A Comparison of Parameter Study Creation and Job
Submission Tools

Adrian DeVivo, Maurice Yarrow, and Karen M. McCann

Computer Sciences Corporation, Mail Stop T27A-1
NASA Ames Research Center, Moffett Field, CA 94035
{devi vo, yarrow, ntcann}@as. nasa. gov
NAS Techni cal Number: NAS-01-002

ADbstract

We consider the differences between the available general purpose parameter study and job submission tools.
These tools necessarily share many features, but frequently with differences in the way they are designed and imple-
mented. For this class of features, we will only briefly outline the essential differences. However, we will focus on the
unique features which distinguish the ILab parameter study and job submission tool from other packages, and which
make the ILab tool easier and more suitable for use in our research and engineering environment.

Motivation and Background

The generation and submission of physical parametric studies involving simulations with engineering programs is
a painstaking task. The manual creation of such studies typically first involves editing a large number of ASCII files
containing the physical parameters of interest. Then, the resultant individual simulation job runs must be organized
and instantiated. Most often, the required computations will actually occur on a supercomputer distinct from the
computer utilized for creating the study. Organizational requirements will usually require the assembly of a special
directory structure on the target computer systems, and the importation to this directory structure of the many files
required by the individual jobs of the parameter study. In addition, most supercomputer centers require that submitted
jobs go through a job scheduler (queuing system), and thus parameter study tools must coordinate with the scheduler.
Supporting these tasks are the most important of the functionalities or general requirements to be expected from a
parameter study tool. In addition, specific user needs require in certain cases specific features, without which all the
other features available may not suffice to make a parameter study tool usable.

We have developed the ILab tool to address the needs of not only general and simple parameter study users, but
also the specialized needs found among some of our aeronautical engineers. We will concentrate on a description of
these important features in this report.

Tool Descriptions
ILab

“ILab: The Information Power Grid Virtual Laboratory” is a Perl program which provides a Perl/Tk user interface
and generates input files and shell scripts for parameter studies being run on the Grid. (Note that the expression “Grid”
is now being used to describe the world-wide network of supercomputers that scientists are using to run scientific
problems that involve data sets too large to fit on desktop systems.) This program has an extensive user interface; we
already have about 23,000 lines of Perl, and we anticipate about 50,000 lines when all options are implemented. We
have adopted an object-oriented approach: all data and operations are organized into packages in order to speed up
development and debugging. ILab’s “container” or “document” object is called an “Experiment”: it contains all the

information - data and file paths - that is necessary to define a complex series of repeated and/or sequenced and/or
branching processes. This object is serialized to and from disk, for user’s convenience and re-use. At run time, ILab’s
current “Experiment” is used to generate required input files and shell scripts, create directories, copy data files, and
then both initiate and monitor the execution of all processes in the Experiment.[1]

Nimrod/Clustor and Nimrod/G

Nimrod, Nimrod/G, and Clustor [2][4] are historically related tools which create parameter studies and handle job
submission. Employing the resources of the Globus Grid toolkit, Nimrod/G performs tasks such as: scheduling of a
job, resource discovery, remote storage, and a sort of systems passport (user authentication). Nimrod/G employs the
functionality of “computational economy™[4]: this is a process that attempts to negotiate for time slots of adequate size
to complete the job. The user can also negotiate resources and make a decision as to when the job can be completed
and what the cost will be. When creating a parameter study the user may need to program a special internal script
in a Clustor designed metalanguage. Clustor does not support visual parameterization: manual editing of data files is
necessary to prepare them for parameterization; subsequently, parameterized input files can be generated automatically.

Condor

Condor[5][8], a distributed job launcher, utilizes idle system cycles on systems in the “Condor pool”. The Condor
pool consists of systems running Condor software on a LAN, WAN, or over the internet (not behind a firewall).
Condor monitors systems for specific user defined parameters such as minimum idle time and wall time. When those
parameters are met it sends a job from its queue to be processed by the idle system. At regular intervals while the job
is running, Condor sets checkpoints to save its progress. In the event that the job is stopped by the host system’s user
Condor will hopefully have someplace to pick up when the job is sent to another machine. The primary drawback of
Condor is that it can not run parallel jobs in order to speed up the completion time of a project. There are also some
security issues to be addressed, namely “ ...a sufficiently malicious and clever user could cause problems by doing
local system calls on the executing machine.”[5] Condor is appropriate for simple process execution, where processes
are executed serially but use up many computing cycles. Condor does not create parameter studies.

