The NAS Trace Visualizer (NTV)
Rel. 1.2
User’s Guidel

Louis Lopez2
Report NAS-95-018 September 95

NAS Systems Division
NASA Ames Research Center
Mail Stop T27-A
Moffett Field, CA 94035-1000

Abstract

One of the more useful techniques for debugging and tuning parallel pro-
grams is the tracing of program execution. Because the volume of data pro-
duced can be overwhelming, and because the data is usually in a cryptic
form as a result of trying to minimize the perturbations of the execution
caused by collecting the data, effective use of this technique requires a tool
to visualize the trace. This document describes NTV, a trace visualization
tool developed at NAS. NTV differs from most visualization tools in that it
uses displays that do not vary with time, i.e., static displays, rather than the
animated displays that are common in other visualizers. Zooming is sup-
ported as are other display functions such as panning and controlling the
display of message edges.

1. A full color Postscript version of this report is available from the NTV Web page:
http:/ /www.nas.nasa.gov/NAS/TechReports/

2. Computer Sciences Corporation, NASA Contract NAS 2-12961, Moffett Field, CA 94035-1000

1.0 Introduction

NTV is a Motif-based trace visualization tool for use with trace files pro-
duced using The Automated Instrumentation and Monitoring System (AIMS)
(Version 2.2 or 3) or the IBM SP2 MPL Trace Facility. Unlike most trace
visualizers, where animated displays are common, NTV uses displays
that do not vary with time.

NTV provides a time line display and a set of profiling displays. The time
line display presents a detailed view of the program execution showing
the state of the processors at every point in time and showing the mes-
sage traffic between processors. This is done using a color-coded time
line for each processor. The color coding shows the processor status. Mes-
sage edges are shown by lines drawn between processor time lines. Vari-
ous types of zooming and panning are supported, as is the ability to
control which message edges are shown.

The profiling displays present summary information in which data for
the execution is summarized in two ways. The processor profiles allocates
information by processor, e.g., the time the processor was blocked while
sending, and the function profiles allocates information by function, e.g.,
the time a function was blocked while sending.

NTV detects the trace type so the same version of NTV works for all the
supported trace formats. While the operation of NTV is essentially the
same for all the supported traces, there are some differences in the infor-
mation presented because the information in the different traces is not
identical. Where differences do exist in the operation of NTV, they will
be described. If some characteristic is not specifically flagged as not
applying to all the traces, it applies to all.

2.0 Time Line Display

The time line display (Figure 1) presents a set of horizontal bars, one for
each processor. The bars are color coded to show the status of each node.
The horizontal axis is time in seconds.The meaning of the colors is pre-
sented at the bottom of the display. The axis is annotated with the mini-
mum displayed time at the left, and the maximum displayed time at the
right. The time displayed at the center of the X-axis is the time interval
between the vertical lines that bound the region selected for zooming (the
vertical lines extending above Processor 0 in Figure 1). The zoom range in
Figure 1 is 0.00453 seconds. If no zoom region is selected, the time inter-
val displayed is the time between the left and right boundary of the dis-

play.

Figure 1.

The display can be resized in the vertical direction to show more proces-
sors, or the scroll bar can be used to scroll the display.The top of the dis-
play is a menu bar containing a button to close the display, a button to
open a Control panel and a help button. A variety of controls are possible
using the mouse and the Control panel described in Section 2.1.

One use of the Control Panel is to control the display of message edges.
Figure 2 shows the display in Figure 1 with all message edges displayed.
The solid vertical block in Figure 2 is caused by message edges overlap-
ping because a large number of message edges are drawn in a small area.
This area can be expanded by zooming as explained below.

