreamlines propagating along the eigen-
vector field vy = \je;. Then, in regions of E where it is possible to continuously confer

a sign to the eigenvectors,

aX
6—81’ = Ku(A\ — M) (3.7)

where A\; is the longitudinal eigenvalue, A\; the transverse eigenvalue, and 683_2; represents
vartations of the longitudinal eigenvalue along trajectories in HS;. Ky ts positive in
regions where hyperstreamlines in HS; converge towards each other and negative in

regions where they diverge from each other (Figure 3.10).

3 Assuming no gravity is common practice when computing gas flows.
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Ki;<0 Ki>0

Figure 3.10: Sign of the geometric factor Kj; for 2-D solenoidal tensor fields.

We do not provide an explicit proof here, as Theorem 1 is a particular case of The-
orem 2 that handles 3-D solenoidal tensor fields. The proof of Theorem 2, which
is to be given in Section 3.4.2, requires the ability to continuously confer a sign to
the eigenvectors. Equation 3.7, however, is consistent with the sign indeterminacy of
eigenvectors: inverting the direction of propagation of the hyperstreamlines in HS;
changes the sign both of the partial derivative and of Kj; (converging hyperstreamlines

become diverging, and vice versa).

Equation 3.7 explains some of the structure of 2-D solenoidal tensor fields, showing
behavioral analogies between hyperstreamlines of solenoidal tensor fields and stream-
lines of solenoidal vector fields. Indeed, major hyperstreamlines are characterized by
Al — At > 0; they converge towards each other (Kj; > 0) in regions where the longi-
tudinal (major) eigenvalue increases during propagation (g—ill > 0), and they diverge
(K < 0) where the longitudinal eigenvalue decreases (g—i; < 0). Conversely, minor
hyperstreamlines, which are characterized by A\; — A\; < 0, converge where the longi-
tudinal (minor) eigenvalue decreases and diverge where the longitudinal eigenvalue

increases. This behavior is summarized in Table 3.1.



78 Elementary Tensor Icons

Figure 3.11: Major (left) and minor (right) eigenvectors of a solenoidal tensor field.
Color encodes the longitudinal eigenvalue. Increasing values correspond to color shifts
from blue to green, yellow, orange, and red (color scale 2 of Figure A.3).
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Longitudinal Hyperstreamline Type
Eigenvalue major minor

increasing | converging | diverging
decreasing | diverging | converging

Table 3.1: Behavior of hyperstreamlines in 2-D solenoidal tensor fields.

Figure 3.11 shows an example. Textures visualize the solenoidal behavior of

cos y(sinz + cosy) COS:C(% sinz —siny) )

1

ks

T(:E,y) = (

cosz(Lsinz —siny) sinxzcosy — Lycos2z

for —7m < z,y < 7. Major trajectories (left texture) converge in regions of increasing
major eigenvalue (color shifts from blue to red) and diverge where the major eigen-
value decreases (color shifts from red to blue). The minor eigenvector field (right
texture) adopts an opposite behavior in accordance with Equation 3.7.

A topological consequence of Theorem 1 is that limit cycles cannot occur in

solenoidal tensor fields—a result to be proven in Section 4.3.5.

3.4.2 3-D Solenoidal Tensor Fields

The following theorem establishes a corresponding property for hyperstreamlines of

3-D solenoidal tensor fields.

Theorem 2 Let T € CY(E) be a 3-D solenoidal tensor field, where E is an open
subset of R®. Consider the set HS| of hyperstreamlines propagating along the eigen-
vector field v; = \je;. Then, in regions of E/ where it is possible to continuously confer
a sign to the eigenvectors,

o\

a— - [([tl()\[ - )\tl) + [(1t2()\[ - )‘tg) (38)
51

where A\ is the longitudinal eigenvalue, Ay, and Xy, are the transverse eigenvalues,
and g—ill represents variations of the longitudinal eigenvalue along hyperstreamline
trajectories in HS;. As shown in Figure 3.12, the factor Ky, @ = 1 or 2, is positive

in regions where neighboring hyperstreamlines that belong to HS, and that are located
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Kit,, < 0

Kit, > 0

Figure 3.12: Sign of the geometric factors Ky, 1 =1, 2.
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a small distance away along the transverse eigendirection €;,, converge towards each

other. Likewise, Ky, is negative if these hyperstreamlines diverge from each other.

Proof. Consider a solenoidal tensor field T whose components T};, ¢,7 = 1,2,3,
obey Equations 3.6. Let 3;;, 1,7 = 1,2.3, be the orthonormal transformation that
diagonalizes T. The coefficients 3;; obey

Zﬁipﬁiq = Zﬁplﬁql = 5pq (39)

The components of T transform according to Equation 1.3, so

3
Ti,j = Z ﬁipﬁqupq

Pyg=1
This relation can be inverted using Equations 3.9 to yield
3
= Z ﬁpiﬁqu};q
Pyg=1
After differentiating with respect to the coordinate z; and summing over the index ¢,

we obtain
3 T 3. 0B, 3 0B4j s o1’
Y e = L g BTt X B it 5 Brioi g0
=1 b

1,p,q=1 ,p,q=1 ,p,q=1

The left-hand side vanishes identically because T is solenoidal (Equations 3.6). Also,

since the transformation f;; diagonalizes T,
T];q = )‘p‘qu

where \,, p = 1,2,3, are the eigenvalues. (No specific ordering of the eigenvalues is

assumed yet.) It follows that

0= Z aﬁplﬁm)‘ + Z ﬁpzaﬁm)‘ + Z ﬂmﬂma

7p 1 t ¢ 7p 1 7p 1
After multiplying both sides by 3,;, summing over the index j, and using Equa-

tions 3.9, we obtain

0 Bpi °. 9P N,
0= Z O - = OpgAp t Z Bri mﬁqﬂ)‘ + Z Bpib pqa
7,p=1 Ty 7,p=1 7,p=1
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which is equivalent to

3 3
DERCTENES o WD D AN (3.10)
i=1 i i=1 YTi i\jp=1
Consider hyperstreamlines that belong to the set HS;—i.e., hyperstreamlines that
propagate along the eigenvector field €;. Let €;, and €;, be the transverse eigenvectors.
The sign of the eigenvectors is fundamentally indeterminate but we assume that, in
the region of interest, we can confer a sign to the eigenvectors such that the resulting,
signed vectors are continuous. The net effect is to impose a direction of propagation
on the hyperstreamlines in HS; and to orient the transverse eigendirections. Without
loss of generality, we select the sign of the eigenvectors such that the orthonormal

basis {€;,, €,, €;} is right-handed; that is,

€ty = €y X €]
€, = €] X €4
g[ - gtl X th (311)

The coefficients 3;; are the Cartesian components of the eigenvector fields, so

3

&= Byl

=1

where the vectors I; are unit vectors lying along the coordinate axes. Equation 3.10

is therefore equivalent to

In particular, for ¢ = [ and for p running across 1,3, and [,
g] . V)\[ - —)\[V . gl - )\tl g] . (gtl . V)gtl - )\t2 gl . (th . V)th — )\]gl . (gl . V)gl (312)

The left-hand side is the derivative of the longitudinal eigenvalue, \;, along trajectories

in HS;. We can rewrite it as

2
0sy
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where s; is the arc length along hyperstreamline trajectories in HS;. The three vectors

€y, p = t1,12, [, have constant magnitude, so
€p-€p =1

and the following identity holds true:*

That is,
It follows that

so Equation 3.12 is reduced to

a)\ — — —
a—l =—-\NV-e — A€ (€, V), — A€ - (€, - V)ey (3.13)
S

Next, we transform the first term on the right-hand side by using Equations 3.11:°

V& = V-(& xé&,)
= &, (Vxé&,)—a, - (Vxé&,)
= (& x&,) (VX&) —(,xa) (Vx&,)
= —&-(Vx&)xé,)—& (Vx&,) xé,)
= —@-(6, Ve, — & (&, V)&,

Thus, Equation 3.13 is reduced to

a)\ - — =\ — = = vaY¥s
O M D)+ = A (8- D),

*We use the vector identity:

- -

V(@ b)=ax(Vxb)+bx(Vxad)+ (@ V)b+ (b V)a

5We use the vector identity
V(@xb)y=b-(Vxd)—a-(Vxb)
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which is equivalent to Equation 3.8. The geometric factors Ky, are given by
Ky, =¢é-(& Ve, (1=1,2) (3.14)

To complete the proof of Theorem 2, it remains that we elicit the relation between
the sign of the geometric factors K, and the convergence/divergence of neighboring
hyperstreamlines (Figure 3.12). The eigenvectors have a constant magnitude (€,-€, =
1) so €, - cfep = 0 for p = t41,t2,1. It follows that we can express the differential of €,
as

cfep = dw x €y
where dw is the differential rotation vector of the basis {&,, &, &} (cfw is the same
vector for all three eigenvectors because they must remain orthogonal to each other.)

The factors in Equation 3.14 become

0€;,
Ky = &--4
It; €l aSti
= | — X .
€l (astz et:)
. 0%
= X P
(etz 61) asti

where s;, stands for the arc length in the direction of the transverse eigenvector €;,.

Using Equations 3.11,

0
Ky, = — 22 (3.15)
aStl
and 5
Wy
Ky, = ! 3.16
lta 88t2 ( )

where dw;, and dw;, are differential rotation components along the transverse eigen-
vectors €;, and €,,, respectively. Equations 3.15 and 3.16 clarify the relation between
the sign of the factors Ky, and the convergence/divergence of neighboring hyper-
streamlines. As shown in Figure 3.13, the coefficients Ky, ¢« = 1,2, are positive if
neighboring hyperstreamlines that belong to HS; and that are located a small distance

away along the transverse eigendirection €;,, are converging. Likewise, other cases in
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|
e

Figure 3.13: Rotation of the orthonormal eigenvector basis.

Figure 3.12, where hyperstreamlines diverge in at least one transverse eigendirection,

correspond to at least one negative K, factor.
This completes the proof. O

Practical consequences of Equation 3.8 are as follows. In regions where the longi-
tudinal eigenvalue of major hyperstreamlines increases during propagation (g—ill > 0),
neighboring major hyperstreamlines converge towards each other. Any divergence in
a transverse eigendirection, €;, or €, must be compensated by a stronger convergence
in the other transverse eigendirection. Conversely, a decreasing longitudinal eigen-
value is associated with globally diverging major hyperstreamlines. The opposite
property holds true for minor hyperstreamlines: an increasing longitudinal eigen-
value correlates with a global divergence of neighboring minor hyperstreamlines; if
they converge in a transverse eigendirection, then they even more strongly diverge in
the other transverse eigendirection. Conversely, a decreasing longitudinal eigenvalue

corresponds to globally converging minor hyperstreamlines. The behavior of medium
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hyperstreamlines is intermediate, the two eigenvalue differences in the right-hand side
of Equation 3.8 having a different sign. Here, variations of the longitudinal eigen-
value are determined by the strength of the convergence/divergence of neighboring

hyperstreamlines (i.e., the coefficients Kj;, and K}, ) measured against the eigenvalue

differences \; — Ay, and A\j — Ay,

Figure 3.14 illustrates the solenoidal property of major tubes of the momentum-
flux-density tensor in one region of the flow past a hemisphere cylinder. The decrease
of the longitudinal eigenvalue (color) is accompanied by diverging trajectories, in

accordance to Equation 3.8.

The solenoidal character of the stress-tensor in solids at rest explains why minor
hyperstreamlines in Figure 3.6 converge towards the applied forces (quickly decreasing
longitudinal eigenvalue) and why major hyperstreamlines propagate mostly parallel
to each other with an almost constant color. A close view of the sudden divergence
of minor hyperstreamlines on one side of the plane of symmetry is given in Fig-
ure 3.15. The local divergence of minor trajectories creates a sudden increase of the
longitudinal eigenvalue— a fact that is counterintuitive to the assumption that the
minor eigenvalue should decrease uniformly when approaching one of the two applied

compressive forces.

Another example is given in Figure 3.16 that shows a rake of major tubes of the
momentum-flux-density tensor I in the flow past an ogive cylinder. The air flow
comes in from a direction 5° to the left of the ogive axis, inducing vortices in the
wake of the body. Major tubes that become entangled in the vortices undergo a fast
decrease in color while diverging from each other. In other regions of the flow, the
color is constant and, in some places, it even increases slightly from orange to red.
In these regions, the apparent divergence of the tubes in the direction parallel to the
surface of the body is compensated by a stronger convergence in the perpendicular
direction. Both divergence and convergence compensate each other exactly in the tail

between the two vortices.
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Figure 3.14: Major tubes illustrating the solenoidal property of the momentum-flux-
density tensor in one region of the flow past a hemisphere cylinder. Color scale 1 of
Figure A.3 is used.
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Figure 3.15: Close view of the sudden divergence of minor hyperstreamlines on one
side of the plane of symmetry in Figure 3.6. Color scale 1 of Figure A.3 is used.
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Figure 3.16: Rake of major tubes of the momentum-flux-density tensor in the flow
past an ogive cylinder. Color scale 1 of Figure A.3 is used.
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3.5 Asymmetric Tensor Fields

Hyperstreamlines are useful to visualize symmetric tensor fields whose eigenvectors
U; are real and orthogonal. Visualizing asymmetric tensor fields is more challenging
because of the possible occurrence of complex and non-orthogonal eigenvectors.

In this section, we design line icons for continuous, 3-D asymmetric tensor data.
(The same methodology can be applied for 2-D asymmetric tensor fields.) The un-
derlying philosophy is similar to hyperstreamlines of symmetric tensor data, and the
goal is to fully render asymmetric tensor information along continuous trajectories.
Although local vector icons—such as streamribbons and streamtubes—reveal some
aspects of vector gradients (Section 2.2.2), they can not be used for more general
asymmetric tensor data. (Even with vector gradients, they render tensor informa-
tion only partially.) In the following, we discuss line icons obtained by decomposing
asymmetric tensor data into two components—a symmetric tensor field and a vector
field. We visualize the symmetric tensor component with hyperstreamlines as before,
but we encode the additional vector field along the trajectory. Depending on the
nature of the data, two reductions are possible: symmetric/antisymmetric or polar

decomposition.

3.5.1 Symmetric/Antisymmetric Decomposition

A asymmetric tensor field can be decomposed into the sum of symmetric and anti-
symmetric components according to
T+ T! N T-T¢

2 2

where T is the transpose of T. The antisymmetric tensor has only three independent

T =

components that form a vector known as “axial vector.”®
Figure 3.17 (top) shows a line icon for asymmetric data based on this decomposi-

tion. A hyperstreamline is integrated along one eigenvector of the symmetric tensor

0 —Ww3 Wa
T = w3 0 —Ww
—Wa Wi 0

5The antisymmetric tensor field
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Figure 3.17: Examples of line icons for 3-D asymmetric tensor fields. Symmetric/anti-
symmetric decomposition (top) and polar decomposition (bottom). Color scales 1 and
2 of Figure A.3 are used for tubes and ribbons, respectively.
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component; it can be color-coded either according to the longitudinal eigenvalue, or
as in Equation 3.5. An additional ribbon is added outside the tube’s surface so as to
represent the axial vector. The ribbon position and width locally encode the vector
component which is perpendicular to the trajectory. The ribbon color maps the angle
between the axial vector and the direction of propagation according to color scale 2
of Figure A.3 (red is parallel, green is perpendicular, and blue is antiparallel). In
Figure 3.17 (top), for example, the vector field is everywhere close to alignment with
the direction of propagation. It is not, however, exactly aligned because the ribbon
has a finite width.

In fluid flows, this icon may be used to visualize velocity gradients, which are
the sum of the rate-of-strain tensor ¢; (symmetric) and the rate-of-rotation tensor
(antisymmetric). The latter corresponds to half the vorticity vector (Table 1.2). In
this case, the ribbon shows the position of vorticity with respect to principal strains—

a parameter allegedly important for understanding turbulence (Reference [66]).

3.5.2 Polar Decomposition

An alternative way of reducing asymmetric data is the polar decomposition (Refer-
ence [67]), which generalizes to tensors (or matrices in general) the decomposition of
complex numbers into the product of their amplitude and phase factor. Assume as in
Figure 3.18 that the tensor T at a given point ¥ maps the vertices of a cube from an
initial state to a final, deformed state. This global deformation can be decomposed
into more elementary transformations. For example, one can reach the final state by
first stretching the cube by a deformation U and then rotating the stretched rhom-
boid by an isometric transformation Q. Alternatively, one can first rotate the cube
and then stretch it by a tensor V.

Mathematically, there are two equivalent ways of decomposing asymmetric tensor

w1
U= Wa
w3

in the sense that w1, wy, and ws transform as the components of a vector field.

is equivalent to the vector field
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Figure 3.18: Polar Decomposition of asymmetric data.
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data into the product of a stretch tensor (amplitude) and an isometric transformation
(phase):
T =QU = VQ (3.17)

where both U = v/T!T and V = VTT? are symmetric positive definite tensors, and
Q = TU! is an orthonormal tensor (Q~' = Q). This decomposition is unique (i.e.,
there is a one-to-one correspondence between the matrix T and the set of matrices
{Q,U,V}) wherever detT # 0. We explain below how we handle points where
det T = 0.

