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Abstract

A new set of benchmarks has been developed for the performance evalua-
tion of highly parallel supercomputers. These benchmarks consist of a set
of kernels, the “Parallel Kernels”, and a simulated application benchmark.
Together they mimic the computation and data movement characteristics of
large scale computational fluid dynamics (CFD) applications.

The principal distinguishing feature of these benchmarks is their “pencil
and paper” specification — all details of these benchmarks are specified only
algorithmically. In this way many of the difficulties associated with conven-
tional benchmarking approaches on highly parallel systems are avoided.
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Chapter 1
GENERAL REMARKS

by D. Bailey!, D. Browning?®, R. Carter®, and H. Simon®

1.1 Introduction

The Numerical Aerodynamic Simulation (NAS) Program, which is based at
NASA Ames Research Center, is a large scale effort to advance the state of
computational aerodynamics. Specifically, the NAS organization aims “to
provide the Nation’s aerospace research and development community by the
year 2000 a high-performance, operational computing system capable of sim-
ulating an entire aerospace vehicle system within a computing time of one to
several hours” ([5], page 3). The successful solution of this “grand challenge”
problem will require the development of computer systems that can perform
the required complex scientific computations at a sustained rate nearly one
thousand times greater than current generation supercomputers can now
achieve. The architecture of computer systems able to achieve this level of
performance will likely be dissimilar to the shared memory multiprocessing
supercomputers of today. While no consensus yet exists on what the design
will be, it is likely that the system will consist of at least 1,000 processors
computing in parallel.

Highly parallel systems with computing power roughly equivalent to tradi-

1The author is a member of the NAS Applied Research Branch
3The author is an employee of Computer Sciences Corporation. This work is supported
through NASA Contract NAS 2-12961.




tional shared memory multiprocessors exist today. Unfortunately, for various
reasons, the performance evaluation of these systems on comparable types of
scientific computations is very difficult. Little relevant data is available for
the performance of algorithms of interest to the computational aerophysics
community on many currently available parallel systems. Benchmarking and
performance evaluation of such systems has not kept pace with advances in
hardware, software and algorithms. In particular, there is as yet no gener-
ally accepted benchmark program or even a benchmark strategy for these
systems.

The popular “kernel” benchmarks that have been used for traditional
vector supercomputers, such as the Livermore Loops [16], the LINPACK
benchmark [11, 12] and the original NAS Kernels [9], are clearly inappropriate
for the performance evaluation of highly parallel machines. First of all, the
tuning restrictions of these benchmarks rule out many widely used parallel
extensions. More importantly, the computation and memory requirements
of these programs do not do justice to the vastly increased capabilities of the
new parallel machines, particularly those systems that will be available by
the mid-1990s. .

On the other hand, a full scale scientific application is similarly unsuitable.
First of all, porting a large program to a new parallel computer architecture
requires a major effort, and it is usually hard to justify a major research
task simply to obtain a benchmark number. For that reason we believe
that the otherwise very successful PERFECT Club benchmark [15] is not
suitable for highly paralle! systems. This is demonstrated by only very sparse
performance results for parallel machines in the recent reports [18, 19, 10].

Alternatively, an application benchmark could assume the availability of
automatic software tools for transforming “dusty deck” source into efficient
parallel code on a variety of systems. However, such tools do not exist today,
and many scientists doubt that they will ever exist across a wide range of
architectures.

Some other considerations for the development of a meaningful bench-
mark for a highly parallel supercomputer are the following:

e Advanced parallel systems frequently require new algorithmic and soft-
ware approaches, and these new methods are often quite different from
the conventional methods implemented in source code for a sequential
or vector machine.




e Benchmarks must be “generic” and should not favor any particular
parallel architecture. This requirement precludes the usage of any
architecture-specific code, such as message passing code.

e The correctness of results and performance figures must be easily veri-
fiable. This requirement implies that both input and output data sets
must be kept very small. It also implies that the nature of the compu-
tation and the expected results must be specified in great detail.

e The memory size and run time requirements must be easily adjustable
to accommodate new systems with increased power.

e The benchmark must be readily distributable.

In our view, the only benchmarking approach that satisfies all of these
constraints is a “paper and pencil” benchmark. The idea is to specify a set
of problems only algorithmically. Even the input data must be specified only
on paper. Naturally, the problem has to be specified in sufficient detail that
a unique solution exists, and the required output has to be brief yet detailed
enough to certify that the problem has been solved correctly. The person
or persons implementing the benchmarks on a given system are expected
to solve the various problems in the most appropriate way for the specific
system. The choice of data structures, algorithms, processor allocation and
memory usage are all (to the extent allowed by the specification) left open to
the discretion of the implementer. Some extension of Fortran or C is required,
and reasonable limits are placed on the usage of assembly code and the like,
but otherwise programmers are free to utilize language constructs that give
the best performance possible on the particular system being studied.