A significant amount of navigation functionality is available in the mouse
buttons. The left mouse button is used to select a region for zooming or
positioning. To select a region, the cursor is placed at the starting point of
the region and the left mouse button pressed. A vertical line will appear
indicating the start of the region. Without releasing the button, the mouse
is dragged until the cursor is at the end of the region and the button
released. A second vertical bar will indicate the end of the region. Press-
ing the middle button will zoom into this region. Figures 1 and 2 show a
selected zoom region of 0.0453 seconds. Figure 3 shows the display in
Figure 2 after zooming into an even smaller region (0.00325 Seconds of
the execution).

Figure 2.

If the zoom region is a single line, selected by pressing and releasing the
left mouse button without dragging the mouse, then pressing the middle
mouse button will cause the display to be centered about the selected
line. (See the discussion of the control panel in the next section).

A source code browser, described later, can be opened on the statement
that caused the trace record to be generated by placing the cursor on a
time line and pressing the right mouse button.

Figure 3.

Figure 4.

2.1 Time Line Control Panel

The time line control panel (Figure 4) is opened by selecting the Controls
button in the time line display. The control panel lets you control various
aspects of the time line display. It has two sections, one related to position-
ing of the display and the other to the display of message passing edges.

2.1.1 Positioning Controls

In and Center Buttons

The “In” and “Center” buttons operate identically to the use of the
middle mouse button. Note that zooming in, or out, causes the data to
be rescaled while centering just moves the display window keeping
the same scaling. Because centering does not re-scale, it may be
impossible to center.e., if the centering point is too close to either

end of the trace data set. For these cases the display will be centered
as much as possiblieg., the display will either began at the start of

the run, or it will end with the end of the run.

Full Button

The “Full” button will cause the display to show the complete trace
file.

Out %

The “Out %” button zooms out by the percentage in the “Zooming %”
text window. This percentage is set to 10% but can be reset by
modifying the number in the “Zooming %" text window. The
percentage is based on the current display so that if 1 second of a trace
is being shown and the zooming percent is 10%, the new display will
show 1.1 seconds of the trace and if 25 seconds is being shown the
new display will show 27.5 seconds of the display. If possible, the
display will be centered at the same point as the original display.

Pan Buttons

The “Pan” buttons operate much as would a horizontal scroll bar.
They move the display window over the data in the pan direction,
e.g., if you pan left you see data to the left of the current window. The
“Pan” buttons are used instead of a scroll bar because for large trace
files it is difficult to respond quickly enough to support smooth
scrolling. The value in “Panning %" is the amount the display is
moved. When you pan, a line will show the position of the old display
boundaryg.g., if you pan left by 20% a vertical line will appear 20%

of the way from the left edge.

2.1.2 Message Display Controls

Message edges are displayed as blue lines between the processors
involved in the message exchange. The message edges begin at the center
line of the sending time line and end at the edge of the receiving time
line, as shown below. The default is to not show the messages.

Sending

Receiving

Radio Buttons
The “Off” button turns off the display of message edges (the default).
The “All” button turns on the display of all message edges.

The “Specified” button turns on the display of only those message
specified in the “From” and “To” lists. The from and to lists accept
sets of integers indicating the nodes between which message edges
are to be displayea,g., if “From” contains 1 3 and “To” contains 2

Figure 5.

4, all message from 1 to 2 and 4, and from 3 to 2 and 4 will be shown.
The word “All” or “all’ 1 can be used to indicate all nodes.

Apply Button

The changes in the “Display Controls” section do not take effect until
the “Apply” button is pressed.

The “Display Controls” section of Figure 4 shows a selection to display
only specified message edges. The selection is message edges from all
processors to processors 4 & 5. If this selection is applied to the display in
Figure 3, one gets the display in Figure 5.

3.0 Summary Displays

The Summary Displays present profiling information. They are of two
types. One assigns data to functions (Function Profiles) and the other to
processors (Processor Profiles).

Function Profiles

The Function Profile displays (Figure 6) differ in the data they present, but
use the same method of presentation. The display consists of a column of
names of functions and user defined blocks. Each name is followed by a
bar chart, followed by a number indicating the number of processors on

.....