AppLeS/APST

AppLeS (Application-Level scheduler)[6][7] is a job submission tool which evaluates everything about the system
in terms of its impact on the application. This is based upon predictions of the state of the system when the application
will be executing. Network status information is received from Network Weather Service (NWS), which can “forecast
the performance various network and computational resources can deliver over a given time interval”[6]. AppLeS
also does not do parameterization; it is a “performance predictor” tool that also does job submission. APST, “AppLeS
Parameter Sweep Template”, launches preexisting parameter studies.

Chart/Description

The following chart outlines the functionality of ILab and several other parameter study and scheduler utilities.
Clustor, Nimrod, and Nimrod/G are the closest comparison to ILab’s capabilities, since they too can create parameter
studies in addition to submitting jobs.

Chart Key (i.e., what the terms signify in the context of these comparisons)

Complex Processes : a set of processes where each process depends on the input from the previous process; may or
may not involve branching and loops.

Multiple Input Files: more than one file is required for running a process.

Process L ooping : the repetition of a process until some condition (typically, a program return value, program internal
value, or the existence of an output file) is satisfied.

GUI Parameterization : (Visual parameterization) a graphical screen in which user can choose fields to parameterize
by highlighting the fields with a mouse, and then entering a list of values for that field.

ILab | Nimrod/ | Nimrod- | Person. | APST
Clustor G Condor

Complex Processes Yes* No No N/A N/A
Multiple Input Files Yes Yes Yes N/A N/A
Process Looping Yes* No No N/A N/A
GUI Parameterization | Yes No Yes N/A N/A
Multiple Job Models Yes No Yes N/A N/A
GUI Yes Yes Yes ? ?

Programming By User | No Yes Yes N/A N/A
Built-in Metalanguage | No | Simple | Simple | N/A N/A
PC/Unix Compatible Yes No Yes Yes ?

CAD Interface Yes* No No N/A N/A
OOP Yes No No ? ?

Plugins Yes* No No N/A N/A
Monitor Capacity Yes Yes Yes Yes Yes
Single Job capacity Yes Yes Yes Yes Yes
Secretaria functions Yes No No No No
Graphics/Video screens | Yes No No No No
Archiving Yes* No No No ?

Problem-Solving Env Yes No No No No
Schedulers Yes ? Yes ? Yes
M etacomputing Env Yes No Yes Yes Yes
Parallel Platforms Yes ? ? No N/A
Globus Enabled Yes No Yes No Yes
Restart Yes* No No No No

* Under Construction

Comparison Table

Multiple Job Models : the ability to incorporate any of several middleware packages during process execution (e.g.,
Globus, Condor, Legion, PBS, LSF, etc.)

GUI : Graphical User Interface where all input can be done with mouse clicks and/or keyboard accelerators. Typically,
GUIs include on-line HELP and error-checking for all input.

Programming by User : user is required to create some variety of job control language script or “plan file”; actual
“programming” (creation of variables and/or control structures) may be required.

Built-in Metalanguage : a set of commands with associated options that can be used to either run a program and/or
describe input data.

PC/UNIX Compatibility : program can run without modification on both PC and UNIX systems.

CAD Interface: “Computer-Assisted Design” : special graphical interfaces that allow user to describe data or pro-
cesses by placing and connecting icons or some form of pictures.

OOP : “Object-Oriented Programming” : a program’s data and operations (“methods”) are organized into structures
(either “classes” or “packages”) that allow for easy extensibility and re-use of code.

Plug-Ins: the ability of a program to accept external programmatic tools or capabilities that are not supplied by the
original program by default.

Monitor Capacity : the ability to visually indicate the status of jobs during execution.

Single Job Capacity : the ability to create and launch a single process as well as multiple processes.

Secretarial functions: the ability to keep track of sets of files, as well as archive and edit the files. Also, ability to
keep a record of user operations performed (audit trail).

Graphics/Video Screens: special screens dedicated to graphical processing of output files.

Archiving : the ability to move files to a mass storage facility, and also to restore from the same facility.
Schedulers: the ability to address specific scheduling programs that are installed on supercomputing systems. (Note
that this implies an internal list of scheduler commands and variables.)

Metacomputing Environment : specific middleware packages (such as Globus, Condor, and Legion) that manage
job submission, typically onto remote computing resources. (Implies internal lists of middleware commands and/or
variables and/or status features.)