We can focus on the first decomposition in Equation 3.17 without losing generality.
Figure 3.17 (bottom) shows a line icon based on this decomposition. The symmetric
tensor U is represented by a tube along one of its eigenvectors. In regions where
det T > 0, the isometric transformation Q is simply a rotation; it is characterized by
an angle 6 (0 < 60 < ) and a unit axis of rotation @. Thus, Q can be represented by
the vector

1 = Ou

A rotation of angle § about the axis @ is physically identical to a rotation of angle

27 — 6 about the axis —u. Thus, Q is also equivalent to the vector
= (27 — 0)(—u)

To visualize Q, we add two ribbons that represent the vectors r; and 75, respectively.
In regions where det T < 0, the transformation Q involves an additional inversion in
the direction of the rotation axis. A row of white pearls across the ribbons marks
the onset of the inversion during propagation, and a row of black pearls indicates its
cancellation.

In some points of the trajectory, vectors r; and 7, may not be defined. We then
simply interpolate them between adjacent points in order to avoid discontinuities of
the ribbons. These singular points occur at the pearls, where det U = |det T| = 0
(U is defined but not invertible and Q can not be computed), and at points where Q
reduces to plus or minus the identity matrix (the rotation axis @ is undefined and T is
locally symmetric with all eigenvalues having the same sign). Using polar decompo-

sition to visualize asymmetric tensor data therefore assumes that these singularities
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are isolated points along the trajectories.

3.6 Chapter Summary

In this chapter, we discuss elementary icons of tensor fields. After observing the
inadequacy of point icons for continuous data, mainly because using them results in
severe visual clutter, we design line icons. (Surface icons are yet to be developed.)

First, we consider symmetric tensor fields, which have real and orthogonal eigen-
vectors. We prove that, if tensor components are continuous and differentiable func-
tions of space, eigenvalues and eigenvectors are continuous and smooth at most
points. The only discontinuities arise at points where two or more eigenvalues are
degenerate—a topic to be fully discussed in Chapter 4. It follows, then, that in most
regions, n-dimensional, continuous, symmetric tensor data are equivalent to a set of
n orthogonal families of smooth curves tangent to the eigenvectors. From this obser-
vation, we develop line icons that continuously represent eigenvectors, embedding in
their very design the underlying continuity of the data.

For 2-D symmetric tensor fields, we generate textures that visualize curves tan-
gent to the eigenvectors. Textures are created by convolving the eigenvector fields
with a band-limited noise. They do not require to integrate the eigenvectors, avoid-
ing difficulties related to degenerate eigenvalues. Textures are also space-filling and
guarantee the visualization of all data features larger than the noise cutoff frequency.
Then, we display full (trivariate) tensor information in a single image, using elevation,
color, and texture of a surface, as independent visualization channels.

For 3-D symmetric tensor fields, we define hyperstreamlines—i.e., line icons that
encode full tensor information along continuous trajectories (curves tangent to an
eigenvector). Hyperstreamlines are obtained by sweeping a geometric primitive along
the longitudinal eigenvector, stretching it under the combined action of the trans-
verse eigenvectors, and computing the envelope of the stretched primitives. Tubes
and helices are two different types of hyperstreamlines that are obtained by sweep-
ing ellipses and crosses, respectively. The trajectories and color of hyperstreamlines

encode the longitudinal eigenvector, and their geometric cross-sections represent the



96 Elementary Tensor Icons

two transverse eigenvectors. In fluid flows, hyperstreamlines of the reversible mo-
mentum-flux-density tensor correlate various quantities—such as velocity direction,
pressure, and kinetic energy density. We discuss different color-coding schemes that
can reveal other aspects of the data.

Then, we analyze solenoidal tensor fields—such as stresses in solids or momentum
flux density in steady-state, gravity-free fluids. Hyperstreamlines of solenoidal tensor
fields have geometric properties similar to streamlines of solenoidal vector fields. In
short, major (minor) hyperstreamline trajectories globally converge (diverge) when
propagating towards regions of increasing longitudinal eigenvalue.

Finally, we design line icons for 3-D asymmetric tensor fields, a case further com-
plicated by the possible occurrence of complex, non-orthogonal eigenvectors. We
suggest to use line icons that are obtained by decomposing the data into the sum or
the product of a symmetric tensor component and a vector field. Full tensor infor-
mation can then be continuously represented by adding to hyperstreamlines of the

symmetric tensor component, a ribbon that encodes the additional vector field.



Chapter 4

Local and Global Tensor Icons

4.1 Introduction

Visualizing continuous, multivariate data is a difficult challenge mainly because of
the necessity to render the underlying continuity of the data while avoiding problems
related to visual clutter. We discuss in Chapter 2 the importance of this dichotomy
for our ability to understand graphical displays of vector fields. Due to the greater
multivariate nature of tensor fields, difficulties associated with visual clutter are en-
hanced.

In Chapter 3, we define hyperstreamlines—i.e., icons geometrically encoding ten-
sor data along continuous trajectories—and we show that, when compared to point
icons, hyperstreamlines greatly improve the perception of the continuity in the data.
However, hyperstreamlines merely sample the tensor field along their trajectories. In
general, too many hyperstreamlines are required for understanding the global struc-
ture of tensor fields without ambiguity, and the display becomes overly cluttered.

In this chapter, we define and analyze the topology of second-order tensor fields.
As with vector fields, we derive a set of carefully chosen points and lines that embed
global information about tensor fields—i.e., we represent schematically the collec-
tive behavior of an infinite collection of (undrawn) hyperstreamlines. The goal is to
reveal the global structure of tensor data that is otherwise buried within excessive

multivariate information. It results in a simple and austere depiction that allows an

97
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<
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Figure 4.1: The two orthogonal eigenvector fields ;, represented as bidirectional
arrows.

observer to infer the behavior of any hyperstreamlines in the field and comprehend
the structure of the entire data set.

The present work is to our knowledge the first attempt at defining and analyzing
the topology of second-order tensor fields; all the concepts to be developed in the
course of this chapter are original. However, fields such as dynamical systems and
geometric approaches to solving differential equations provide some guidance and
appropriate vocabularies. In particular, the texts by A. A. Andronov et al. (Ref-
erence [68]) and L. Perko (Reference [69]) have been influential in structuring our

thinking.

4.1.1 Investigated Data

We discuss the topology of 2-D symmetric tensor fields in all but the last sections
of this chapter. That is, we analyze trivariate data that are similar to Equation 1.4

(Section 1.2). These data are fully equivalent to two orthogonal eigenvector fields
U; = A€ (4'1)

where ¢ = 1,2 (Figure 4.1). A;, ¢ = 1,2, are the eigenvalues and €, ¢ = 1,2, the associ-

ated unit eigenvectors. As usual, the eigenvalues are numbered as A\; > A;. Figure 4.1
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represents v and ¥ as bidirectional arrows because of the sign indeterminacy of the
eigenvectors.
At the end of this chapter, we discuss 3-D symmetric tensor data, such as Equa-

tion 1.6 (Section 1.2), to which correspond three orthogonal eigenvectors
Ui = \i€;

where ¢ = 1,2,3. Again, the three eigenvalues are numbered as A\ > Ay > As.
Although we focus the discussion on symmetric tensor fields, we can use the results
of this chapter and the decomposition schemes of Section 3.5 to analyze the structure

of asymmetric data.

4.1.2 Degenerate Points

In Section 3.1, we show the analogy between a symmetric tensor field and a set
of orthogonal families of trajectories that are continuous, smooth, and that do not
intersect each other. This analogy was shown to hold “almost everywhere.” Here, we
focus on those very points where the analogy ceases to exist. We call these points

“degenerate points.”

Definition 5 (Degenerate Point) A degenerate point of a tensor field T : £ —
L(R™,R"™), where E is an open subset of R", is a point ¥y € F where at least two of

the n eigenvalues of T are equal to each other.

In the case of 2-D tensor fields, ¥y is a degenerate point iff A\;(Zo) = A2(Zo). For 3-D
tensor fields, various types of degenerate points exist, corresponding to the conditions
M (Zo) = Aa(Zo), A2(Zo) = As(@o), or A1 (Zo) = A2(Zo) = A3(Zo).

Degenerate points play a similar role as critical points in vector fields; they are
the basic singularities underlying the topology of tensor fields. Indeed, streamlines in
vector fields never cross each other except at critical points. Likewise, hyperstream-
lines in tensor fields meet each other only at degenerate points. To show this, consider

a 2-D tensor field and denote by A the common eigenvalue at a degenerate point Zy.
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P(x)

Figure 4.2: Away from degenerate points, continuous and symmetric tensor fields are
diffeomorphic to constant data.

At Zy, the tensor field is proportional to the identity matrix:

T(Z,) = ( 3 2 ) (4.2)

which implies that T(Z)€ = A€ for every vector €. At most points, there is only one
eigenvector associated with each eigenvalue, but at degenerate points, there are an
infinity of eigenvectors corresponding to the degenerate eigenvalues. So degenerate
points are the only places where hyperstreamlines cross each other. As shown by

Equation 4.2, degenerate points of 2-D symmetric tensor fields satisfy the conditions!

{ (&) = Taa( &) = 0 (13)
T12(Z,) =0
which we use to locate them. (More on this topic in Appendix B.)
The reader may wonder why do degenerate points matter so much? Because
nothing topologically interesting is really happening elsewhere. To see this, recall the
analogy between continuous and symmetric tensor fields, and orthogonal families of
smooth, continuous, and non-intersecting trajectories. This analogy is shown to hold
within regions that do not comprise degenerate points. Within such a region, we

can find a diffeomorphism ®(Z) that transforms the tensor data into a constant field

(Figure 4.2).

'Valid in any coordinate system.
2For example, ®(Z) = B(Z)Z where B(Z) is the orthonormal transformation that diagonalizes the
tensor at Z.
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4.1.3 Tensor Field Topology

We define the topology of symmetric tensor fields as follows:

Definition 6 (Tensor Field Topology) The topology of a symmetric tensor field
T: E — L(R",R"), where E is an open subset of R", is the set of n topologies of

the eigenvector fields v;(Z), 1 =1,...,n.

The primary objects of our study are therefore the eigenvector fields, v;(Z), ¢ =
1,...,n. The n related vector topologies are not fully independent as they “connect”
at degenerate points. It will also be demonstrated that the sign indeterminacy of the
eigenvector fields engenders unfamiliar topological features that cannot be observed

in more common, signed, continuous vector fields.

4.1.4 Chapter Content

In the first sections of this chapter, we analyze 2-D symmetric tensor fields (Equa-
tion 1.4). In Section 4.2, we develop the topological concept of a “tensor index,”
which we use in Section 4.3 to analyze local hyperstreamline patterns in the vicinity
of degenerate points. We also define in Section 4.3 separatrices and limit cycles of
tensor fields—both concepts having their equivalents in vector field topology. We
analyze time-dependent tensor data in Section 4.4. In Section 4.5 we consider those
particular 3-D tensor fields that are “tangent” to 2-D surfaces embedded in a 3-D
space. We derive a rule constraining the topology of such tensors, thereby extending
to tensor fields the Poincaré-Hopf theorem for vector fields. In Section 4.6, we de-
velop a theory for general, 3-D symmetric tensor fields (Equation 1.6). Finally, we

summarize the results in Section 4.7.

4.2 Theory of the Tensor Index

In order to understand the topology of tensor fields, it is necessary to characterize
the local behavior of the data in the vicinity of degenerate points. This is the topic of

Section 4.3. As a preliminary step, we study in this section the eigenvector fields along
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Figure 4.3: a: Jordan curve; b and c¢: non-Jordan curves.

closed curves surrounding the singularities. We define in Section 4.2.1 the notion of a

" and from there on, we derive in Section 4.2.2 the concept

“tensor index of a curve,’
of “tensor index at a degenerate point.” This concept, which plays a central role in
analyzing tensor field topology, extends to tensor fields a familiar notion from vector

field topology (References [68, 69]).

The curves under consideration are Jordan curves which are defined below.

Definition 7 (Jordan Curve) A Jordan curve is a curve which is homeomorphic

to a circle—i.ce., a piecewise-smooth, simple, closed curve.

For example, the curve in Figure 4.3 (a) is a Jordan curve. Curves in Figures 4.3 (b)
and (c), however, are not Jordan curves because they are not simple and closed,

respectively.

4.2.1 Tensor Index of a Jordan Curve

Consider a tensor field T(Z). We can assign a specific quantity to each Jordan curve

lying within T’s domain of definition. We refer to this quantity as the “tensor index
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of a curve.” A precise definition follows:

Definition 8 (Tensor Index of a Jordan Curve) Let E be an open set of R* and
let L C E be a Jordan curve. The index IT(L) of L relative to a tensor field T €
CY(E), where T has no degenerate points on L, is the number of counterclockwise
revolutions made by the eigenvectors of T when traveling once in a counterclockwise

direction along L.

The angle a between the eigenvectors of T and the x-axis (Figure 4.1) is given by

Ty, — T
which implies
1 217
o = —arctan ———— 4.4
2 Ty — Ty (44)

Equation 4.4 defines a only locally and within an integral multiple of 7. The differ-

ential of «a, however, is a well-defined, smooth, differential form in the whole domain

E
do — (Th1 — Ta)dT19 — Th2d(Th1 — Tio) (4.5)
(Th1 — T22)? + 4T%, '

From Definition 8, the index I1(L) of a Jordan curve L is equal to the line integral

1
It(L) = — da

27 Jro+
where LT means that we traverse the curve L in a counterclockwise direction. Thus,

_ L}{ (Tn - Tzz)dle - de(Tn - Tzz)
27 Jr+ (Tll — T22)2 —+ 4T122

It(L) (4.6)

Equation 4.6 will prove extremely useful in analyzing degenerate points (Section 4.3).
First, we derive important properties of the tensor index and we show how they lead

to the definition of tensor indices at degenerate points (Section 4.2.2).

Theorem 3 Suppose that T € C'(E) where E is an open subset of R? containing

a Jordan curve L. Assume that there are no degenerate points of T on L or in its

interior. It then follows that It(L) = 0.
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Figure 4.4: llustration of Theorem 4.

Proof. Let S be the interior of L and let S = L U S be the closure of L. The
assumption that there are no degenerate points in S implies that (Ty1—Ta2)* +4TE # 0
in S. Since S C E and T € C'(E), we can apply Green’s theorem (Reference [62])

to evaluate the tensor index of L. Let

B 1 8T12 a(Tll - T22)
@_uh_ﬂm+ﬂgwm_ﬂﬁax_ﬂ2 Fra—
and 1 T O(Tuy — Tn)
— T _ T 12 _ T 11 — 22
Py (Ty1 — Taa)? + AT, (T = To) gy 7 oy J

The line integral in Equation 4.6 becomes

_ L _ L 98 9B gy = L Y
]T(L)_2ﬂé+ﬁzd$+ﬂydy_27r//s(ax_ay)dxdy_Qﬂ//SOdwdy_o

This completes the proof. O

Theorem 4 Suppose that T € C'(FE), where E is an open subset of R*, and that
Ly and Ly are Jordan curves contained in E with interiors Sy and Sy respectively. If
Ly C 53, and if there are no degenerate points of T on Ly, Ly, and in the domain D
between the two curves, then It(Ly) = I1(Ls).

Proof. Figure 4.4 shows the configuration of the two curves. Suppose that we incise

the domain D along a segment ab from Ly to Ly. (The two line segments joining a
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to b in Figure 4.4 lie infinitesimally close to each other.) Consider the Jordan curve

J = L3 +ab+ LT + ba. Applying Theorem 3 to the curve J and its interior,

1
0=1Ip(J) = — ¢ da

2m Jg+

1
2 Ji s 27 Jba

1 1 1
= — da—l——/ da + — da+ — [ da
27 Jab 2w Jiy :
- IT(LQ)—]T(Ll)

This completes the proof. O

4.2.2 Tensor Index at a Degenerate Point

Using Theorems 3 and 4, we associate unequivocally tensor indices to degenerate

points by enclosing them with Jordan curves:

Definition 9 (Tensor Index at a Degenerate Point) Suppose that T € C'(E)
where E is an open subset of R?. Let Ty € E be an isolated degenerate point of T and
let L C E be a Jordan curve encompassing To in its interior and no other degenerate

points of T. Then the index of T at the degenerate point ¥y is defined as

Theorem 4 implies that we can choose any Jordan curve L encompassing 7y and no
other degenerate points to evaluate the tensor index at Zo; we obtain the same value
independently of a particular choice of L. It is a remarkable fact that the line integral
in Equation 4.6 depends only on the nature of the enclosed degenerate point and not
on the specific integration path. This very fact grants us considerable freedom in
choosing the most appropriate path for computing the index at a degenerate point.

The following corollary results from Definition 9:

Corollary 1 The tensor index at a degenerate point of a tensor field T € C'(E),

where E is an open subset of R?, is an integer or half-integer quantity.
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Figure 4.5: Hlustration of Theorem 5.