Figure 6.

which the function or block ran. e.g., Figure 6 shows that functions gauss
and shadow each ran on 8 processors.

For AIMS traces, names of code blocks, e.g., do loops, are preceded by
one or more asterisks (*). The blocks are displayed following the function
of which they are a part. The number of asterisks indicate the level of
nesting, e.g., two asterisks indicate a block within a block.

The bar chart used for each function (See Figure 6) consists of 3 overlaid
bars. The widest bar is the maximum data value recorded on any proces-
sor, the narrowest is the minimum recorded on any processor, and the
middle width bar is the average over all processors on which the function
or block executed.The displays presents the data for every function in the
program, so if some block is not instrumented it will show zero time for
those data items not instrumented. If the function or block executed on
only one processor the “Max”, “Min.”, and “Avg.” are all the same so the
bars will look like a series of parallel lines.

The display is scaled to the longest displayed time. The display can be
made larger or smaller using the usual window manager resizing opera-
tions. The larger the vertical dimension, the greater the number of func-
tions that will be displayed. The scroll bar can be used to scroll the
display.

Clicking on any bar with the middle mouse button will open a detail dis-
play. This display gives the processor number and the numerical values
of the minimum and maximum used in the display.

Clicking on any bar with the right mouse button will open a browser
showing the code for the function or user defined block corresponding to
the bar. One browser can be opened for each display. If a browser is
already open and the right button is used to click on another bar, the code
corresponding to the new selection will be shown.

The menu bar at the top of the window has 3 buttons. The “Close” button
is used to close the display, and the “Help” button to get explanatory
material on the specific display. The “View” button is used to bring down
a menu to control the operation of the left mouse button. The default is
that the left button does nothing. If the “Details” option is selected, the
left mouse button operates identically to the middle mouse button, i.e., it
opens and controls the information in the Detail display. If the “Browser”
option is selected, it operates identically to the right button, i.e., it con-
trols the Browser.

There are 6 Function Profile displays for AIMS 2.2 traces:

Execution The time spent executingd., not blocked, idle or
flushing).

Send-Sync Blocked The total time spent blocked on synchronized
sends.

Send-Async blocked The total time spent blocked on asynchronous
sends.

Receive-Sync Blocked The total time spent blocked on synchronous
receives.

Receive-Async Blocked The total time spent blocked on asynchronous
receives.

Global Blocked The total time spent blocked for global operations.

There are 14 Function Profiles for Aims 3 traces, the 6 above plus the fol-
lowing 8 additional ones:

Write (Time) The total time spent writing.

Write (Vol.) The total volume (bytes) written.

Read (time) The total time spent reading.

Read (\Vol.) The total volume (bytes) read.

Pack (time) The total time spent in pack operations.

Pack (\ol) The volume of data packed (bytes).
Unpack (Time) The total time spent in unpack operations.
Unpack (Vol) The total volume of data unpacked (bytes).
There are 10 Function Profile displays for SP2 traces:

Send Volume (Un-Blocked) The volume of messages sent using non-blocking
sends.

Send Count (Un-Blocked) The number of messages sent using non-blocking

sends.
Send Volume (Bl ocked) The volume of messages sent using blocking sends.
Send Count (Blocked) The number of messages sent using blocking
sends.

Recv. Volume (Un-Blocked) The volume of data received (in bytes) using non-
blocking receives.

Recv. Count (Un-Blocked) The number of messages received using non-
blocking receives

Recv. Volume (Blocked) The volume of data received (in bytes) using
blocking receives

Recv. Count (Blocked) The number of messages received using blocking
receives.

Wait Sate The time spent in wait states.

Time Blocked The time spent in blocked states.

3.1 Processor Profiles

The Processor Profile displays consist of sets of stacked bars for each pro-
cessor (see Figure 7). The bars are color coded to indicate the data they
represent. The legend at the top of the display shows the color coding
used.