Parallel Platforms: the ability to generate specific commands that utilize the parallelizing ability of given supercom-
puting systems. (Note that these commands usually involve the invocation of some parallel library. e.g., MPL.)
Globus Enabled : issues Globus commands to run processes.

Restart : enables a user to divide a job up by chunks of timesteps, so that one chunk picks up where the previous left
off. (See sub-section below “Job Restart Capability™)

Below are descriptions of features uniqueto ILab

Ease of Use

In addition to the efficiency with which the study can be performed, the simplicity with which the user can create
a parameter study is an issue. Under Nimrod/Clustor and Nimrod/G, job submission may require the user to write a
“plan” file. This file contains two sections: a parameter section and a tasks section. Since Condor and AppLeS do not
actually do parameter studies they can not be compared in this context. ILab quickly executes a job or jobs, using a
series of user-friendly “Wizard” dialog windows. When the parameter study is launched, it then creates the necessary
directories and sub-directories to contain the parameter study scripts, data, and output, on the chosen set of systems
which can be local and/or remote.

Job Restart Capability

Parameter studies and job scheduling are supported by several other job handler packages, yet ILab includes
options not offered by any of them. ILab’s set of restart options is one such feature. The ability to restart is different
from the act of setting check points to save work accomplished. Rather, a restart allows a user to divide a job up by
chunks of timesteps, so that one chunk picks up where the previous left off. Each time that a restart is run, parameters
can be changed by the user to aid in a stable execution until a solution is achieved. In addition, a restart capability
allows the user to execute long simulation runs on systems controlled by schedulers which restrict time allocations.

A restart capability becomes especially useful in certain circumstances, especially those encountered by some of
our aeronautical engineers. There are two primary reasons a researcher would need such a capability:

1) Ramping solver parameters. Unless solver variables/properties are “ramped” or carefully steered, the case may
become unstable (“blow up”) because of the sensitivity of the flow-solver to such solver parameters as time step and
“artificial” dissipation. By allowing for a restart with solver parameter ramping, stable progression to the solution is
achieved.

2) Split up a job to run in segments Another frequent problem encountered is the imposition of time restrictions created
by system schedulers. If a job cannot reach completion within the scheduler’s time restrictions, then data could be lost
and also jobs will have to be completed by running them in separate segments. The restart capability allows users with
especially large jobs to plan around the time restrictions and complete their jobs, despite limitations enforced by the
scheduler. This can be done by setting the number of time steps that will be processed in a given segment. The job is
then restarted, beginning again where the previous time steps left off. This process continues until the final iteration is
reached. Instead of waiting for a large chunk of time to become available, the user can spread the job out over smaller
time slots and set the number of time steps accordingly. This process would lead to a significantly shorter waiting
period before restart startup, although the user would have to schedule more frequent restarts. The ILab job restart
capability automates this variety of job submission. The Restart feature is still under development.

ILAB’s CAD (Computer Assisted Design) screen : Directed Graph

Another noteworthy feature of ILab is its CAD screen. This screen displays a “directed graph”, where the graph
nodes are processes in the user’s Experiment. The icon units are : one Experiment data icon, and for each Process
in the Experiment, a Process data icon, a file list icon, and a file handling icon. These icons are connected by arrows
which signify the flow of execution within the Experiment.

This screen has a dual purpose : 1) User can generate the directed graph from pre-existing Experiment data, as an
organizational aid in Experiment creation, execution, and tracking.

2) User can create the graph by placing icons, and then, after entering logistical data for each process represented by
an icon, can generate Experiment data and save it to disk and/or execute the Experiment.

The most important functionality addressed by ILab’s CAD screen is the creation and visualization of complicated
execution paths, including branching and conditional loops. Branching can be caused by multiple levels of parameter-
ization, or by repeating or splitting one process output to several subsequent processes. Conditional loops are caused
by repeated execution of Experiment processes, where the repeat is terminated by either file existence or a process
return value. The CAD screen is still under development.