Proof. The index at a degenerate point is equal to the index of an enclosing Jordan
curve I C K. A Jordan curve is by definition piecewise-smooth and continuous, and
since T € C*(E), the differential form da (Equation 4.5) is smooth and continuous
along L; there are no angular discontinuities in the position of the eigenvectors along
L. Tt follows that, after one turn along L, the eigenvectors must end up parallel
or anti-parallel (sign indeterminacy) to their initial position. Thus, the index is an

integer or a half-integer quantity.
This completes the proof. O

The following generalizes Theorem 3 to the case of Jordan curves that encompasses

several isolated degenerate points.

Theorem 5 Suppose that T € C*(E), where E is an open subset of R* containing a
Jordan curve L. Assume that there are no degenerate points on L but that there are
a finite number of degenerate points, ¥y,...,T,, in the interior of L. It then follows

that .
(1) = Y2 1a(®) (17
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Proof. We enclose each degenerate point Z; by a circle L; lying entirely in the
interior of L and encompassing no other degenerate point than #; (Figure 4.5). Then

we proceed as in Theorem 4 to show that

1 o1 1 1
0 = —/ d ~ [ q —/ d —/ d
2m Ji+ a+;{27r azb; a+27r LT a+27r bja, o)

~ (L)~ Y (&)

J=1

This completes the proof. O

Finally, we consider hyperstreamline cycles—i.e., closed hyperstreamline trajecto-
ries that do not pass through any degenerate points. (More to be said on limit cycles

in Section 4.3.5.)

Theorem 6 Suppose that T € C'(E), where E is an open subset of R*. Let L C E
be a hyperstreamline cycle of T which does not pass through any degenerate points. It
then follows that It(L) = 1.

Proof. The cycle L is closed and, because it does not pass through any degenerate
points, it is also not self-intersecting. Thus, L is simple. (It is, in fact, a Jordan
curve.) It follows that the normal to L rotates an angle 2z during one counterclockwise
revolution. Because one eigenvector field of T is everywhere tangent to L while the

other eigenvector field lies along the normal, we obtain

1 1
I7t(L) = — do = —2r =1
T() 27 L+a 27r7r

This completes the proof. O

Corollary 2 Under the assumptions of Theorem 6, a hyperstreamline cycle L con-
tains at least one degenerate point in its interior. And assuming there are only a
finite number of degenerate points on the interior of L, the sum of tensor indices at

these degenerate points is equal to unity.
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4.3 Degenerate Points and Separatrices

In this section, we analyze degenerate points of 2-D symmetric tensor fields. By using
the tensor-index theory developed in Section 4.2, we discuss the local patterns drawn
by the hyperstreamlines in the vicinity of degenerate points. (From results such as
Corollary 1 in Section 4.2, we can foresee unfamiliar topological features that do not
occur in conventional, signed vector fields.)

In Section 4.3.1, we analyze various types of angular sectors that may exist near
a degenerate point and we introduce the concept of a hyperstreamline “separatrix.”
Most importantly, we establish the link between tensor index, number of sectors, and
number of separatrices of each eigenvector field. In Section 4.3.2, we define the param-
eter ¢, an invariant of third-order tensor fields that characterizes degenerate points.
In Section 4.3.3, we analyze simple degenerate points (6 # 0), and in Section 4.3.4,
we discuss the more complex case of multiple degenerate points (6 = 0). Finally, we

study in Section 4.3.5 limit cycles of tensor fields.

4.3.1 Sectors and Separatrices

Consider an isolated degenerate point Zy of a tensor field T(Z). In most cases, the
eigenvector fields in the vicinity of ¥y can be described in terms of three types of

angular sectors (Figure 4.6):
e hyperbolic sectors «;, where trajectories sweep past the degenerate point;

e parabolic sectors 3;, where trajectories lead away or towards the degenerate

point; and
o elliptic sectors 7, where trajectories begin and end at the degenerate point.

We denote the number of hyperbolic, parabolic, and elliptic sectors by ny, n,, and n.,
respectively. For example, the degenerate point in Figure 4.6 has n; = 3 hyperbolic,
n, = 3 parabolic, and n. = 2 elliptic sectors. When moving along a closed curve that
encompasses a degenerate point, we pass through sectors of different types within

which the eigenvectors rotate in different directions. Table 4.1 shows the direction
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Figure 4.6: Hyperbolic («;), parabolic (3;), and elliptic (vx) sectors at a degenerate
point.
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Sector Eigenvector Rotation
parabolic counterclockwise
elliptic counterclockwise
hyperbolic:
a; > 180° counterclockwise
a; < 180° clockwise

Table 4.1: Rotation of the eigenvectors during a counterclockwise motion around a
degenerate point.

in which eigenvectors rotate during a counterclockwise motion around a degenerate

point.

Most degenerate points are built from a series of adjacent hyperbolic, parabolic,
and elliptic sectors. However, some degenerate points, such as “trisector points” (Sec-
tion 4.3.3), have only hyperbolic sectors; others, such as “star-nodes” (Section 4.3.4),
have only one parabolic sector. Furthermore, some specific points, namely centers
and foci (Section 4.3.4), have neither types of sectors. But their most relevant char-
acteristic is this very absence of hyperbolic, parabolic, and elliptic sectors. In other
words, we can discuss centers and foci together with any other degenerate points
simply by considering that they are made up of n;, = 0 hyperbolic, n, = 0 parabolic,

and n. = 0 elliptic sectors.

Hyperstreamline trajectories that separate adjacent sectors at a degenerate point
play an important topological role. In the following, we define hyperstreamline “sep-
aratrices” by analogy with the similar concept from vector field topology (Refer-

ences [68, 69]).

Definition 10 (Separatrices) A separatriz of a tensor field T is a hyperstreamline

trajectory which lies on the boundary of a hyperbolic sector at a degenerate point of

T.?

3Limit cycles are also to be considered as separatrices, although of another kind, since they do
not emanate from degenerate points. We consider limit cycles in Section 4.3.5.
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Symbol Description Nature
np # hyperbolic sectors integer
7y # parabolic sectors integer
Ne # elliptic sectors integer
Ng # separatrices integer
I tensor index integer or

half-integer

Table 4.2: Parameters describing the geometry of degenerate points.

Examples of separatrices include s; to s¢ in Figure 4.6. Separatrices lie on hyper-
bolic/hyperbolic, hyperbolic/parabolic, and hyperbolic/elliptic boundaries, but tra-
jectories along parabolic/parabolic, parabolic/elliptic, and elliptic/elliptic boundaries
are not to be considered as separatrices. Also, we always merge adjacent parabolic
sectors into a unique parabolic sector.

In what follows, we denote by n, the number of separatrices at a degenerate point.
We summarize various parameters characterizing degenerate points in Table 4.2. [,
the tensor index, characteristizes the tensor field as a whole; it is the same for both
eigenvector fields. Conversely, ny, n,, n., and n, usually differ from one eigenvector
field to the other; they must be specified for each eigenvector field separately.

The two following theorems establish relations that exist among the various quan-

tities listed in Table 4.2.

Theorem 7 Consider an eigenvector field in the vicinity of a degenerate point. Let

n, and ng be the number of hyperbolic sectors and separatrices, respectively. Then

np < ns < 2np (4.8)

Proof. The number of separatrices, n,, is equal to the total number of hyperbo-
lic/hyperbolic, hyperbolic/parabolic, and hyperbolic/elliptic interfaces among sectors
(Figure 4.6). Equation 4.8 results from the fact that isolated hyperbolic sectors gen-
erate two separatrices each, but that a boundary that separates adjacent hyperbolic

sectors must not be counted twice.

This completes the proof. O
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Next, we extend to the degenerate points of tensor fields a famous theorem that

was proven by 1. Bendixson for the critical points of vector fields (References [68, 70]):

Theorem 8 (Bendixson) Let &g be an isolated degenerate point of a tensor field T.

The tensor index at Ty is given by
s Ne —n
In(Z) =1+ Th (4.9)

where n. and ny, are the number of elliptic and hyperbolic sectors at Zy.

Proof. Consider as in Figure 4.6 a hypothetical degenerate point with n, hyperbolic,
n, parabolic, and n. elliptic sectors (n, = n, = n. = 0 for a center or a focus).
Assume that hyperbolic sectors span angles «; (2 = 1,...,ny), that parabolic sectors
span angles 3; (j = 1,...,n,), and that elliptic sectors span angles v, (k =1,...,n.).
The eigenvectors rotate over an angle o; — = within a hyperbolic sector, 3; within a
parabolic sector, and 45 + 7 within an elliptic sector (Figure 4.6). Thus, during one

counterclockwise revolution around the degenerate point, the eigenvectors rotate over

an angle
np Tp e
2rlp(To) =D (ai—m)+ > Bi+ > (w+7)
=1 7=1 =1
Since

nh np Ne
Do+ d Bi+Y k=27
=1 7=1 =1

the index at the degenerate point is given by

Ne — N,

]T(fg) - 1 —|— 2

This completes the proof. O

This theorem establishes a relation between the tensor index at a degenerate point
and the number of elliptic and hyperbolic sectors. It is worth noting that parabolic

sectors do not affect the index at a degenerate point.

Corollary 3 The two eigenvector fields at an isolated degenerate point can have dif-
ferent numbers of hyperbolic, elliptic, and parabolic sectors. The difference n, — ny,
between the number of elliptic and hyperbolic sectors, however, is the same for both

etgenvectors.
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Proof. Theorem 8 implies a one-to-one correspondence between the index at a de-
generate point and n. — ny. Since the index characterizes the tensor field—not the
eigenvector fields separately (see for example Equation 4.6)—n. — ny, is identical for

both eigenvector fields.
This completes the proof. O

In Sections 4.3.3 and 4.3.4, we thoroughly analyze sectors, separatrices, and ten-
sor index at degenerate points. First, we discuss ¢, an invariant that allows us to

distinguish between simple and multiple degenerate points.

4.3.2 The Invariant 6

In vector fields, there are various types of critical points—such as nodes, foci, cen-
ters, and saddle points—that correspond to different local patterns of the neighboring
streamlines. These patterns are characterized by the vector gradients at critical point
positions (Section 2.2.1). Likewise in tensor fields, different types of degenerate points
can occur that correspond to different local patterns of the neighboring hyperstream-
lines. These patterns are determined by the tensor gradients at degenerate point
positions.

Let Zo = (@0, y0) be an isolated degenerate point. Assuming that the functions
T11(Z) — Ty2(%) and T12(%) are analytic, we can expand tensor components in Taylor

. —
series around Tg as

T, — T 0
= ¢ = = mep+k($ _:Eovy_yO)
2 k>0
Tz = Y Qugrr( — o,y — o) (4.10)
k>0

where P, (z,y) and Q,.(x,y) are homogeneous polynomials of degree m. The first
non-vanishing terms in Equations 4.10 are of degree m, > 1 and m, > 1, respectively.

The polynomials P, (z,y) and Q. (x,y) are given by
Pu(z,y) = Y pMam Ty
=0

Qulz,y) = 3 ¢™amiyl
=0
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(m) (m)

and the coefficients p;’ and ¢;", 1 = 0,...,m, are equal to the partial derivatives
o = L fm ) Lo - T)”
% m’ i 9 axm—zayz )
To

(m) . L m 8T1 2m
% w9z oy

evaluated at the position of the degenerate point .

-
Zo

When it is possible to retain only the first-order terms in Equations 4.10 (m, =

mg = 1), we use the simplified notation

a =" (1) — 1 9(T11—Ta2) b= (1) — 19(T11-Ts2)
= Po 2 Az Fo =D 2 Ay Zo (4 11)
Y Y B
In this case, Equations 4.10 simply reduce to
T115T22 %CL(I—Io)+b(y—yo)‘|‘"' (4 12)

T = clx—x0) +dy —yo) + -

[14

where - -.”7 stands for terms of degree higher than one.

An important quantity for characterizing degenerate points is
6 =ad — be (4.13)

The appeal of 6 arises from its being invariant under rotation; when rotating the
coordinate system, tensor components 7;; and a fortiori, partial derivatives {a, b, c, d}
change, but ¢ remains constant. In order to show the invariance of §, we need the

following lemma which establishes an invariant of third-order tensor fields:

Lemma 1 Let oy, (1 < 4,7,k < 2) be the components of a third-order tensor field.
Then, the quantity
2| e a
A=Y 11 412

=1

(4.14)

Q91 Q422

is invariant under rotation of the coordinate system.
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Proof. Cartesian components «;j; of third-order tensor fields transform according to
2
/ —_— . .
Qe = Z BipBiqBrr pgr
P,q,r=1

under the orthonormal transformation

cosp  sin
B =

—sing Ccosy

of the coordinate axes. The explicit transformation formulas are

! 3 2 .
;= oq11€08° @ + (211 + o121 + aq12) cos” psin g
.2 .3
+  (a122 + @12 + @g21) €os psin® ¢ + aggg sin” @
/ _ 3 2 .
Q1 = 12€08° @ + (212 + 122 — @q11) cos” psin @
. 9 .3
+ (Oélz1 + ag1y — 01222) COS @SN @ — Qig21 81N Y
/ _ 3 2
Qlyy = 21€08° @ + (a91 — aq11 + @q22) cos” psin
.9 .3
+ (04112 — Q22 + Oézn) COS @ SIN @ — Q12811 @
/ 3 2
Q99 = Q122€08° @ + (222 — Q112 — Q191) €Os” Y sin
.2 .3
+ (@111 — @212 — @g21) cos @ sin® @ 4 gy sin” @
/ _ 3 2 -
Qgp = Q211€08° @ — (@111 — Qa1 — Q212) €Os” P sin
.2 .3
— (o222 — @112 — @121) COS P sin® © — a2 8in” @
/ _ 3 2 .
gy = Q212€08° @ — (@112 — Qa2 + @211) cos” wsin
.9 .3
— (@221 — @111 + 22) cos psin® ¢ + aqgq sin® @
/ — 3 2 .
Qg = Q221 €08” @ — (@121 + Qo171 — Qa92) cos” Y sin
.9 .3
— (@212 + @122 — aq11) cos psin® ¢ + aqpasin® @
/ _ 3 2
Qhyy = Qi22€08° @ — (22 + Q212 + @91 cos” psin

.2 . 3
— (=211 — 121 — @12) COS P sIn” @ — aqq18in” @

Let A and A’ be defined as

a111 0112 n Q211 (G212

A =

Q121 (0122 Q221 (222
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and

! !
Q11 Q9

A=

! !

@11 X212
! ! ! !

Qi1 X Q21 X9

respectively. Using the transformation formulas for the components i, and after a

lengthy calculation, one can demonstrate that

Al = A(cos6 o+ cos? asin? a + cos? asin? o + sin® @)
= A(Cos2 o + sin? a)3

= A
Thus, A is a third-order tensor invariant.
This completes the proof. O

Invariants of second-order tensor fields—such as eigenvalues, trace, or determinant—
are familiar quantities, but these concepts are without equivalents for third-order
tensor fields. (It is difficult to conceptualize, for example, eigenvalues of third-order
tensor fields.) However, Lemma 1 establishes that A is a third-order invariant. Al-
though both determinants in Equation 4.14 vary under rotation, their sum remains
invariably constant.

The invariance of 6 = ad — be is closely related to Lemma 1, as discussed below.

Theorem 9 The parameter 6 defined by Fquation 4.13 ts invariant under rotation

of the coordinate system.

9Ty,
8l‘k

Proof. Partial derivatives o, = of components T;; of second-order tensor fields
are, themselves, components of third-order tensor fields. It follows from Lemma 1

that

9Ty 9T ATy OTm

A = dz dy dx dy
Ty,  9Tyo T 015 9o

Az Ay dx Ay

is a third-order invariant. In the case of symmetric tensor fields, 115 = T3, and

(T —T53) 011y O(T11 — Ty) Oy
dx dy dy dx
= 2(ad — be)

= 26

A
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Thus, ¢ is invariant under rotation of the coordinate axes.
This completes the proof. O

The invariant ¢ at a degenerate point allows us to distinguish simple from multiple

degenerate points. We define these two classes of degenerate points below.

Definition 11 (Simple and Multiple Degenerate Points) Let ¥y be an isolated
degenerate point of a tensor field T € C'(E), where E is an open subset of R*, and

let 6 = ad — be be the corresponding third-order invariant. Then, Zq is
o a simple degenerate point iff 6 # 0, or

o « multiple degenerate point iff 6 = 0.