The display is scaled to the longest displayed time. The display can be
made larger or smaller using the usual window manager resizing opera-
tions. The larger the vertical dimension, the greater the number of proces-
sors that can be displayed.The scroll bar can be used to scroll the display.

Clicking on the bars for any processor with the middle mouse button will
open a detail display. This display shows the processor numbers and the
actual data used to create the display.

10

The menu bar at the top of the window has 3 buttons. The “Close” button
is used to close the display, and the “Help” button to get explanatory
material on the specific display. The “View” button is used to bring down
a menu to control the operation of the left mouse button. The default is
that the left button does nothing. If the “Details” option is selected, the
left mouse button operates identically to the middle mouse button, i.e., it
opens and controls the information in the Detail display.

The browser can not be accessed from this display.

There are 5 Processor Profiles for the AIMS 2.2 traces:

Totals (Time) The time running, the time blocked in
communications, the time blocked for global
operations, and the total time blocked for all

reasons.

Blocked (Time) The time blocked for sends, for receives, for global
operations, and the total time blocked.

Totals (Volume) The volume of data, in bytes, sent and the volume
received.

Send (Volume) The volume of data, in bytes, sent in each of the

modes synchronous, synchronous blocked,
asynchronous, and asynchronous blocked.

Receive (Volume) The volume of data, in bytes, sent in each of the

Figure 7.

11

modes synchronous, synchronous blocked,
asynchronous, and asynchronous blocked.

There are 9 Processor Profiles for Aims 3 traces, the 6 above plus 4 others:

1/O (Time) The time spent in read and in write operations.

1/O (\Vol) The volume of data (bytes) read and written.
Pack/Unpack (time) The time spent in pack and in unpack operations.
Pack/Unpack (\ol) The volume of data (bytes) packed and unpacked.

There are 3 Processor Profiles for the SP2 traces:

Blocked Time The time in wait states, the total blocked time, the
time blocked on receives and the time blocked on
sends.

Message Volume The volume sent in blocked mode and in non-

blocked mode and the volume received in blocked
and in non-blocked mode.

Message Count The number of messages sent and the number
received in blocked and in non-blocked mode.

4.0 Source Code Browser

A browser (Figure 8) can be opened from either a function profile or the
time line display. On the function profile a browser can be opened by click-
ing with the right mouse button on any function bar. A browser will open
positioned on the code for the function corresponding to the bar.

On the time line display the browser is opened by placing the mouse cur-
sor on a processor bar at the point of interest and pressing the right
mouse button. This will open the browser positioned at the source code
line that caused the generation of the trace record that has the time stamp
closest to the time selected on the display.! Note that data may be com-
pressed when displayed, i.e., many trace points may scale to one display
point when plotted. Because of this, the browser may not be positioned at
the point you expect. This problem diminishes as you zoom in. Another

1. Because of limitation in program symbol tables, NTV will not position IBM SP2 programs at
the correct line if the program uses include files that contain executable code.

12

Search Repeat

Close String Search

Top Help

SOURCE = dontcore

coll MP_RECY(o(l,ronge+d), length, source, fromright, rightid)

coll MP_BSEND{al1,range+1), length, rightnode, fromleft)

coll MP_WAIT(rightid, MEYTES)

else if (iom .eq. nbrnodes-1) then

C

c If I am the rightmost node of the orroy (highest numbered node) then a
c only exchonge with the node to the left.

C

C leftid = irecv(fromleft, a(1,1}, length)

C coll csend(fromright, afl,2), length, leftnode,0)

C call msgquait(leftid)

SOURCE = dontcore

=

Figure 8.

possible source of confusion arises from the way traces are generated and
the way the displays are generated from the trace.