Visual Parameterization Capability

ILab provides a dialog screen, called “Edit Parameters”, that gives users a quick, easy, and intuitive way to pa-
rameterize an ASCII input file. This screen contains a Perl/Tk “Text” widget, which displays the input file to be
parameterized, and a hierarchical list box, which lists the names of all entered parameters, and their entered values.
First, user will select and mark a field that is to be parameterized inside the Text widget; for example, in the input file
line “reynum=1.5e6", user would highlight the characters “1.5e6” by holding down the left mouse button and dragging;
this indicates that the characters “1.5e6” represent a field that will be parameterized. Then, user hits the “Parameterize”
button : this pops up an entry dialog allowing user to enter either a list of values, or a minimum/maximum/increment
(three numbers separated by slashes; when this is entered, ILab creates the list of values.) For example, user might
enter “1.2e6 1.3e6 1.5e6”, indicating that variable “reynum” is to take on these three values, in three separate copies of
the input file. When user hits “OK” from this dialog, the field is added to the ILab’s parameter list, the values entered
appear in the left-hand side hierarchical list (along with a default name for the parameter, that user can change), and
the text chosen is then highlighted in a contrasting color. User can then right-mouse on the characters “1.5e6” (which
now appear in red on grey) and get a pop-up menu allowing user to edit the values or delete the parameterization for
this particular set of characters. Hitting the “Generate” button then generates n copies of the displayed input file, with
the appropriately sequenced and replaced parameter values, where “n” represents the product of the number of values
for each parameter. For instance, if user parameterizes two fields, and enters three values for each field, then a total of
9 file copies will be generated, and 2 lists of 3 values each appear in the hierarchical list. User can also edit, delete,
and name parameter values from buttons located underneath the hierarchical list.

Users find that this visual parameterization capability greatly simplifies and expedites the process of creating
multi-dimensional parametric studies.

Summary

Several features of ILab make it superior to other parameter study utilities.

First, ILab is “quick and easy” to use. There is no programming required to create or run a parameter study: all the
scripts, input files, and directories are generated and handled by ILab, and then ILab submits and monitors the scripts
in order to run user’s sequence of jobs.

Second, in terms of job submission and execution, ILab is a high-throughput distributed launcher that can take advan-
tage of multiple processors, so that all Experiment jobs can be completed significantly faster.

Third, ILab has an advanced on-line help system, which has a display, an index, and a search function; this help is
available from all ILab screens.

Fourth, ILab’s restart functionality tends to get a job started more quickly, by accepting shorter time-slots; user can
also parameterize especially large jobs which would have exceeded scheduler maximum time limits. Additionally,
restarting can lead to more stable runs when solver parameters are gently incremented for a smooth run.

Fifth, ILab’s CAD screen is helpful in organizing user’s sequence of jobs, since flow execution is displayed in a
directed graph that can be printed and saved, and interpreted into the appropriate sequence of operations.

Finally, ILab’s OOP organization of all data into a serializable Experiment package makes it very easy for users to edit
previously created Experiments and run them again.

References

[1] Maurice Yarrow, Karen McCann, Rupak Biswas, and Rob F. Van der Wijngaart; An Advanced User Interface Ap-
proach for Complex Parameter Study Process Specification on the Information Power Grid p.146 Grid Comput-
ing - GRID 2000, First IEEE/ACM International Workshop Bangalore, India, December 17, 2000 Proceedings,
ISBN 3-540-41403-7 Springer-Verlag Berlin Heidelberg New York.

[2] David Abramson, Jon Giddy, and Lew Kotler; “High Performance Parametric Modeling with Nimrod/G: Killer
Application for the Global Grid?” (2000). http://citeseer.nj.nec.com/abramson00high.html

[3] Henri Casanova, Graziano Obertelli, Francine Berman, Richard Wolski; “The AppLeS Parameter Sweep Tem-
plate: User-Level Middleware for the Grid” in Proceedings of the 9th Heterogeneous Computing workshop
(HCW’2000).

[4] Rajkkumar Buyya, David Abramson, and Jonathan Giddy; Nimrod/G: An Architecture for a Resource Manage-
ment and Scheduling System in a Global Computation Grid, HPC ASIA ’2000, the 4th International Conference
on High Performance Computing in Asia-Pacific Region, Beijing, China, IEEEE Computer Society Press, USA
2000.

[5] Allan Bricker, Michael Litzkow, and Miron Livny; “Condor Technical Summary” (1991),
http://citeseer.nj.nec.com/briker91condor.html

[6] Francine Berman, Richard Wolski; The AppLeS Project: A Status Report (1997),
http://citeseer.nj.nec.com/berman97apple.html

[7]1 Network Weather Service, http://nws.npaci.edu/NWS/
[8] Condor Team, University of Wisconsin-Madison 8/22/2000, Condor Version 6.1.15 Manual.