In Section 4.3.3, we discuss in detail simple degenerate points. Since 6 # 0 in this
case, we can limit Taylor expansions of tensor components to first-order terms, and
use Equations 4.12 as a starting point for the analysis. Then, we discuss the more
complex multiple degenerate points in Section 4.3.4. In this case, the analysis is

complicated by the necessity of keeping higher-order terms in Equations 4.10.*

4.3.3 Simple Degenerate Points

From now on we assume that the functions 77; — T35 and T}, are analytic in an
open neighborhood of the degenerate point under study. That is, we assume that
both functions have converging Taylor expansions at each point of the neighborhood.
Following Definition 11, simple degenerate points are characterized by 6 = ad—bc # 0
and tensor components can be expressed as Taylor expansions limited to first-order

terms (Equation 4.12). Hence the following theorem:

4If § = 0, the gradients of Ty; — Ty, and T35 are colinear. To first-order approximation, the tensor
components do not vary in the direction perpendicular to the gradients, and a multiple degenerate
point appears as a “row” of adjacent simple degenerate points. Thus, we need higher-order terms
to accurately depict multiple degenerate points.
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Theorem 10 Let T be an analytic tensor field in an open subset £ of R* and let
ZTog € F be a simple degenerate point of T. Let 6 = ad — be # 0 be the third-order

invariant computed at Toq. Then,

1 1
Proof. Let @y = (xo,y0). To compute I1(Zy), we evaluate the line integral in

Equation 4.6 along a Jordan curve L encompassing ¥y and no other degenerate points.
L is chosen to be small enough so that tensor components can be approximated along
L by their first-order terms (Equations 4.12). Let u = 2 — ¢ and v = y — yo.
Equation 4.6 leads to

It(%o)

1 ?{ (au + bv)d(cu + dv) — (cu + dv)d(au + bv)
C Ar Jie+ (au + bv)? + (cu + dv)?
Theorem 4 grants considerable freedom in choosing the most appropriate curve L.

For example, consider the ellipse Lg satistying the equation
(au + bv)2 + (cu + clv)2 =1

The expression for the tensor index at Zy becomes

1
It(%) = yp ]{# (au + bv)d(cu + dv) — (cu + dv)d(au + bv)

Adopting new variables P = au + bv and () = cu + dv, replaces integrating along the
ellipse Ly in uv-plane by integrating along a circle Cy : P* + Q? = 1 in PQ-plane.
The motion along Lo must be counterclockwise, which corresponds to either a coun-

terclockwise or a clockwise motion along Cy, depending on whether the determinant

of the Jacobian

oP 9P
Erir B L B
00 2Q ¢ d
ou  Ov

is positive or negative. It follows that

sign(0)

47

In(i0) = #, PdQ - Qdr
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Letting P = cos ¢ and () = sin p,

sign(0)
Ar

7 2m
sign(?) dp = %sign(é)

2m
It(Zo) = /0 cos d sin ¢ — sin ¢d cos p =

47 0

This completes the proof. O

Corollary 4 When moving along a closed curve encompassing a simple degenerate

point, eigenvectors rotate in a constant direction, clockwise or counterclockwise.

Proof. Let a be the angle between the eigenvectors and the x-axis. From the proof

of Theorem 10,

d 1
£ = §3égn(5)

where ¢ is the polar angle running along the circle Cy in PQ)-plane. j—z may be positive

or negative but the important fact is that g—g keeps a constant sign for ¢ ranging from
0 to 27; when moving along a closed curve encompassing a simple degenerate point,

eigenvectors rotate in a constant direction—clockwise or counterclockwise.

This completes the proof. O

Corollary 5 FEach cigenvector field at a simple degenerate point has one or three

hyperbolic sectors, and no elliptic sectors. That s,

{ e =0 (4.16)

np = 2 — sign(0)
at simple degenerate points.
Proof. Theorems 8 and 10 imply that simple degenerate points are characterized by
np = ne + 2 — sign(6) (4.17)

Assume that there is at least one elliptic sector (n. > 1). Equation 4.17 implies that
there must be ny, > 2 (6 > 0) or ny, > 4 (6 < 0) hyperbolic sectors. From Corollary 4,

the eigenvectors must rotate in the same direction within both elliptic and hyperbolic
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sectors. Table 4.1 then shows that the hyperbolic sectors must be wider than 180°.
This is clearly impossible as the angles spanned by elliptic and hyperbolic sectors
must add up to less than 360°.

So ne = 0 and ny = 2 — sign(6).

This completes the proof. O

It follows that simple degenerate points with 6 < 0 have n;, = 3, n. = 0, and
It(Z) = —%. Likewise, simple degenerate points with 6 > 0 have ny = 1, n, = 0,

and It(Zy) = 5. The following theorem develops these results further.

Theorem 11 Let T be an analytic tensor field in an open subset E of R?, and let
Zo € E be an wsolated, simple degenerate point of T. The invariant 6 = ad—be # 0 at
To determines two classes of simple degenerate points which are shown schematically
in Figure 4.7. To 6 < 0 correspond trisector points (It(Zy) = —1) and to § > 0
correspond wedge points (I1(Zo) = 3). Neither types of points have elliptic sectors.
For each eigenvector field, trisector points have three hyperbolic sectors, no parabolic
sectors, and three separatrices—sy, So, and s3. Wedge points have either one hyperbolic
sector, one parabolic sector, and two separatrices (s and sy); or one hyperbolic sector,
no parabolic sector, and one separatriz (s; = sz). The angles 0y between the x-axis
and the separatrices sy, are obtained by computing the real roots zy, (including infinity)

of the cubic equation
dz> + (c+ 26)22 +(2a—d)z—c=0, (4.18)

by inverting the relation z, = tan @y, and by keeping only those angles that lie along
the boundary of a hyperbolic sector.

Remark. Figure 4.8 shows textures representing the two eigenvector fields, v; and
Uy, in the vicinity of a trisector and a wedge point. Color encodes the difference
between the two eigenvalues. Figure 4.8 emphasizes that the two eigenvector fields
have the same number of separatrices and that the separatrices of Uy are images of

the separatrices of ¥; under a rotation of +7 (see proof below). These properties
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S1
Trisector 6 <0
point lp =-1/2
S
2 Sg
S S _
:L ’ 2 S1 = 82
Wedge
points
>0
= 1/2

Figure 4.7: Simple degenerate points. 6 = ad — be # 0 and It = tensor index.
Trisector (6 < 0) and wedge (6 > 0) points. Trajectories sj are separatrices.
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Figure 4.8: Textures representing the two eigenvector fields in the vicinity of a tri-
sector point (top) and a wedge point (bottom). Color encodes the difference between
the two eigenvalues.
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Figure 4.9: Illustration of Theorem 11.

are specific to simple degenerate points and do not, in general, apply to multiple

degenerate points.

Proof. Consider a circle C' with radius r and center 7y (Figure 4.9). Let S be the
interior of C'. The radius r is chosen to be small enough so that no degenerate points
except Zp lie in C'U S, and so that tensor components can be approximated by their
first-order terms in every point of C'U S (Equation 4.12). Let 6 be the polar angle
between the x-axis and the radial vectors joining Z; to points on C, and let T},
1,7 = 1,2, be the Cartesian components of T. Then, Equation 1.3 implies that the
polar components of T—i.e., the components of T in the frame (L, fg) (Figure 4.9)—

are given by:

1 1 .
TTT = §(T11 -+ TQQ) -+ §(T11 - T22) cos 20 -+ T12 sin 26

1
Trg = TQT = —§(T11 — TQQ) sin 26 + T12 cos 20

1 1
T@@ = §(T11 + TQQ) — §(T11 — TQQ) cos 20 — T12 sin 26 (419)
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- X

Figure 4.10: Polar components of T.

These polar components are shown in Figure 4.10. At the direction of the separatri-
ces, one eigenvector of T lies in the radial direction.® This happens at angles § where

the polar components of T are diagonalized—i.e.,

T.g=Ty =0 (4.20)
which implies that
tan 20 = M
T — Ty

This equation is indeed equivalent to the condition
tan 20 = tan 2a(6)

where a(8) is the angle between the x-axis and the eigenvectors of T at position § along
C (Figure 4.9). Expanding tensor components to first order, as in Equations 4.12,

leads to p
oy cle = w0) 4 d(y — o)
a(z — o) + b(y — yo)

On the circle C', x — zg = rcos§ and y — yo = rsinf. Thus, Equation 4.20 becomes

tan 20 — 2tan 0 _c—l—dtan@
a "1 —tan?f a4+ btanh

or

d23—|—(c—|—26)22—|—(2a—d)2—c:0

5Not all of these “radial” directions are separatrices because some of them might not lie on the
boundary of a hyperbolic sector.
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where z = tan 6.
The direction of the separatrices with respect to the x-axis is, therefore, obtained
by computing the real roots z; (including infinity) of Equation 4.18, by extracting

the corresponding angles

0, = arctan z, (—

N | X
I
<
ol
I

R

and

9;6:¢9k—|—7r,

and by keeping only those directions that lie on the boundary of a hyperbolic sector
(this de facto eliminates unwanted parabolic/parabolic boundaries).

Another consequence of Equation 4.19 is that
TM(G) > ng(@) -~ TM(G + ﬂ') < ng(@ + 7'(')

and vice versa. In particular, if § = 6 is a radial direction, T,,(6x) is equal to the
eigenvalue A, (6y) corresponding to the radial eigenvector, and Tyy(0y) is equal to the

eigenvalue A\g(6y) corresponding to the eigenvector tangent to C'. Thus,

and vice versa. It follows that, if v; is radial at angles 61, 0,, ..., then ¥, is radial at
angles 67,6, ... Each real root z; of Equation 4.18 defines two angles, 6, and 6, that
correspond to radial directions of different eigenvector fields.

Let n, be the number of real roots z; of Equation 4.18. A cubic polynomial has

at most three real roots (including infinity), so

n, <3

These n, roots define 2n, angles, 05 and 65, and the former discussion implies that
each eigenvector is radial at exactly n, different angular positions along C. Since
every separatrix direction is a radial direction but not every radial direction is a
separatrix direction,

ns < n,
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So,
e < 3 (4.22)

and each eigenvector has at most three separatrices originating from a simple degen-
erate point.

It 6 < 0, Corollary 5 implies n, = 3 and n. = 0; the degenerate point has
three hyperbolic sectors and no elliptic sectors. There are no parabolic sectors or else
there would be at least 4 separatrices per eigenvector field, which is incompatible with
Equation 4.22. The pattern of hyperstreamlines therefore corresponds to the trisector
point shown by the texture in Figure 4.8 and represented schematically in Figure 4.7.
There are three separatrices, si, sy, and sz, per eigenvector field. Separatrices are
spread fairly evenly as each hyperbolic sector is less than 180° wide, a fact that
results from Corollary 4 and Table 4.1.

It 6 > 0, Corollary 5 implies n;, = 1 and n. = 0; the degenerate point has one
hyperbolic sector and no elliptic sector. There can be n, = 1 or n, = 0 parabolic
sectors. Assume that n, = 1, so there are n, = 2 separatrices per eigenvector—s;
and s;. The local pattern corresponds to the wedge point in Figures 4.7 and 4.8.
Corollary 4 and Table 4.1 imply that the hyperbolic sector at a wedge point is wider
than 180°. In some cases, it may happen that separatrices s; and s, collapse onto
each other, cancelling the parabolic sector and widening the hyperbolic sector to 360°.
Such a wedge point is represented in the bottom right corner of Figure 4.7. In this
case, there is only one separatrix per eigenvector field (n, = 0 and ny, = 1), and

Equation 4.18 has one real and two complex conjugate roots.
This completes the proof. O

The characteristics of simple degenerate points are summarized in Table 4.3.

4.3.4 Multiple Degenerate Points

Wedges and trisectors are instances of simple degenerate points. They are the simplest
singularities that can arise in continuous tensor fields in the sense that they cannot

be broken down into more elementary singularities associated to smaller indices. But
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Trisector Points Wedge Points
np 3 1
e 0
Ny 0 1 or
N 3 or 1
| - %
o < 180° > 180° or 360°

Table 4.3: Simple degenerate points. «; is the angle spanned by hyperbolic sectors.

there is more to the story. Definition 11 introduced yet another class of degenerate
points: the multiple degenerate points that are characterized by 6 = ad — be = 0.

A mathematical investigation of multiple degenerate points is complicated by the
fact that higher-order terms must now be taken into account in the Taylor expansions
of Equations 4.10. Fortunately, a great deal of insight into the structure of multiple

degenerate points can be gleaned from a Corollary of Theorem 5.

Corollary 6 A multiple degenerate point Ty of index It is equivalent in the far field
to a combination of simple degenerate points whose indices add up to Ip. That is, Ty

is equivalent to W wedge points and T trisectors such that

W—T =2Iy (4.23)

Proof. Let L be a Jordan curve and let S be L’s interior. Following Theorem 5,
the tensor index of L is equal to the sum of the indices at the degenerate points
in S. Assume that the only degenerate point lying in S is a multiple degenerate
point of index It. Following Corollary 1, It is an integer or half-integer quantity.
It follows that 2/7 is an integer number, and that it is always possible to find an
integer number of wedges (W) and an integer number of trisectors (77) satisfying
Equation 4.23. Thus, a tensor field with same boundary conditions on L, but with
W wedge points and 7 trisectors as only degenerate points in S, can be substituted

for T within S without changing the field in L’s exterior.

This completes the proof. O
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Figure 4.11: Combination of wedges and trisectors looking like a center in the far

field.

In order to illustrate Corollary 6, consider the combination of simple degenerate points
represented in Figure 4.11 (left). This pattern is made up of W = 4 wedge points and
T = 2 trisectors. The total index is IT =4 x % -2 X % =1 and the structure looks
like a center (I = 1) in the far field. As shown in Figure 4.11 (right), it is possible
to substitute a center for the pattern in L’s interior without changing the tensor field
in L’s exterior. We shall see that centers are indeed instances of multiple degenerate
points.

First, we discuss the nature of those multiple degenerate points that are created
by a few, merging, simple degenerate points. Then, we present a more general and

more mathematical approach that extends the results of Theorem 11 to a large class

of multiple degenerate points.

Merging Degenerate Points

In tensor fields that depend on time or on any other parameter, simple degener-
ate points move and eventually merge with each other, creating multiple degenerate
points. In this section, we explore the qualitative nature of multiple degenerate points
arising from merging a few simple degenerate points.

Figure 4.12 shows examples of multiple degenerate points created by merging
two simple degenerate points belonging to the same class. Each column represents

hyperstreamline patterns in one of the eigenvector fields. These combined patterns



Degenerate Points and Separatrices 129

77N\

saddle N\
B )

A

. o

Figure 4.12: Merging degenerate points. 6 = invariant of Equation 4.13, It = result-
ing tensor index. Each column represents one eigenvector field.

3

are created in such a way as to preserve continuity of the eigenvector fields. The

patterns that arise are familiar from vector field topology. For example, two merging

trisectors create a saddle point (/T = —%—% = —1) of each eigenvector field. Likewise,
two merging wedge points (I = % + % = 1) can induce simultaneously a node

of one eigenvector field and a center of the other eigenvector field, or under other
circumstances, they can create a pair of foci with opposite swirl.

It is interesting to note that by merging simple degenerate points of tensor fields,
multiple degenerate points arise that belong to the family of critical points of con-
tinuous, signed vector fields. These multiple degenerate points can merge in turn,
creating ever more complex singularities with an equivalent within the panoply of
multiple critical points of vector fields (see for example Reference [68]). Figure 4.13
shows an example where four merging wedge points create two centers which merge
in turn to induce a dipole (IT = 1+1 = 2). Dipoles are therefore multiple degenerate
points arising from the simultaneous merging of four wedge points.

Merging simple degenerate points can also have a destructive effect. Wedge points
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Figure 4.13: Dipole created by four merging wedge points.
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>>+

Figure 4.14: Merging wedge/trisector pairs inducing a cusp (top) and saddle-node
(bottom). Each pattern appears simultaneously in one of the two eigenvector fields.
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and trisectors cancel each other out by merging—i.e., they create a multiple degener-
ate point of index I = % — % = 0 which is equivalent in the far field to a regular (non-
degenerate) point. In a sense, it is as if the singularity vanished. This is represented
in Figure 4.14 which shows a merging wedge/trisector pair inducing simultaneously
a cusp (top) of one eigenvector field and a saddle-node (bottom) of the other eigen-
vector field. Both cusp and saddle-node can be replaced by a regular point without
any global effect on the tensor field. Conversely, in tensor fields varying smoothly
with time, wedge/trisector pairs can be created from regular points through an inter-
mediate step consisting of cusps and saddle-nodes. (Examples of pair creations are

discussed in Section 4.4.)

Separatrices of Multiple Degenerate Points

Now, we turn to a more quantitative discussion of multiple degenerate points. In order
to make the mathematical analysis tractable, we focus on degenerate points where
tensor components have Taylor expansions that start with homogeneous polynomials
of the same degree—i.e., m, = m, = m in Equations 4.10. That is, we assume that
tensor components can be expressed in the vicinity of a degenerate point o = (¢, yo)

as

T11—T22%Pmt_t 0 —
{ 2 (z =20,y = y0) + (m>1) (4.24)

Ty = Qu(z — x0,y — yo) + - -

This leads to Theorem 12 which generalizes Theorem 11 to multiple degenerate points.

Theorem 12 Let T be an analytic tensor field in an open subset E of R?, and let
To € F be an isolated, multiple degenerate point of T. Suppose that Taylor expansions
of %(TM — Tyy) and Ty about Ty begin with m'-degree polynomials P, (z,y) and
Qm(z,y), m > 1, as in Equations 4.24. Let

Pu(z,y) = Y pMamiyt
=0

Qulz,y) = 3 ¢™amiyl
=0

(m)

7

(m)

where coefficients p; ' and q; ', 1 =0,...,m, are given by Equations 4.11. Then, the

eigenvector fields have at Ty



132 Local and Global Tensor Icons

1. a multiple degenerate point with no more than 2(m + 2) separatrices for the two

eigenvector fields combined, or
2. a pair of foct with opposite swirl, or
3. a center and a star-node.