Trace records are generated to indicate the beginning and end of execu-
tion and the beginning and end of communication library events. For
example, if a blocking send occurs, a trace record is generated to indicate
the start of the blocking send and another record is generated to indicate
the end of the blocking send. When execution begins the processor is col-
ored green. When the processor enters a new state the color changes to
indicate the new state, e.g., blocking send color. When this state ends the
color returns to the previous states color, i.e., to the execution state color.
There is no record generated to indicate a return to the run state. This
means that the search for the trace record closest to the selected point will
usually find a call to the message passing library even if you select a
point in the middle of a long run section.

The browser can be repositioned in 4 ways:
1. Using the scroll bar.

2. Making a new selection in the display that opened the browser. The
selection is made in the same way as the selection which opened the
browser. If the browser function is selected in a window and the browser

1. The possible exception is AIMS traces if entry to functions has been instrumented.

13

for that window is already open, the code is repositioned. If the
requested point is in a file other than the one that is loaded, the new file
will be loaded in the same browser window.

In the case of the function profile displays, the browser will be positioned
at the beginning of the function or user defined block corresponding to
the selected bar.

In the case of the time line display, the browser will be positioned at the
line of code which generated the trace record closest to the point selected
and the line of code will be hi-lighted. Note that several trace points may
scale to the same display point, so the selection may not be unique. This
is particularly true when the display is zoomed out.

3. A search facility that allows entry of a string to be found. The search
will wrap if the string is not found between the current position and the
end of the file. The search can be repeated by clicking on the “Repeat
Search” button. When a new file is read the search string is discarded so
the repeat search will not work on the new file. However, if the search
window is opened, the last search string will still be displayed in the
input area and clicking on “OK” will cause the search. The found string
will be hi-lighted.

4. The “Top” button which repositions the file to the top.

You may mark a point by using the mouse and dragging. This type of hi-
lighting will be ignored by the browser and is discarded if a new file is
loaded. To remove it without loading a new file, click on the marked por-
tion.

4.1 Help Function

All of the NTV windows have a help button that gives specific informa-
tion about the data presented in that display, or information on using the
function provided by the display.

4.2 Use of the Mouse

The use of the mouse on each of the displays was discussed before. Their
use is easy to rememboer if it is realized that the mouse buttons have a
similar function in all displays. The left button is used to select a point or
item, the middle button causes some action based on the selection, and
the right button brings up a browser where appropriate. The table below
gives the detail.

14

Left! Middle Right

Time Line Select Range/Point ~ Zoom/Center Open Browse

Processor Select Show Detail No Action
Profile Processor

Function Select Show Detail Open Browser
Profile Function

The Detail Displays present the actual values used to draw the selected
bars (See Below). There can be one “detail” window for each display. If
you click on a bar in a display which already has an open “detail” win-
dow, a new window will not be opened, but the data will change.

When the right mouse button is clicked on a bar in a Function Profile dis-
play a browser will be opened on the source code for the function or user
defined block corresponding to the bar. When the right mouse button is
clicked on a time line on the time line display, a browser will be opened on
the source code that caused the generation of the trace record closest to
the selected time on the selected processor. The actual line of code will be
highlighted. Note that because of scaling in drawing the display, several
trace records may map to one display point so the point selected does not
necessarily map to a unique trace record.

One browser can be opened per display. Selecting a different point and
pressing the right button will display the new code. The browser has a
help facility which describes its operation.

Because so many displays can be open at any one time and sets of the dis-
plays are related, the title of every display will contain the name of the
principal display, e.g., if you select the Execution display, “Execution” will
appear in the title of the detail, help, and browser displays opened from
the Execution display.

5.0 Trace Formats

While the operation of NTV is essentially the same for all the supported
trace formats, there are some differences. These are described below.

1. The action of the left mouse button in the profiling displays can be altered using buttons in the
display menu bar. This is explained in the section discussing the displays.

15

5.0.1 AIMS

Because a user of NTV with AIMS traces must have first instrumented
the application source code using AIMS, it is assumed that the user has
read the appropriate AIMS documentation. However, some brief descrip-
tion of AIMS is necessary to explain NTV.