The angles 0 between the x-axis and the separatrices s are obtained by computing

the real roots zj, (including infinity) of the polynomial

A= 1 (¢, + 2 43 (¢ + 2 — ™)+ (2 — ™)z — g = 0,

= (4.25)
by inverting the relation z, = tan 8y, and by keeping only those angles that lie along
the boundary of a hyperbolic sector. Case 2 occurs when Fquation 4.25 has no real

root and Case 3 occurs when all coefficients in Equation /.25 vanish tdentically.

Proof. Consider a circle C' with radius r and center ¥y (Figure 4.9). Let S be
the interior of C'. The radius r is chosen to be small enough so that no degenerate
points except Zo lie in C'U S, and so that tensor components can be approximated
by Equations 4.24 at every point of C'U S.

On the circle ', x — 29 = rcos 8 and y — yo = rsin § which implies

P (x—20,y—yo) = Pn(rcosf,rsinf) =r"P,(cosf,sinf) = r™ cos™ HZpgm) tan'd

=0

and

Qu(r—20,y—y0) = Qu(rcosf,rsinf) = r"Q,.(cosd,sin ) = 1" cos™ 0 qz(m) tan'd
=0

Let a(f) be the angle between the x-axis and the eigenvectors at position 6 on C
(Figure 4.9). As in Theorem 11, angles where an eigenvector lies along the radial

direction obey

2T, rMcos™O L, pgm) tan® @

tan 20 = tan 2a(d) = =
(6) Tin =T rmcosm T, ql(m) tan 0
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or
2tanf YT, p(m) tan' 0

T

1 —tan?6 Y7 q(m) tan 0

7

which is equivalent to Equation 4.25 with z = tan 6.
Equation 4.25 is a polynomial of degree m + 2 admitting as many as m + 2 real

roots z; (including infinity), to which correspond 2(m + 2) radial directions

0 = arctanz, (—— <60, < —)

I3

N | X
R

and

Hﬁczak—l-ﬂ'

(k=1,...,m+2). After discounting unwanted parabolic/parabolic, parabolic/ellip-
tic, and elliptic/elliptic boundaries, one is left with no more than 2(m + 2) separatrix
directions.

Two particular cases are of interest. First, assume that the set of conditions

g" =0

2p0" — g™ =0
g™ 2 — g™ =0 i=2...m
qif”_)l + QP%R) =0

(m) — 0

m

is satisfied which amounts to say that all coefficients in Equation 4.25 vanish iden-
tically. Every angle € is a solution of Equation 4.25, and at every point of C', one
eigenvector lies along the radial direction while the other eigenvector is tangent to C.
Because these are the only possible orientations of the eigenvectors on C', and because
the position of the eigenvectors must change continuously and smoothly along C', all
the eigenvectors lying along the radial direction correspond to the same eigenvalue
(major or minor); the corresponding eigenvector field possesses a star-node at #y and
the other eigenvector field has a center (orthogonality of eigenvectors).

The second particular case happens when Equation 4.25 has no real root. In this
case, trajectories rotate around Zy without ever reaching it (or else there would be at

least one real root to Equation 4.25). It follows that the eigenvectors have a focus at
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Zo. The swirl of the two foci are opposite due to the orthogonality of the eigenvector

fields.
This completes the proof. O

As with simple degenerate points, if 8, is a radial direction, so is 8}, = 05 + 7, but
as opposed to simple degenerate points, the same eigenvector field can be radial at

both 6, and ;.

Corollary 7 If the components of an analytical tensor field have Taylor expansions
around a degenerate point starting with odd-degree polynomials—i.e., if m is odd—

then the degenerate point is not a focus.

Proof. When m is odd, Equation 4.25 is an odd-degree polynomial with real co-
efficients. Such a polynomial admits at least one real root, so the degenerate point

cannot be a focus.

This completes the proof. O

Examples

Multiple degenerate points are varied and numerous as illustrated by the few examples
below. These examples do not constitute a complete taxonomy; their purpose is to
illustrate Theorem 12 and Equation 4.25.

Consider the tensor field

1,2 1 90y 4 o2 2?42
T.\(Z) = 21"|’27:3/‘|‘22y 12r+y 1,2
-7ty —5a° —2zy — 3y
which has a multiple degenerate point at the origin with m = Z,pg‘)) = %,pf) =
2,p(22) = %, q(()2) = —1, qf) =0, and qéZ) = 1. Equation 4.25 becomes

24—|—23—|—222—|—z—|—1:(22—|—1)(22—|—2—|—1):O

which does not admit any real root. This corresponds to Case 2 in Theorem 12,

and T; exhibits a pair of foci with opposite swirl at the origin. The textures in
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Figure 4.15: Textures representing the eigenvectors of T1(Z). The tensor exhibits
two foci at the origin. Color encodes the square root of the difference between the
eigenvalues according to color scale 2 of Figure A.3.
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Figure 4.16: Textures representing the eigenvectors of T3(Z). The tensor exhibits a
center and a star-node at the origin. Color encodes the square root of the difference
between the eigenvalues according to color scale 2 of Figure A.3.
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Figure 4.15 represent the two foci. The index is I, = 1 and both eigenvector fields
are characterized by n, = n. =n, = n, = 0.

Next, consider the tensor field

B a?—y? 2uxy

2xy z? — gy
which admits a multiple degenerate point at the origin with m = 2,p82) = 1,p§2) =
O,p(22) = —1,q(()2) = O,qf) = 2, and q§2) = 0. All coefficients in Equation 4.25 vanish

identically, which corresponds to Case 3 of Theorem 12. As shown by the textures
in Figure 4.16, T; has a star-node and a center at the origin. The index is I, = 1.
The radial eigenvector is characterized by ny = n. = n, = 0 and n, = 1, while the
tangent eigenvector has ny, = n, = ng = n, = 0.

Another example of a m = 2 multiple degenerate point is the origin of the tensor

field
x? — 3y2 —dzy + 4y2
—Sxy + 4y* x? — 3y?

Ts(7) = (

in which case Equation 4.25 becomes
42 —112° =422 +72=0

which admits for real roots z; = —0.849,23 = 0,23 = 0.713, and z4 = 2.886. The
corresponding radial directions are 6; = 139.64°, §; = 319.64°, 6, = 0°, 6, = 180°,
05 = 35.51°, 0% = 215.51°, 6, = 70.89°, and 6} = 250.89°. The textures in Figure 4.17
show that T3 has two saddle points at the origin. Fach eigenvector field has n, = 4
hyperbolic and n. = 0 parabolic sectors. So the index is I, = —1. In addition, both
eigenvector fields have n, = 0 parabolic sectors and n, = 4 separatrices. Each radial
direction is a separatrix, reaching the theoretical maximum 2(m + 2) separatrices in
total. This example shows that, as opposed to simple degenerate points, separatrices
positioned 180° apart do not especially belong to different eigenvector fields.

More exotic patterns can arise. For example, the tensor field

_:E2+y2 _;E2_2:Ey+y2
_x2_2$y_|_y2 _ZEQ‘I_yQ

Ty(7) = (
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Figure 4.17: Textures representing the eigenvectors of tensor field T3(Z). The tensor
exhibits two saddle points at the origin. Superimposed are the separatrices. Color
encodes the square root of the difference between the eigenvalues according to color
scale 2 of Figure A.3.
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possesses a m = 2 multiple degenerate point at the origin. Radial directions are given
by Equation 4.25:
24—222—{—1:(22—1)2:0

which admits real roots at angles £45° and £135°, respectively. None of these radial
directions is a separatrix. T4 has a node and a center at the origin. The pattern of
hyperstreamlines is represented in Figure 4.18. nj = n. = 0 so the index is I, = 1.
The radial eigenvector field has n, = 1 parabolic sector and n, = 0 separatrices; the
other eigenvector field has n, = 0 parabolic sectors and n; = 0 separatrices.

Finally, the origin is a m = 4 multiple degenerate point of the tensor field

( xt — %.132’!/2 +yt 22 — 523y — 9z )

TS(T): 2”64—5.?73’—9’3 4 1.,.2,2 P}
: Y Ty z STy +y

Equation 4.25 becomes
025 — 7254322422 472-2=0

There are three finite roots, z; = —1.100, z5 = 0.260, and z3 = 1.127, and one infinite
root z4 = oo. The corresponding radial directions are §; = —47.73°, ] = 132.27°,
0, = 14.58°, 0, = 194.58°, 03 = 48.41°, 0, = 228.41°, 6, = —90°, and 6;, = 90°.
Figure 4.19 represents the eigenvector fields. There are ny = 2 hyperbolic and n, = 0
sectors per eigenvector field, so the index is I, = 0. Six of the eight radial directions
are separatrices. One eigenvector field has n, = 0 parabolic sectors and n, = 2
separatrices; the other eigenvector field has n, = 2 parabolic sectors and ny; = 4
separatrices. Ts illustrates that, as opposed to simple degenerate points, eigenvector
fields around multiple degenerate points do not generally have the same number
of parabolic sectors or the same number of separatrices. The difference n, — ny, is

preserved (Corollary 3) but ny, n., n,, and ns can differ individually.

4.3.5 Limit Cycles

In the former sections, we defined separatrices as hyperstreamline trajectories lying at

the boundaries of hyperbolic regions (Definition 10). So defined, separatrices emanate
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Figure 4.18: Textures representing the eigenvector fields of a node of T4(Z). The
tensor exhibits a node and a center at the origin. Color encodes the square root of
difference between the eigenvalues according to color scale 2 of Figure A.3.
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Figure 4.19: Textures representing the eigenvector fields of T5(#). The tensor exhibits
a multiple degenerate point with n, = 2 hyperbolic sectors. Superimposed are the
separatrices. Color encodes the fourth root of the difference between the eigenvalues
according to color scale 2 of Figure A.3.
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a

Figure 4.20: a: two limit cycles of a continuous tensor field; b and c: closed trajectories
that are not limit cycles after Definition 12.

from degenerate points. In this section, we define yet another type of separatrices
which do not originate from degenerate points. We call these trajectories “limit

cycles” by analogy to vector fields. A precise definition follows:

Definition 12 (Limit Cycle) Let T be a continuous tensor field, and let L be a
hyperstreamline cycle of T not passing through any degenerate point. Let S; be L’s
intertor and S be L’s exterior. Then, L is a limit cycle of T iff there exist two open
neighborhoods of L, N; C S; and N. C S., such that all trajectories within N; U N,
are either converging towards L or diverging away from L, when moving along L in

a constant direction.

Because they draw geometric boundaries that separate trajectories in their interior
from trajectories in their exterior, limit cycles play a role similar to separatrices
emanating from degenerate points.

Since they do not include any degenerate points, limit cycles are Jordan curves.
Indeed, they are closed, continuous and smooth (continuity of T), and simple (see
proof of Theorem 6). It is, therefore, always possible to distinguish between the
interior and the exterior of limit cycles.

Figure 4.20 (a) shows two limit cycles L together with representative trajectories

from L’s interior (L;) and exterior (L.). For L to qualify as a limit cycle, L; and L.
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must both converge or diverge when moving in a constant direction along L. (This is
the case in Figure 4.20 (a).) Conversely, Figures 4.20 (b) and 4.20 (c) represent closed
trajectories that are not limit cycles. Figure 4.20 (b) shows trajectories in the vicinity
of a center where neighboring hyperstreamlines propagate parallel to L without ever
converging nor diverging. L is a cycle within a band of cycles, but not a limit cycle
after Definition 12. Neither is the trajectory represented in Figure 4.20 (c), where
one trajectory diverges away from L while the other trajectory converges towards L.

Limit cycles typically occur in complex tensor fields that are not solenoidal.
(Solenoidal tensor fields are to be discussed in Theorem 13 below.) An example
is given in Figure 4.21, which represents Reynolds stresses (stresses induced by the
turbulent motion) in a 2-D flow past a cylinder at one instant in time. The tex-
ture encodes the eigenvector associated to the positive eigenvalue (traction) of the
Reynolds-stress tensor. Red and white dots are wedge points and trisectors, respec-
tively. The two superimposed curves are limit cycles. All hyperstreamline trajecto-
ries that propagate in clockwise direction within the cycles’ interiors or within some
nearby exterior neighborhood, end up trapped in an indefinite, periodic motion along

the limit cycles.®

We computed the limit cycles in Figure 4.21 by integrating hy-
perstreamlines from points located inside the cycles’ basins of attraction, and by
retaining only the final, periodic component of their trajectories.

In the remaining of this section, we discuss “simple” limit cycles. In this case,
the convergence / divergence of surrounding hyperstreamlines is strong enough to be
measured as a first-order function of the transverse distance, which amounts to say

that the first-order derivative of the Poincaré map does not vanish (Reference [69]).

The following theorems are properties of solenoidal tensor fields.
Theorem 13 2-D solenoidal tensor fields do not have stmple limit cycles.

Proof. Let L be a limit cycle of a solenoidal tensor field. We shall prove that L
cannot exist. Trajectories on both sides of L either converge towards L or diverge
away from L, when moving in a constant direction along L. This simple behavior

of neighboring trajectories and the absence of degenerate points on L allow us to

6The convergence, however, is fairly slow and hard to notice by simple inspection of the textures.



144 Local and Global Tensor Icons

Figure 4.21: Textures representing the major eigenvector field (traction) of Reynolds
stresses in a 2-D flow past a cylinder. Superimposed are two limit cycles. White dots
are trisector points and red dots are wedge points. Color encodes the magnitude of
the longitudinal Reynolds stress according to color scale 2 of Figure A.3.
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continuously confer a sign to the eigenvector fields within the domain N; U L U N,

(Definition 12). It follows from Theorem 1 that
)\; - [(lt()\l - )‘t)

in N;UL U N,, where )\; and \; are the longitudinal and transverse eigenvalues,
respectively. A} is the derivative of the longitudinal eigenvalue along L, and Kj
is positive or negative depending on whether neighboring trajectories converge or
diverge.

Let P be any point on L. L being a closed curve and solenoidal tensor fields being

continuous,
MN(P) + éﬁ Nds = \(P)

which implies that
Nds = j’% Ki(\ — A)ds = 0

L+
However, this is not possible because the integrand has a constant sign along L. Thus,

L does not exist.
This completes the proof. O

Again, there is complete analogy between the properties of solenoidal tensor and
vector fields. We can indeed use a similar argument to show that solenoidal vec-
tor fields do not have simple limit cycles such as those in Figure 4.20 (a) (Ref-
erence [69]). Their only admissible periodic trajectories are cycles within a band
of cycles (Figure 4.20 (b)), semi-stable cycles (Figure 4.20 (c)), or limit cycles with
higher-order convergence / divergence (vanishing first-order derivative of the Poincaré
map—Reference [69]).

The following theorem extends this result to 3-D solenoidal tensor fields.

Theorem 14 The major and minor eigenvectors of 3-D solenoidal tensor fields do

not have structures such as the simple attractor cycles shown in Figure 4.22.

Proof. The proof is similar to Theorem 13, but requires using Equation 3.8 instead

of Equation 3.7.
This completes the proof. O
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Figure 4.22: Attractor cycles in 3-D tensor fields.

In the next section, we show how to extract topological skeletons built from sepa-
ratrices that emanate from degenerate points. In order to obtain complete topological

depictions of tensor fields, we must add any eventual limit cycles (or attractor cycles

in 3-D).

4.4 Tensor Field Topology

We build on the theory of degenerate points to extract the topology of tensor fields and
to study topological transitions. The technique is similar to vector field topology with
degenerate points playing the role of critical points. We represent each eigenvector
field by a topological skeleton obtained by locating degenerate points and integrating
the set of their connecting separatrices.

We illustrate these concepts by visualizing the topology of the stress tensor in a
2-D periodic flow past a cylinder.” Fluid elements undergo compressive stresses while
moving with the flow. Stresses are described mathematically by the stress tensor,

which combines isotropic pressure and anisotropic viscous stresses (Table 1.2). Both

“An accompanying video tape is available upon request from Prof. Lambertus Hesselink, Depart-
ment of Electrical Engineering, Stanford University.
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eigenvalues of the stress tensor are negative and the two orthogonal eigenvectors,
U1 and vy (Equation 4.1), are along the least and the most compressive directions,
respectively. At a degenerate point, the viscous stresses vanish and both eigenvalues
are equal to the pressure; degenerate points are points of pure pressure.

The textures in Figure 4.23 show the flow (velocity field) at two representative
time steps. The flow consists of the periodic detachment of a separation bubble,
with repeated shedding downstream of saddle/center pairs. Color encodes velocity

magnitude, from fast (red) to slow (blue).

Video Clip 1. This clip shows a moving texture representing the periodic evolution of
the flow over time. Color encodes velocity magnitude as in Figure 4.23, from fast (red) to
slow (blue). Slow regions correspond to saddle/center pairs originating on the cylinder’s
surface as detachment bubbles alternatively above and below the cylinder's symmetric

axis.