After a program has been instrumented using AIMS, there are two ver-
sions of the source code, the instrumented version and the un-instru-
mented version. The instrumented source code is not used by NTV, but
the un-instrumented source code is used by the source code browser that
ties NTV displays to the source code. The browser looks for the source
code in one of two locations. The first is the directory that contained the
source code when it was instrumented!, and the other is the directory
containing the sorted trace file.?

AIMS lets you instrument selectively. That is, you can instrument some
sections of code and some constructs and not others. If you decide to
instrument only some of the code or constructs, some of the displays will
appear to give wrong information. For example, if entries to some sub-
routines are instrumented and the entries to some are not, the execution
time will not be assigned correctly in the Function Summary Displays.
AIMS lets the user define blocks of code that are treated as units. From
the standpoint of monitoring these are equivalent to functions, i.e., you
can time entry and exit to the block and allocate information such as time
spent in the block to the block. When discussing an AIMS trace, the term
function or subroutine will include user-defined blocks.

5.0.2 SP2

The SP2 trace facility is described in IBM AIX Parallel Environment, Opera-
tion and Use (SH26-7230). To use NTV the user’s program should be com-
piled with the - g option, to support the source code browser function,
and executed with -t | evel 3. While-t| evel 9 can be used, the AIX
Kernel Statistics Data is not used by NTV and specifying the higher trace
level results in a larger file. If the IBM-supplied visualization system is
used along with NTV, it may be desirable to run the application with
-tlevel 9.

The SP2 trace does not mark entry and exit from subroutines, and as a
result, it is not possible to allocate run time to individual functions.

1. The AIMS trace file contains this directory in the second line of the file.

2. The trace file produced using AIMS Version 2.2 must be sorted using the tracesort function pro-
vided by AIMS before it can be used by NTV. The sorted trace file can be given any name.

16

NTV for the SP2 uses an SDDF (Pablo) version of the native SP2 trace. To
get this form of the trace, the native trace must be preprocessed by the
program NtVSP2preProc In addition to the native trace, this program
also takes as input the SP2 executable that generated the trace. It pro-
duces the SDDF file and another file having the same name as the SDDF
trace file with “.aux” appended. This file contains information necessary
to support the browser function described in Section 4 and to speed up
loading of the trace file into NTV.

To preprocess the trace file you execute NtvSP2preProc and it prompts
for three data elements:

« The name of the executable that generated the trace.
« The name of the SP2 trace file.

« The form of the output file, ASCII or Binary. The Binary file is
smaller and will load faster into NTV.

NtvSP2preProc prints a dot for each 1000 trace records that are pro-
cessed. This gives a visual clue that the program is running.

The browser looks for source code in three locations. The first is the direc-
tory containing the trace file, the second is a directory named “src” at the
same level as the trace file, and the third is the directory above the one
containing the trace file.

5.1 Allocation of Data in Summary Displays

To understand the Summary Displays you need to understand a little
about how NTV uses the trace data to generate the profiling displays.

NTV attempts to allocate all data to a function, e.g.,the volume of mes-
sages sent by each function or time blocked by each function. In the case
of AIMS, which allows selective instrumentation, the information may
not be assigned to the correct function or block! if user defined blocks
and subroutines are not instrumented, or if only some are. This can occur
for “run time” and “flushing time”. All other information such as
“blocked time”, “send volume”, efc., are allocated correctly regardless of
whether the functions entry and exit are instrumented because the trace
records contain the information required to allocate the data.

The information is collected at the level of the sub-program, so that if
subroutine “A” calls subroutine “B”, the time spent in subroutine “B”,
the data it sent or received, etc., is not reflected in the information for sub-

1. In addition to code constructs, such as do loops, that are detected by the instrumenter, AIMS
provides a special set of functions that can be used to define blocks by inserting calls in the source
code before instrumentation.