4.4.1 Tracking Degenerate Points

The first step for understanding the structure of the stress-tensor field consists in
tracking the motion of degenerate points over time. We locate degenerate points at
each time step by seeking solutions to Equations 4.3. We process each grid cell one
after the other as detailed in Appendix B.

Figure 4.24 shows results at a specific instant in time. The dots mark the location
of simple degenerate points. The top view shows the overall data while the bottom
view focuses on the region close to the body. The colored background encodes the
magnitude Ay of the most compressive force, from very compressive (red), to mildly
compressive (orange, yellow, green), to little compressive (blue). Wedge points and
trisectors are represented as black and white dots, respectively. It is shown clearly
that wedge points are situated in the wake about the cylinder axis while trisector
points are located off-axis. The images in Figure 4.24 belong to two video clips that

visualize the motion of degenerate points over time.
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Figure 4.23: Frames of Video Clip 1 showing the flow at two representative time
steps. Color encodes velocity magnitude from fast (red) to slow (blue), according to
color scale 2 of Figure A.3.
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Figure 4.24: Frames of Video Clips 2 and 3 showing the motion of degenerate points of
the stress-tensor field over time. Wedge points are represented as black dots and tri-
sectors are white dots. Color encodes the most compressive eigenvalue, Ay, from very
compressive (red), to mildly compressive (orange, yellow, green), to little compressive
(blue). We use color scale 2 of Figure A.3.
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Video Clips 2 and 3. We visualize the motion of degenerate points of the stress-
tensor field. The colored background is as in Figure 4.24. We show wedge points as
black dots and trisectors as white dots. Video Clip 2 represents the overall structure
of the motion and Video Clip 3 focuses on the region closer to the body. The video
clips show periodic creations of wedge/trisector pairs alternatively above and below the
cylinder’'s symmetry axis. These pair-creation events are clearly tied to each region of low

compressive stresses (blue color).

%

Figure 4.24 contains valuable information but we can learn more about the spa-
tiotemporal structure of the tensor field by representing in a still image, the trajecto-
ries followed by degenerate points over time. Figure 4.25 shows these trajectories in
three-dimensional space. The third dimension is time, increasing from front to back.
The figure represents one period of the evolution of the flow. Red spheres are wedge
points and green spheres are trisectors.

Interesting phenomena occur at locations marked by the letters “C” and “M”,
respectively. C-events are creations of wedge-trisector pairs from regular points, and
M-events correspond to pair cancellation by merging. As discussed in Section 4.3.4,
both processes of creating and cancelling wedge-trisector pairs are topologically con-
sistent since they conserve the local index. In some instances, pair creations affect
only the local flow; the two newly created points move together and eventually dis-
appear by merging. Two C-events, however, are different; the newly created points
move far away from each other, inducing a topological transition of the tensor field.
These new wedge-trisector pairs are created periodically in a location above and be-
low the axis of symmetry, alternatively. New wedge points are quickly dragged into
the wake about the cylinder’s axis while new trisectors move downstream away from

the axis.

4.4.2 Correlating Vector and Tensor Data

Tensor data are highly multivariate and rich in information content but they are also

complex and poorly understood, while vector data are simpler and more familiar. It
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Figure 4.25: Spatiotemporal trajectories of degenerate points in the stress-tensor field.
Time increases from front to back. Red spheres = wedges, green spheres = trisectors.
M and Cindicate merging and creation of wedge-trisector pairs, respectively.
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can be useful to correlate visually tensor and vector fields, not only for our basic
understanding of tensor data, but also for gleaning new physical insights into vector

fields. In this section we correlate velocity field and stress tensor.

Video Clip 4. The moving texture encodes the direction of the velocity field. Color
encodes the magnitude of the most compressive eigenvalue, \,, from very compressive
(red), to mildly compressive (orange, yellow, green), to little compressive (blue). Overlaid
are the degenerate points of the stress tensor. Wedge points and trisectors are represented

as black and white dots, respectively.

%

Figure 4.26 represents one frame from this clip. (Here wedge points are drawn
in red.) Texture and color indicate clearly that detachment bubbles (saddle-center
pairs of the velocity field) are regions of low compressive stresses. The motion of
the degenerate points is interesting. The wedge point A originates by pair creation
then follows the detachment bubble in its motion downstream. In fact, a new pair
is created with each new bubble. The oscillating pair B is closely associated to the
recirculation regions close to the body surface. The wedge C follows a stable orbit
shaped as an 8. It rolls back and forth between two consecutive bubbles without ever

venturing inside.

4.4.3 Topological Skeletons

We obtain topological skeletons by detecting degenerate points and integrating the
set of their connecting separatrices. Trisector points in tensor fields play the topo-
logical role of saddle points in vector fields. As shown in Figures 4.7 and 4.8, they
deflect adjacent trajectories in any one of their three hyperbolic sectors toward topo-
logically distinct regions of the domain. Wedge points possess both a hyperbolic and
a parabolic sector. They deflect trajectories adjacent in their hyperbolic sector, and

terminate trajectories impinging on their parabolic sector.
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Figure 4.26: A frame of Video Clip 4 showing the correlation between the velocity
field (moving texture) and the degenerate points of the stress tensor. Color encodes
the most compressive stresses, from very compressive (red), to mildly compressive
(orange, yellow, green), to little compressive (blue). Red dots = wedges, white dots
= trisectors.
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Here follows an algorithm to extract the topology of a tensor field. This simplified

version handles simple degenerate points only:®

1. locate degenerate points by searching for solutions to Equations 4.3 in every

grid cell (this step is detailed in Appendix B);

2. classify each degenerate point as a trisector (6 < 0) or a wedge point (6 > 0)
by evaluating a, b, ¢, d using Equations 4.11 and computing 6 = ad — be; send a

warning message if a multiple degenerate point (6 = 0) is detected;?
3. select an eigenvector field;

4. solve Equation 4.18 to find the directions of the three separatrices (s1, sq, s3) at
each trisector point (Figure 4.7—top); likewise, extract separatrices (sq, s3) at
wedge points where Equation 4.18 admits three real roots'® (Figure 4.7—bottom
left) and extract the unique separatrix at wedge points where Equation 4.18 has

only one real root (Figure 4.7—bottom right);

5. integrate hyperstreamlines along the separatrices;!! terminate the trajectories
wherever they leave the domain, or impinge on the parabolic sector of a wedge

point.12

Figure 4.27 shows an example. The texture represents the most compressive
eigenvector of the stress tensor (Uz). Color encodes as before the magnitude of the
compressive force (Ag), from most compressive (red) to least compressive (blue). We
emphasize the structure of the tensor field by superimposing the topological skeleton

of U5. These time-dependent data are complex, and we find that the spatiotemporal

8More complex algorithms are necessary to extract automatically multiple degenerate points
(Section 4.3.4) and limit cycles (Section 4.3.5).

°In practice, we avoid roundoff problems by using a threshold ¢, 0 < € < 1, and considering that
the degenerate point is multiple if |§] < e.

10We keep only the smallest and the largest of the three angles that define radial direction of each
eigenvector field.

1Tn practice, we start integrating at a location a small distance away from the degenerate point
in the direction of the separatrices.

12In practice, we terminate trajectories propagating within the parabolic sector of a wedge point
at a distance smaller than a given threshold.
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Figure 4.27: A frame of Video Clip 5 showing the instantaneous topology of the most
compressive eigenvector . Color encodes \q, from very compressive (red), to mildly
compressive (orange, yellow, green), to little compressive (blue). W = wedge points,
T = trisectors.
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Figure 4.28: Two consecutive frames showing a topological transition of the stress-
tensor field.

structure of the tensor field is conveyed more efficiently by simplifying the skeletons
and displaying only the separatrices that originate at trisector points, leaving aside
the separatrices that emanate from wedge points.

We can infer the orientation of the eigenvectors at any point in the plane from
the topological skeleton: hyperstreamlines curve their trajectories so as to follow the
shape of the separatrices, bending around wedge points. In Figure 4.27 for example,
wedge points are located around the cylinder’s axis and trisectors quickly move off-
axis. The separatrices that emanate from the trisector points delineate the global
structure of the most compressive eigenvector; hyperstreamlines oscillate about the
cylinder’s axis, presenting a distorted, wave-like pattern with sharp turns at the wedge
points.

With time, the repeated creation of new wedge-trisector pairs induces periodic
topological transitions, which we illustrate in Figure 4.28. The newly created pair
{T5,Ws} changes the topological structure of the tensor field. Hyperstreamline tra-
jectories which used to follow the separatrices W5 — Ty — Wy — W5 and W5 — T, — W,
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ended trapped in the parabolic sector of Wy; now, they sweep pass the new trisec-
tor T5—bending along the hyperbolic sector of Wg—and pursue their course further

downstream.

As with vector field topology, the power of the representation comes from its
simplicity; a few points and lines suffice to reveal the directional information otherwise

buried within abundant multivariate data.

Video Clips 5 and 6. The two clips show the evolution with time of the topological
skeleton in Figure 4.27, with and without the textured background. Black dots represent
wedge points and white dots are trisectors. Topological transitions such as the one rep-
resented in Figure 4.28 occur periodically, first above then below the cylinder's symmetry

axis.

%

By using textures or topological skeletons, we render tensor information only
partially. We discussed in Section 3.2.2 a technique to correlate the two eigenvector
fields within a single display. Another example is given in Figure 4.29 where we use
texture, color, and elevation as channels to encode eigenvector direction, longitudinal
eigenvalue, and transverse eigenvalue, respectively. The texture is the same as in
Figure 4.27. In addition to topological information, the display reveals a strong
correlation between the two eigenvalues—a fact that was previously overlooked in

“flat” representations of one eigenvector field, such as Figure 4.27.

4.5 Tensor Topological Rule

When a tensor field is defined across a surface M, the topology of M puts a constraint
on the number and nature of degenerate points, considerably limiting the variety of

possible tensor patterns. We investigate this constraint in this section.
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Figure 4.29: Trivariate data visualization to fully represent the stress-tensor field.
The texture and the topological skeletons show the most compressive eigenvector vs.
Color encodes g, from very compressive (red), to mildly compressive (orange, yellow,
green), to little compressive (blue). Red dots are wedge points and white dots are
trisectors. The elevation of the surface encodes the least compressive eigenvalue, A;.
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M x(M)
sphere 2
torus 0

2-holed torus -2
g-holed torus | 2-2¢g

Table 4.4: Fuler characteristic of generic surfaces.

Euler Characteristic

The topology of any surface M is unambiguously characterized by a single number
x(M) called the surface’s Euler characteristic [71]. All orientable!® homeomorphic
surfaces (i.e., the set of orientable surfaces that can be distorted to look identical
by continuous bending, stretching, or squashing, but without tearing or gluing) have
the same value of x(M). The Euler characteristic (M) is related to the number of
“holes” in M which is called the surface’s genus, g(M). The relation between x(M)
and g(M) is

(M) = 2~ 2g(M) (1.26)

For example, a sphere and a cube are homeomorphic with ¢(M) = 0 and x(M) = 2.
A torus and a coffee mug are homeomorphic with ¢(M) = 1 and x(M) = 0. Table 4.4

summarizes x(M) for a few generic surfaces.

Vector Fields Tangent to 2-D Surfaces

Consider a vector field 0(Z) tangent to a 2-D surface M. That is, at each point ¥
of M, the vector v(Z) lies in the plane tangent to M at Z. A classical theorem of
surface topology, known as the Poincaré-Hopf theorem (Reference [72]), establishes a
link between the topology of the surface M and the topology of the vector field (%)
on M. Indeed, this theorem, also known as the Poincaré Index Theorem, stipulates
that under appropriate conditions of continuity and differentiability of both vector
field and surface, the sum of the indices at the critical points of ¢(¥) is equal to

x(M). Thus, if ¥(Z) has N nodes, C centers, F foci, and S saddles on M, the total

13Gee Reference [71] for a precise definition of surface orientability. Most of the surfaces in every
day life are orientable. Notable exceptions include Mobius bands and Klein bottles.
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Figure 4.30: A tensor field defined across an orientable surface M.

index is N+ C + F — 8§ = x(M). This result shows how the topology of the surface
M—i.e., x(M)—affects the structure of any vector field tangent to M—i.e., the sum
N+C+F-S8.

Tensor Fields Tangent to 2-D Surfaces

In the following, we extend the Poincaré-Hopf theorem to symmetric tensor fields
T(Z) that are tangent to orientable, 2-D surfaces M. The data under consideration
are 3-D symmetric tensor fields T(Z) that are defined across an open subset £ C R?
such that M C E and that have at every point ¥ of M two orthogonal eigenvectors
lying in the plane tangent to M at ¥ (Figure 4.30). It is clear that T possesses a
third eigenvector field directed along the normal to M, but we confine the discussion
to the system of two eigenvector fields tangent to M. We assume that T has a
finite number of isolated degenerate points on M, and that these degenerate points
never involve the eigenvalue corresponding to the normal eigenvector. Thus, when
referring to “degenerate point of T on M” we really mean “degenerate point of the two
tangent eigenvector fields.” Further, the condition T € C'(M) means that the two

tangent eigenvector fields are continuous across M except at the location of eventual
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degenerate points.

Tensor Index of a Surface

We can define the index of an orientable surface M with respect to a tensor field
T tangent to M, by extending to surfaces the notion of index of a Jordan curve

(Equation 4.7).

Definition 13 (Tensor Index of a Surface) Let T € C'(M) be a tensor field tan-
gent to an orientable surface M. Assume that T has m isolated degenerate points
T, € M, 1 =1,...,m. Then, the tensor index of the surface M with respect to the
tensor field T s

It(M) =) Ir(&)
1=1
where It(Z;) is the tensor index at Z;.

In order to analyze how the topology of M affects the topology of T, we make the

following assumption:

Conjecture 1 The tensor index of a sphere S with respect to a tangent tensor field

T € CY(S) is a constant number independent of the particular tensor field T.

This conjecture is certainly true for continuous vector fields (see for example Refer-
ences [73, 69]) and we assume that it remains true for continuous tensor fields—i.e.,
for continuous but unsigned eigenvector fields.

Figure 4.31 represents a possible pattern for an eigenvector field tangent to a
sphere S. The topological skeleton consists of 7 = 2 trisectors and W = 6 wedge
points. It follows that the tensor index of a sphere S with respect to the particular
tensor field represented in Figure 4.31, and by virtue of the above conjecture, with

respect to any continuous, tangent tensor field T is given by
1 1
]T(S):ZLX_——ZX_—:Z (427)

From there on we can infer the link between the topology of a surface M and the

topology of tensor fields T tangent to M:
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Figure 4.31: A tensor field tangent to a sphere S. T’s are trisectors and W's are
wedge points.

Theorem 15 The tensor index IT(M) of a 2-D orientable surface M relative to a
tangent tensor field T € CY(M), with at most a finite number m of degenerate points
on M, s independent of T and is equal to the Euler characteristic of M. Thus,

Ip(M) =} It(&:) = x(M) (4.28)
=1
where T;, © = 1,...,m, are isolated degenerate points of T on M and I1(Z;), © =

1

,o.o.,m, are the associated tensor indices.

Proof. First, we show that the tensor index of an orientable surface M with genus
g(M) is given by
It(M) = (1 —g(M))Iz(S) (4.29)

where IT(S) is the tensor index of a sphere. Equation 4.29 was proven by Gomory
in the case of continuous vector fields defined across surfaces. Here we reproduce the
proof given in Reference [69], pp. 284-285. This proof applies to continuous tensor
fields as well, because it is purely topological; nowhere does the reasoning rely on the
vector field being signed or on the specific nature of the singularities—i.e., critical

versus degenerate points.
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325;@ G,

Figure 4.32: Calculation of the tensor index of a surface of genus g(M).

The surface M of genus ¢g(M) is homeomorphic to the g(M)-holed torus repre-
sented in Figure 4.32 (top). (This is also the topological equivalent of a sphere with
¢(M) handles.) Suppose that the tensor field T has only a finite number of degener-
ate points on M. As in Figure 4.32 (top), cut out at each hole of M a narrow section
Siyt=1,...,9(M), which does not contain any degenerate point. Then, shrink the
boundaries of S; to the points p; and p} and the boundaries of M to the points ¢; and
¢! as in Figure 4.32 (bottom).

Let us denote M’ and S}, ¢ = 1,...,¢g(M), the resulting surfaces. The shrinking

of the boundaries to the points ¢; and ¢} introduces new singularities on M'. Thus,
9(M)
It(M') = It (M) + Y (It(g) + I1(q;)) (4.30)

=1

The surface M’ is homeomorphic to a sphere S, so
In(M’) = In(S) (131)

It is also true that
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and that
It(g;) = It(p})
SO

Ir(q:) + It(q)) = Ir(p:) + I1(p}) = IT(S) (4.32)

since each surface S} is homeomorphic to a sphere. It follows from Equations 4.30,
4.31, and 4.32 that

I7(S) = IT(M) + g(M)I1(S)
or

Ip(M) = (1 = g(M))I1(S)

which proves Equation 4.29.
Combining Equation 4.29 with Equation 4.27, we obtain

Ip(M) = 2(1 — g(M))
which is precisely equal to the Euler characteristic of the surface M (Equation 4.26).
This completes the proof. O

As with vector fields, this rule establishes a connection between the topology of
the surface M (i.e., x(M)) and the structure of any tensor field tangent to M—i.e.,

the sum of tensor indices at degenerate points on M.

Corollary 8 Within the assumptions of Theorem 15, and if the degenerate points of
T on M consist of W wedges, T trisectors, N nodes, C centers, F foci, S saddles,
D dipoles, ..., then Fquation 4.28 implies the topological rule

1
SOV =T)+ N +C+F-S+2D+...=x(M)

where the sum in the left-hand side encompasses all the different types of degenerate
points of T on M.

Equation 4.28 considerably restricts the number of admissible surface tensor pat-
terns. For example, Figure 4.33 shows two complex tensor fields—one defined across

a torus and another one across a sphere. A topological analysis reveals N =C = F =
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Figure 4.33: Illustration of the tensor topological rule for a torus and a sphere.
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S=D=0,W=1T =18 for the torus, and N =C=1,F=D=0,W=T =3
for the sphere. Both sets of values satisfy Equation 4.28 with y(torus) = 0 and
x(sphere) = 2, respectively.

Finally, we note that Theorem 15 and Corollary 8 can also be inferred by using
results from the topology of line fields (Reference [74], pp. 324-332).

4.6 Extensions to 3-D Symmetric Tensor Fields

In this section, we discuss global icons of 3-D symmetric tensor fields. First, we partly
extend the theory of degenerate points to 3-D tensor data (Section 4.6.1). Then, we
identify structural loci that characterize globally infinite collections of hyperstream-

lines—i.e., both their trajectories and their cross-sections (Section 4.6.2).

4.6.1 Degenerate Points

We extend the theory of degenerate points to 3-D symmetric tensor fields (Equa-
tion 1.6). In this case, there are three real eigenvalues, );, and three unit orthogonal
eigenvectors, €;, ¢ = 1,2, 3, at each point of space. The data are equivalent to three

orthogonal eigenvector fields

i=1,2,3.

Various types of degenerate points g exist, corresponding to the conditions

and

respectively.* Consider a degenerate point where two eigenvalues are identical—for

example, A\ (Zo) = Aa(Zo) > A3(Zo). The tensor field is degenerate in the plane

HMRecall that A1(Z) > Aa(Z) > As(F) at every point Z.
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orthogonal to U3(#y) within which locally two-dimensional patterns such as wedge
points, trisectors, and multiple degenerate points can occur. Figure 4.34 represents
the tensor field around a wedge point and a trisector in the plane orthogonal to ¥3(Zy).
An example of such patterns is given in Figure 4.35, which shows a trisector point
deflecting hyperstreamline trajectories in the elastic stress tensor of Figure 3.6. In
addition to these simple degenerate points, the whole panoply of multiple degenerate
points can occur.

In fact, the patterns in Figure 4.34 should be drawn on a surface normal to the non-
degenerate eigenvector field, v3(Z). However, when close enough to #o, this surface
can be approximated with arbitrary precision by its tangent plane P at #y. (Away
from g, trajectories depart from P.)

Techniques discussed in Sections 4.3.3 and 4.3.4 to analyze quantitatively 2-D
degenerate points also apply to degenerate points of 3-D symmetric tensor fields. Let
Zo be a degenerate point of a tensor field T = {T};}, ¢,7 = 1,2,3. Assume that
M(Zo) = Xa(Zo) = A but that A\3(Zo) # A Let B = {#}, i,j = 1,2,3, be the
rotation matrix that brings the third axis of the coordinate system along €5(Zo)—the
unit eigenvector associated to A3(Zp) (Figure 4.34). Transforming T by the rotation
B = {3} leads to new components

3
Ti/j = Z ﬁ?p ?quq
Pyg=1
At %o, T’ is diagonalized—i.e.,
A 0
T'(Zo) = {T;(Z0)} = | © 0
0

o > O

As

Let ot =>>_, 89 (x, —a?), i =1,2,3, be the new coordinates. z} = 0 at the location
of the degenerate point Zy. z] and 2}, run along the plane P while z} goes in the
direction normal to P. This new frame of reference is shown in Figure 4.34, where
we translated the origin away from the degenerate point for clarity. The components

of T' in the vicinity of ¥y can be expanded to first-order terms as

3
T3(E) = Tj;(Zo) + > o,
k=1
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Figure 4.34: Three-dimensional wedge point and trisector around a degenerate point
where A\ = Ay > 3.
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Figure 4.35: A trisector point that deflects minor hyperstreamline trajectories of the
elastic stress tensor in Figure 3.6. Color encodes the longitudinal eigenvalue according
to color scale 1 in Figure A.3.
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with 2,7,k = 1,2,3. The derivatives
, 0T

ik = O,

are computed for 2} = 0. We can analyze tensor patterns in the plane P (Figure 4.34)

by letting 25 = 0 and considering the 2x2 block

! ! ! ! ! ! ! ! ! !
( T, T4, ) . ( A+ aqp ) + gty Q91T T Q99T )

7 7 ! 7 ! ! ! ! ! !
Ty, T 09177 + Q95T A+ Qg @] + gy

As in Section 4.3.3, the important parameter is the third-order invariant 6 = a'd'—b'¢,
where o’ = L(aly; — aby), ' = (o, — ayy), ¢ = oy, and d' = of,,. Trisectors,
wedge points, and multiple degenerate points correspond to 6 < 0, 6 > 0, and é = 0,
respectively.

The former discussion concerns degenerate points where A1 (Zg) = Aa(Zo) > A3(Zo).
The case of degenerate points characterized by A (Zo) > A2(%o) = A3(Zo) is similar.
However, fully three-dimensional patterns that exist in the vicinity of degenerate
points where A\;(Zo) = A2 (Zo) = A3(Zo) = A—such as points of pure pressure in 3-D
stress-tensor fields—are yet to be analyzed. In this case T;;(Zo) = Xé;j, 1,5 = 1,2, 3,

so we can locate these degenerate points by solving five simultaneous equations:

T11(Zo) — Ta(%0) =0

Ty(Zo) — T33(Z0) =0

Tyy(Zo) = 0 (4.33)
Ty5(Zo) = 0

Tys(7o) = 0

Hyperstreamline patterns that arise in the vicinity of Zy are, therefore, characterized

by gradients of five scalar functions.

4.6.2 Topological Loci

As discussed in Chapter 3, we can interpret 3-D symmetric tensor fields as three
infinite collections of hyperstreamlines, one along each eigenvector field. Each hyper-

streamline is characterized by its trajectory, color, and cross-section.
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In order to project such mental images on a computer screen, we must solve
complex problems related to visual clutter. Displaying intelligibly more than a few
hyperstreamlines is not simple, and representing directly an infinite number of such
hyperstreamlines is a fortiori beyond reach. We can represent indirectly, however, the
collective behavior of a large number of hyperstreamlines. That is, we can display
various topological loci that unambiguously characterize an infinite set of hyper-
streamlines without actually drawing them. Many conclusions about the behavior of
hidden or undrawn hyperstreamlines can be inferred by learning to interpret these

loci.

Consider the collection ‘HS; of hyperstreamlines propagating along the longitu-
dinal eigenvector field v; corresponding to the eigenvalue A;. Let us denote the two
transverse eigenvalues by A;, and ), respectively. Important features exist in both

the trajectory and the cross-section of the hyperstreamlines belonging to HS,.

The locus

(A=A )\ — Agy) = 0 (4.34)

is the set of degenerate points that deflect, attract, or terminate hyperstreamline
trajectories in ‘HS;. This set includes both degenerate points where two eigenvalues
are equal to each other and degenerate points where all three eigenvalues are identical.
The representation of the locus in Equation 4.34 partly elucidates the global behavior
of trajectories in HS; at points outside this locus, hyperstreamline trajectories behave

as if the tensor field were topologically uniform.

Equation 4.34 is formally important, but in practice it is easier to locate degen-
erate points by directly considering tensor components rather than eigenvalues. (See
for example Equations 4.3 or 4.33.'®) The reason is that computing zeros of func-
tions of tensor components is much easier than computing extrema of functions of

eigenvalues.'®

15Equations 4.3 apply to degenerate points of 2-D symmetric tensor fields only. For 3-D symmetric
tensor fields, more complex equations involving tensor coefficients have to be solved in order to locate
degenerate points where two eigenvalues are degenerate.

16Zeros of Equation 4.34 are also extrema because of the specific ordering A; > Ay > A3 of the
eigenvalues.



172 Local and Global Tensor Icons

Other topological loci characterize the cross-sections of hyperstreamlines belong-
ing to ‘HS;. For example, at points where the product of the transverse eigenvalues
vanish—i.e., points where

Aty Ay, = 0 (4.35)
cross-sections of hyperstreamlines in ‘HS; are singular; they are reduced to straight
lines or even points. More generally, loci where the eccentricity of the cross-sections

€ = 1 — min2(|)‘t1|7|)‘tz|)
maX2(|)‘t1 |7 |)‘t2|)

is constant are sets of points where the cross-sections of hyperstreamlines in HS; have

the same shape, regardless of their orientation and scaling. In particular, the locus
)\tl :i: )\t2 - 0

is the set of points where cross-sections degenerate into a circle (e = 0).

Elastic Stress Tensor Induced by Two Compressive Forces

Figure 4.36 shows topological loci for the stress tensor depicted in Figure 3.6 (elas-
tic stress tensor induced by two compressive forces). Yellow and green surfaces are
loci of points where medium eigenvalue Ay and major eigenvalue A\; vanish, respec-
tively. The two surfaces taken together correspond to the locus in Equation 4.35. On
both surfaces, the cross-sections of minor tubes (four of them are shown) reduce to
straight lines. On the blue surface \; — Ay = 0, transverse eigenvalues are opposite
to each other and minor tubes’ cross-sections are circular. Below the yellow surface,
both transverse eigenvalues are positive; all transverse directions in the tubes’ cross-
sections are in tension. Above the yellow surface, the medium eigenvalue is negative;
some transverse directions are in tension while others are compressive. Inside the
green surface, however, both transverse eigenvalues are negative, and all transverse

directions are in compression.

Stress and Viscous-Stress Tensors in Fluid Flows

Another example of structural depiction is given for the stress tensor o;; and the

viscous-stress tensor o/, in fluid flows. As shown in Table 1.2, these two tensors differ
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Figure 4.36: Topological loci of the elastic stress tensor in Figure 3.6.
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only by an isotropic pressure component, implying that the unit eigenvectors of both
tensor fields are identical. However, eigenvalues of o;; are equal to eigenvalues of
ol minus a large pressure component. Table 1.2 also shows that visualizing o/, is
equivalent to visualizing the rate-of-strain tensor ¢;; in incompressible flows.

Hyperstreamlines of the stress tensor in the flow past a hemisphere cylinder are
shown in Figure 4.37 (the flow is the same as in Figure 3.8). The major tubes in
front propagate along the least compressive direction, v;. Their trajectory shows how
forces propagate from the region in front of the cylinder to the surface of the body.
The cross-sections of the tubes are circular, indicating as expected that the pressure
component of the stresses is dominant. However, viscous stresses close to the body
induce slightly anisotropic cross-sections. For example, eccentricity on the yellow
surface is equal to 10%.

The helices lie along the medium eigenvector field, v5. While propagating, they
remain mostly parallel to the cylinder’s surface, and the orientation of their arms
indicate a fairly constant direction of the two transverse eigenvectors—the most and
least compressive eigendirections, respectively. The third helix exhibits a more com-
plex behavior, suggesting that the stress tensor is less uniform in the region of contact
between the tubes and the body than in other parts of the flow.

Figure 4.38 shows the viscous-stress tensor o}, in the same flow. As expected,
trajectories are similar to those in Figure 4.37, but removing the large, isotropic pres-
sure contribution, dramatically enhances the anisotropy of the tubes’ cross-sections.
The surface shown corresponds to a constant eccentricity of 90%; it is crossed twice

by each tube.

4.7 Chapter Summary

In this chapter, we define the topology of symmetric, second-order tensor fields as
the topology of their eigenvector fields. We extract topological skeletons based on
degenerate points, the set of their connecting separatrices, and limit cycles—thereby
broadening concepts developed in differential equations and dynamical systems to

cover the visualization of second-order tensor fields. We study in detail the topology
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Figure 4.37: Stress tensor in the flow past a hemisphere cylinder. Color scale 1 of
Figure A.3 is used.
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Figure 4.38: Viscous-stress tensor in the flow past a hemisphere cylinder. Color scale

1 of Figure A.3 is used.
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of 2-D symmetric tensor fields, and we partially extend results to 3-D symmetric

tensor data.

Degenerate points are points where at least two eigenvalues are equal to each
other. They are basic topological elements playing a similar role as critical points
in vector fields. Indeed, hyperstreamline trajectories never cross each other except
at degenerate points, in the vicinity of which we singled out three types of sectors—
hyperbolic, elliptic, and parabolic. Degenerate points deflect hyperstreamlines ad-
jacent in their hyperbolic sectors and terminate hyperstreamlines approaching from
within their parabolic sectors. At a degenerate point, the two eigenvector fields have
in general a different number of sectors of each type, but they have the same number

of elliptic sectors in excess to the number of hyperbolic sectors.

We introduce the concept of a “tensor index,” a quantity that is fundamental to
the topology of 2-D symmetric tensor fields. The tensor index of a Jordan curve is a
line integral of tensor components equal to the number of counterclockwise revolutions
undergone by the eigenvectors during one counterclockwise revolution along the curve.
Due to the eigenvectors’ sign indeterminacy, tensor indices are integer or half-integer
quantities. The tensor index at a degenerate point ¥y is the index of Jordan curves
encompassing Tp but no other degenerate point. There is a correspondence between
tensor index and number of hyperbolic and elliptic sectors at a degenerate point. If
a Jordan curve encompasses more than one degenerate point, the curve’s index is the
sum of tensor indices at enclosed degenerate points. In particular, the tensor index

of a hyperstreamline cycle is equal to unity.

We classify degenerate points as a function of a parameter ¢, an invariant of third-
order tensor fields. ¢ is a function of tensor gradients at the degenerate point position.
Simple degenerate points correspond to values of 6 # 0 and multiple degenerate points
fall in the category 6 = 0. There are two types of simple degenerate points—trisectors
and wedge points corresponding to 6 < 0 and 6 > 0, respectively. Neither of them has
elliptic sectors. Trisector points have a tensor index equal to —%, three hyperbolic

sectors per eigenvector field, and no parabolic sector. Likewise, wedge points have

1

an index equal to 3, one hyperbolic sector, and one or zero parabolic sector per

eigenvector field. We conceptualize multiple degenerate points as arising from the
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merging of simple degenerate points. There is a large and diverse panoply of multiple
degenerate points among which we identify star-nodes, centers, foci, saddle points,
cusps, saddle-nodes, and dipoles. In general, multiple degenerate points are built

from the juxtaposition of any number of hyperbolic, elliptic, and parabolic sectors.

Together with degenerate points, separatrices are basic topological elements of
2-D tensor fields. These hyperstreamline trajectories separate the domain into re-
gions where the tensor field is topologically equivalent to uniform data. We identify
two types of separatrices: limit cycles and hyperstreamlines that emanate from de-
generate points and that lie on the boundary of hyperbolic sectors. We prove that
simple limit cycles do not exist in solenoidal tensor fields. Also, trisector points have
three separatrices per eigenvector field while wedge points have one or zero separatrix
per eigenvector field. Likewise, multiple degenerate points have at most 2(m + 2)
separatrices for the two eigenvector fields combined, m being the lowest degree of
non-vanishing terms in Taylor expansions of tensor components around the degener-

ate point.

We generalize the Poincaré-Hopf theorem to analyze tensor fields tangent to 2-
D surfaces, by proving that the sum of tensor indices at degenerate points of such
tensor fields depends only on the topology of the surface and not on the tensor field.
More precisely, the sum of tensor indices at degenerate points is equal to the surface’s
Euler characteristic. This topological rule makes explicit the way the topology of the
surface affects the topology of any tangent tensor field.

Finally, we discuss 3-D symmetric tensor fields. In this case, a topological depic-
tion represents schematically the global behavior of an infinite collection of hyper-
streamlines. Basic topological elements include degenerate points and other topolog-

ical loci.

Similar to the two-dimensional case, degenerate points of 3-D tensor fields deflect
or terminate hyperstreamline trajectories. 3-D degenerate points fall within two cat-
egories, those where two eigenvalues are equal to each other and those where all three
eigenvalues are identical. The former are characterized by patterns similar to 2-D sim-
ple and multiple degenerate points but lying in a plane orthogonal to the eigenvector

associated to the non-degenerate eigenvalue. The latter are more complex because
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local hyperstreamline patterns depend on the gradients of five scalar functions.

In addition to 3-D degenerate points, we extract various topological loci that
carry global information about hyperstreamlines’ cross-sections. These sets of points
include loci of constant eccentricity, and loci where cross-sections are reduced to

points, lines, or circles.