17

routine “A”. The information for user defined blocks is accumulated in
higher level blocks up to the subroutine containing the blocks. For exam-
ple, if subroutine “A” contains a block “B” which contains blocks “C”
and “D”, as shown below:

SUBROUTINE A
recv w bytes
BLOCK B
recv x bytes
BLOCK C
recv y bytes
BLOCK D
recv z bytes

NTV will show that “D” received z bytes, “C” received y bytes “B”
received (x+y+z) bytes and “A” received (w+x+y+z) bytes

The displays that present profiling information by function show all the
functions and user defined blocks in the program. If their entries and
exits are not instrumented the display will show an execution time of
zero since there will be no trace records indicating entry and exit.

6.0 Getting Started

The command ntv will began execution. There are no command line
arguments. When NTV has loaded it will present a main window that
has three buttons:

File: brings down a pull down menu that contains buttons to
exit NTV or to open a file selection window used to
select the trace file to be viewed.

Display: brings down a display selection pull down menu
continuing buttons to select the type of displays to be
presented (profiling based on functions, profiling based
on processors, or time line).

Help: produces a help display

The file selection box is a standard Motif file selection widget and oper-
ates in the standard manner. When an AIMS trace file is selected for load-
ing, a window appears that will indicate that NTV is setting up to read
data. (Sometimes this window will remain blank.) The size of the trace
file is the major factor controlling how long the window stays up. If the
trace file is small you may not see it. During the time this window is dis-
played the trace file is being examined to determine memory allocation

18

requirements. When this has completed, the reading of the trace file
begins. A window will appear giving the percentage of the file which has
been read. If the trace file is small, this window may not stay open long
enough to be read. For SP2 traces the first window will not appear or will
only flash because the information for memory allocation is determined
during the conversion to SDDF.

If a program executing on an SP2 is terminated before it completes execu-
tion, the trace buffers are flushed. For these cases it is possible that there
are messages that have been sent and not received or, because of clock
synchronization errors, messages received that were not sent. For these
cases, NTV will display a list of the incomplete messages in the xterm
from which NTV was started. The list will contain, for each message, the
sending node and time (if known), receiving node and time (if known),
and the message tag. This can be very useful in cases where the program
hung and execution had to be terminated. When the file has been loaded,
all windows except for the main window will disappear and you can
select the view of the data to be displayed.

7.0 Acknowledgments

I wish to express my appreciation to Robert T. Hood, Charles E. Niggley,
and Robert L. Hirsch for reviewing the manuscript and suggesting
numerous improvements. I also want to thank David C. DiNucci and
Robert Hood for the many discussions we had, and numerous sugges-
tions they made, during the development of NTV.

Appendix

NTV is coded in C and C++. It has been built and tested using GNU gcc
and g++, but there is nothing special in the NTV code that limits it to
these compilers. NTV uses the SDDF standalone Library from the Pablo
Performance Analysis Environment'. The SDDF standalone library does have
some restrictions which may limit the compiler choices. This could limit
the compiler choices used in building NTV. NTV uses Motif Release 1.1
or higher.

The pre-processor for SP2 traces, ntvSP2preProc, has two requirements
that make it easiest to build on an RS6000 based system. First, the prepro-
cessor requires include files that describe the ECOFF file format used by
AIX. These files are similar to the include files for the COFF format, but
differ in some important ways. The difference of importance to NTV

1. The Pablo Performance Analysis Environment is available from the University of Illinois. It is
copyrighted by The University of Illinois Board of Trustees but is freely available to non-commer-
cial users.

19

occurs in the sym h file. Second, VT_t r ¢. h, the include file describing
the MPL trace format (included with the NTV distribution), uses a defini-
tion of ti mestruc_t that may be different from that used on some
UNIX systems. In particular, AIX uses:

struct timestruc_t {....}
while at least some Unix systems use
struct timestruc {....} tinmestruc_t

Were it not for these two requirements, ntvSP2preProc could be built on
any UNIX system.

more

20