Chapter 5
Conclusions and Future Research

In the introduction of this dissertation, we stated our main objectives as eliciting
the geometric structure of second-order tensor fields and laying a framework for their
visualization. In this final chapter, we recapitulate the steps that we follow towards

fulfilling these objectives. We also identify areas that are open for future research.

5.1 A Look Back ...

We study the geometric structure of symmetric tensor fields, designing at each step
appropriate icons for their visualization. We also provide suggestions for extending
these ideas to asymmetric tensor data. Tables 5.1 and 5.2 reproduce what was pre-
sented earlier (Tables 1.3 and 1.4 of Chapter 1, respectively). The italicized items
in Table 5.2 map our contributions to the visualization of tensor fields according to
the framework given in the introduction.

This framework is relevant to the visualization of continuous, multivariate data.
A particularly important concept is the information level embedded in icons which
we characterize as elementary, local, or global. This framework emphasizes the sim-
ilarities of the problems encountered when visualizing continuous vector and tensor
fields. The difficulty of representing these data stems from the necessity of rendering
the underlying continuity while avoiding problems related to visual clutter.

For vector fields, we can emphasize the continuity by displaying streamlines and

180
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Spatial Embedded Information
Domain | Elementary Local Global
arrows critical-point glyphs
Point wedges
hedgehogs
streamlines streamribbons vortex cores
Line streaklines streamtubes
particle traces
Surface | streamsurfaces * 2-D vector topology
*
skin-friction topology
and
Volume separation surface,
helicity density (c),
or vortex cores
*

Table 5.1: Vector icons. (c) means object contraction. The stars indicate promising

research areas.

Spatial Embedded Information
Domain Elementary Local Global
Point ellipsoids degenerate points
tensor glyphs *
Line trajectories (c) *
hyperstreamlines
Surface * * 2-D tensor topology
*
Volume 3-D topological loci
*

Table 5.2: Tensor icons. (c) means object contraction. Italicized items show the
contributions of this dissertation. The stars indicate promising research areas.
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streamsurfaces rather than arrows. We can also represent the global structure of the
data by extracting the vector-field topology—a set of carefully chosen points (critical
points) and lines (separatrices) that schematically encode the behavior of a continuous

distribution of (undrawn) streamlines.

We design similar icons for symmetric tensor fields, seeking continuous represen-
tations that avoid coarsely-spaced point icons. We show that n-dimensional tensor
fields are equivalent to n orthogonal families of smooth and continuous curves tan-
gent to the eigenvector fields (hyperstreamline trajectories). These trajectories never
intersect each other except at points where the eigenvalues are equal to each other
(degenerate points). In two dimensions (n = 2), we generate textures to render hy-
perstreamline trajectories. In three dimensions (n = 3), we use numerical integration.
We then surround the resulting trajectories by tubular surfaces (hyperstreamlines)
that represent the transverse eigenvectors. We define solenoidal tensor fields by anal-
ogy with solenoidal vector fields, and we show the similarity of the geometric proper-
ties of hyperstreamlines in solenoidal tensor fields and streamlines in solenoidal vector

fields. Theorems 1, 2, and 13 summarize these properties.

Hyperstreamlines represent, better than point icons, the underlying continuity
of tensor fields. However, they merely sample the data along their trajectories. In
general, many hyperstreamlines are required for understanding the global structure
of tensor fields without ambiguity. This creates overly cluttered images. To remedy
this, we define and analyze the topology of tensor fields. As with vector fields, we
derive a set of points and trajectories that embed global information, representing
schematically the collective behavior of a continuous distribution of (undrawn) hyper-
streamlines. By extracting the geometric structure of tensor data, we produce simple
and austere depictions that allow observers to infer the behavior of any hyperstream-

lines in the field.

The points that underlie the topology of tensor fields are the degenerate points—
points where the eigenvalues are equal to each other. Depending on the tensor gra-
dients, degenerate points can be of various types that correspond to different local

patterns of the eigenvectors. We define a parameter 6, a third-order tensor invariant
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that is function of the tensor gradients and that characterizes the nature of degener-
ate points. (Likewise, second-order tensor invariants determine the nature of critical
points in vector fields.) When 6 # 0, degenerate points are simple; they are either
wedge points (6 > 0) or trisector points (6 < 0) (Theorem 11). When ¢ = 0, degen-
erate points are multiple; among these points we identify nodes, foci, saddle points,

dipoles, cusps, saddle-nodes, as well as other, more exotic patterns (Theorem 12).

The other elements that underlie the topology of tensor fields are the separatrices,
which designate either the limit cycles, or the trajectories that emanate from the
degenerate points and lie on the border of hyperbolic sectors. We prove that solenoidal
tensor fields do not posses simple limit cycles (Theorem 13), and we develop an

algorithm to extract the topology of symmetric tensor fields.

When a tensor field is defined across a surface, there is a connection between the
topology of the surface and the topology of the tensor field. We transpose to tensor
fields a theorem by Poincaré for vector fields: Theorem 15 establishes how the surface
geometry constrains the number and the nature of the degenerate points that lie on

the surface.

5.2 ...and a Look Ahead

Our study generates new questions to be addressed in the future, including the 3-D
extensions of tensor field topology, and the techniques for the automatic comparison of
tensor topological skeletons. More specifically, we can identify three broad categories

of research issues: visual, physical, and mathematical.

5.2.1 Visual Issues

The empty boxes in Tables 5.1 and 5.2 suggest new areas for visualization research.
Some of these boxes cannot be filled, but others call for new icons to be designed.
The stars indicate areas that offer especially rich prospects for new developments.

Namely,
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e Global icons of vector and tensor fields. The general, topological approaches
that were discussed in previous chapters may be enhanced by computing more

specific, problem-dependent data features that carry global information.

e Local icons of tensor fields. In particular, how are we to design degenerate-
point glyphs that show tensor gradients around degenerate points, similar to
the way critical-point glyphs show vector gradients around critical points? (See

Figure 2.7.)

e Elementary surface icons of tensor fields. Surface icons can help to improve the
perception of complex eigenvector patterns in 3-D tensor data sets. (See Fig-
ure 2.13 for vector fields.) Two types of surfaces are possible: surfaces that are
tangent to one eigenvector field and orthogonal to the two other eigenvector
fields; and surfaces that are tangent to two eigenvector fields and orthogonal to
the third eigenvector field. Degenerate points are appropriate places to start

the integration of both types of surfaces.

o Local surface icons of vector fields—such as streamsurfaces that display, in addi-

tion to elementary information, aspects of the vector field gradients.

Filling up these boxes with new icons will provide researchers with a broad range
of tools to visualize vector and symmetric tensor data sets. In addition, one can
combine the decompositions of Section 3.5 with the results of Chapter 4 to explore

the topology of asymmetric tensor fields.

5.2.2 Physical Issues

Our general methodology for visualizing tensor data and for extracting topological
structures must be tailored to more specific problems in fluid mechanics, mechanical
engineering, relativity, etc. We hope that new insights will be gained by visualizing
tensor data and by correlating them with vector and scalar fields. In addition, the two
following questions should be investigated: Can specific physical constraints restrict

the variety of admissible patterns around degenerate points? And do degenerate
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points, as well as the associated local eigenvector patterns, possess physical meanings

beyond that of isotropy? (That is, degenerate eigenvalues.)

5.2.3 Mathematical Issues

Some mathematical and algorithmic questions are yet to be answered.

e Multiple degenerate points. We analyzed multiple degenerate points where the
Taylor expansions of tensor components start with polynomials of the same
degree (Equation 4.24). Multiple degenerate points with polynomial expansions

of arbitrary degree—i.e., m, # m, in Equation 4.10—remain to be studied.

e Separatrices of multiple degenerate points. It would be useful to establish a math-
ematical criterion that identifies which roots of Equation 4.33 define separatrices
(i.e., roots that lie on the border of a hyperbolic sector), and which roots are
mere radial directions. This would also simplify the topological analysis of

conventional, signed vector fields.

e 3-D degenerate points. The local patterns around 3-D degenerate points with

three identical eigenvalues (Equation 4.33) remain to be characterized.

e Limit cycles. Is it possible to design algorithms for automatically detecting limit
cycles? (See Section 4.3.5.) This is also a research issue for the visualization of

vector fields.

e Topological transitions. Can we automatically compare topological skeletons of
tensor fields, perhaps using graph theoretic approaches? (See Reference [75].)

This is also a research issue for the visualization of vector fields.

By designing visualization mappings of second-order tensor fields and by elucidating
their topological structure, this dissertation demonstrates the potential of scientific
visualization for building new knowledge beyond the usual goal of inspecting results

from experiments and computations. It is our hope that our analysis will serve as a
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model to tackle the visualization of other multivariate, continuous data. Furthermore,
we wish that our general methodology will be augmented as it is applied to more
specific cases, thereby generating new ideas that will further expand the growing field

of scientific visualization.



Appendix A

Smooth Hue Scale

This appendix describes our design of a color scale for encoding univariate variables.
This is an important topic, but we discuss it in appendix because it is a by-product
of our main research focus on tensor field visualization.

We seek a smooth color scale—a color scale that translates equal changes in the
underlying variable into equally perceived color differences. This amounts to choosing
a color path, a trajectory in uniform color space which we uniformly sample so as
to yield the color scale. We use as color space the CIE 1976 L*u*v* space, which
is approximately uniform across a wide range of colors (Reference [76]). In this
space, the perceived difference between two colors separated by small increments

(AL*, Au*, Av*) is equal to Euclidean distance. That is,

Perceived Color Difference ~ \/(AL*)2 + (Au*)? 4 (Av*)?

(Formulae relating color coordinates in L*u*v* space to the CIE 1931 {X,Y, Z} tris-
timulus values are given in Reference [76].)

We seek a color path that fulfills the following three requirements as well as pos-

sible:

1. A uniform color scale is obtained by uniformly sampling the color path.

2. Hue undergoes significant and monotonic variations along the color path; other
color dimensions, such as saturation and lightness, experience only relatively

small variations.
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Figure A.1: A line segment and a circle as color paths.

3. The length of the color path in L*u*v* space is as large as possible, so as to

maximize the number of Just Noticeable Differences (JND) along the scale.

The uniformly sampled line segment shown in Figure A.1 (left) is the most attractive

color path which satisfies requirement 1. Indeed, let
A (k) = [tppm — ug (A1)

be the perceived color difference between samples u; and wugy,,. There are two main
reasons why a uniformly sampled line segment is appealing: uniformity and additivity.
For m small, d,,(k) is constant when k runs along the path. This ensures uniformity

of the color scale. Perceived color differences along a line segment are also additive.
That is,
dyin(k) = dp (k) + dp(k + m) (A.2)

for every k and for small values of m and n. Both these properties make uniformly
sampled line segments attractive color paths. However, because hue is typically a
circular component of color, it does not undergo large variations along linear paths
(unless saturation also varies significantly, which clearly violates requirement 2).
Because of this, a better topology for color paths is the uniformly sampled circle
represented in Figure A.l (right). Again, perceived color differences d,, (k) (Equa-

tion A.l) are constant along the path for m small, and the resulting color scale is
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uniform. However, color differences are no longer additive (Equation A.2). Choosing
a uniformly sampled circle rather than a line segment, therefore, amounts to sacrifice
the scale additivity for a wider dynamic range.

The number of JNDs in a color scale is approximately proportional to the length of
the associated color path in L*u*v* space. Requirement 3 then calls for maximizing
the circle radius. By trial and error, we selected the optimal circle represented in
Figure A.2. Uniformity is ensured by allowing small variations of saturation and
lightness along the circle. (The other curves in Figure A.2 are paths of constant
saturation and lightness. Clearly, their topology does not permit constant distances

dm(k).) The circle lies within a plane of normal

nr = 0.9685
nyx = 0.1453
n, = —0.0969

The center of the circle is located at the point

L*=173.0

u* = 25.0

v* =16.0
and the radius is

R =86.0

The perimeter of the circle is 27 R = 540, so the resulting color scale contains as many
as 5.4 times more JNDs than a gray scale does.

In practice, we do not sample the circle along a full perimeter because of the
circular character of hue. Figure A.3 shows the result obtained by uniformly sampling
parts of the circle in Figure A.2. Color scales 1 and 2 contain 4.93 and 3.42 as many
JNDs as a gray scale, respectively. They present the best uniformity that can be
reached without accounting for the impertections of the L*u*v* space itself—especially

in corners away from the L* axis.!

IThe scale uniformity is unfortunately difficult to render in prints.
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Figure A.2: Color path in CIE 1976 L*u*v* color space.
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Figure A.3: Smooth color scale for encoding univariate variables.
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Our experience with color scales teaches us that our hue scale is more uniform
than other widely used color scales, such as the LOCS scale (Reference [77]) or the
color scale in NASA’s FAST visualization package (Reference [78]).



Appendix B

Locating Simple Degenerate

Points

In this appendix, we discuss the technique used in locating simple degenerate points.

We seek the simple roots Zg of the system of equations

{ Ty1(0) — Toa(io) = 0 (Equations 4.3)

Tlg(fo) = 0

when tensor components 7;; are defined on a regular grid. The algorithm processes
each grid cell in turn for each time step so we detail below operations specific to a

generic grid cell.

Consider the grid cell shown in Figure B.1. For expediency, we first determine if
the cell is likely to contain simple degenerate points, or not. Only if the former is the

case, do we seek solutions to Equations 4.3 within the cell.

Let fi; and g, ; be the values of Ty — T2y and T4 at the vertex (¢, 7), and let f,..,
and f..; be the minimum and maximum values of f;;, fit1,;, fij+1, and fiz1 41,

respectively. Accordingly, let ¢,.;, and ¢4, be the minimum and maximum values of
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@,j+1) (i+!,j+1)

()] (i+1,))

Figure B.1: A grid cell.

Girjs Gi+1,j> Gij+1, and giy1 j41. If one of the six conditions

Jmin <0
frnae >0
Gmin <0
Gmaz = 0
| frin] + | frnaz| >0
|Gmin| + |gmaz| >0

is not met, that means that the cell does not contain simple degenerate points, or

that the tensor field is uniformly zero across the cell. In both cases, we do not process
the cell further.

If all six conditions are met, we use bilinear interpolation to approximate tensor

components within the cell as
{ f=fij+u(fizr;— fij) +olfijer — fij) +uo(fivijo1 — fijr — fixrj + fij)
9~ gij+ulgiv1j — gi;) +0(gij+1 — gij) + wv(git1,j+1 — Gij+1 — Git1,; + 9ij)

where 0 < u,v < 1 (Figure B.1). We find degenerate points within the cell by seeking
solutions of the system
f=0
{9=0
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which can lead up to two solutions, (u1,v1) and (ugz,vq), or to a linear family of
solutions

au+ pfv+v=0 (B.1)

We must reject solutions located outside the cell (v or v outside the range [0,1]) as
well as solutions such as Equation B.1, which indicate a line of degenerate points

rather than isolated degenerate points.



Appendix C

Related Publications

The work presented in this dissertation has appeared or will appear in several publi-

cations; this appendix contains a brief overview of the relevant articles.

e Thierry Delmarcelle and Lambertus Hesselink, “Visualization of Second-Order
Tensor Fields and Matrix Data,” in Proc. IEEE Visualization '92, pp. 316-323,
CS Press, Los Alamitos, CA., October 1992.

Awarded Visualization '92 Conference Best Paper. This paper introduces the

concept of hyperstreamlines and topological loci of 3-D symmetric tensor fields.

e Thierry Delmarcelle and Lambertus Hesselink, “Visualizing Second-Order Ten-
sor Fields with Hyperstreamlines,” IEEE Computer Graphics and Applications,
vol. 13, no. 4, pp. 25-33, July 1993. Special issue on scientific visualization.

Awarded |IEEE Computer Graphics and Applications Best 1993 Paper. This invited
paper discusses, in addition to hyperstreamlines and topological loci, solenoidal

tensor fields, color-coding schemes, and icons for 3-D unsymmetric data.

e Thierry Delmarcelle and Lambertus Hesselink, “A Unified Framework for Flow
Visualization,” in Computer Visualization (R. Gallagher Ed.), Chapter 5, CRC
Press, 1994.

Invited Book Chapter. This chapter lays out the unified framework for scientific

visualization that we discussed in the introduction of the thesis. It provides the
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first comprehensive review of both vector and tensor visualization techniques.

Lambertus Hesselink and Thierry Delmarcelle, “Visualization of Vector and
Tensor Data Sets,” in Scientific Visualization. Advances and Challenges (L.
Rosenblum Ed.), Chapter 26, pp. 419-433, Academic Press, San Diego, 1994.

This paper discusses further the unified framework for vector and tensor field

visualization.

Thierry Delmarcelle and Lambertus Hesselink, “The Topology of Symmetric,
Second-Order Tensor Fields,” in Proc. IEEE Visualization 94, pp. 140-147, CS
Press, Los Alamitos, CA., 1994.

Awarded Visualization '94 Conference Best Paper. This paper introduces the
concept of tensor field topology, degenerate points, hyperbolic and parabolic
sectors, and hyperstreamline separatrices. The tensor topological rule is dis-

cussed.
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