To this end, we have devised a number of relatively simple “kernels”,
which are specified completely in Chapter 2 of this document. However,
kernels alone are insufficient to completely assess the performance potential
of a parallel machine on real scientific applications. The chief difficulty is that
a certain data structure may be very efficient on a certain system for one of
the isolated kernels, and yet this data structure would be inappropriate if
incorporated into a larger application. In other words, the performance of
a real computational fluid dynamics (CFD) application on a parallel system
is critically dependent on data motion between computational kernels. Thus




we consider the complete reproduction of this data movement to be of critical
importance in a benchmark.

Our benchmark set therefore consists of two major components: five par-
allel kernel benchmarks and three simulated application benchmarks. The
simulated application benchmarks combine several computations in a man-
ner that resembles the actual order of execution in certain important CFD
application codes. This is discussed in more detail in Chapter 3.

We feel that this benchmark set successfully addresses many of the prob-
lems associated with benchmarking parallel machines. Although we do not
claim that this set is typical of all scientific computing, it is based on the
key components of several large aeroscience applications used by scientists on
supercomputers at NASA Ames Research Center. These benchmarks will be
used by the Numerical Aerodynamic Simulation (NAS) Program to evaluate
the performance of parallel computers.

1.2 Benchmark Rules

1.2.1 Definitions

In the following, the term “processor” is defined as a hardware unit capable
of executing both floating point addition and floating point multiplication in-
structions. The “local memory” of a processor refers to randomly accessible
memory that can be accessed by that processor in less than one microsecond.
The term “main memory” refers to the combined local memory of all proces-
sors. This includes any memory shared by all processors that can be accessed
by each processor in less than one microsecond. The term “mass storage”
refers to non-volatile randomly accessible storage media that can be accessed
by at least one processor within forty milliseconds. A “processing node” is
defined as a hardware unit consisting of one or more processors plus their
local memory, which is logically a single unit on the network that connects
the processors.

The term “computational nodes” refers to those processing nodes pri-
marily devoted to high-speed floating point computation. The term “ser-
vice nodes” refers to those processing nodes primarily devoted to system
operations, including compilation, linking and communication with external
computers over a network.




1.2.2 General Rules

Implementations of these benchmarks must be based on either Fortran-77 or
C, although a wide variety of parallel extensions are allowed. This require-
ment stems from the observation that Fortran and C are the most commonly
used programming languages by the scientific parallel computing community
at the present time. If in the future other languages gain wide acceptance
in this community, they will be considered for inclusion in this group. As-
sembly language and other low-level languages and constructs may not be
used, except that certain specific vendor-supported assembly-coded library
routines may be called (see Section 1.2.3).

We are of the opinion that such language restrictions are necessary, be-
cause otherwise considerable effort would be made by benchmarkers in low-
level or assembly-level coding. Then the benchmark results would tend to
reflect the amount of programming resources available to the benchmarking
organization, rather than the fundamental merits of the parallel system. Cer-
- tainly the mainstream scientists that these parallel computers are intended
to serve will be coding applications at the source level, almost certainly in
Fortran or C, and thus these benchmarks are designed to measure the per-
formance that can be expected from such code.

Accordingly, the following rules must be observed in any implementations
of the NAS Parallel Benchmarks:

o All floating point operations must be performed using 64-bit floating
point arithmetic.

e All benchmarks must be coded in either Fortran-77 [1] or C [3], with
certain approved extensions.

e Implementation of the benchmarks may not mix Fortran-77 and C code
— one or the other must be used.

o Any extension of Fortran-77 that is in the Fortran-90 draft dated June
1990 or later [2] is allowed.

e Any extension of Fortran-77 that is in the Parallel Computer Fortran
(PCF) draft dated March 1990 or later [6] is allowed.




o Any language extension or library routine that is employed in any of
the benchmarks must be supported by the vendor and available to all
users.

e Subprograms and library routines not written in Fortran or C may only
perform certain functions, as indicated on the next section.

o All rules apply equally to subroutine calls, language extensions and

compiler directives (i.e. special comments).

1.2.3 Allowable Fortran Extensions and Library Rou-
tines

The following Fortran extensions and library routines are also permitted:

e Constructs that indicate sections of code that can be executed in par-
allel or loops that can be distributed among different computational
nodes.

o Constructs that specify the allocation and organization of data among
or within computational nodes.

¢ Constructs that communicate data between processing nodes.

o Constructs that communicate data between the computational nodes
and service nodes.

o Constructs that rearrange data stored in multiple computational nodes,
including constructs to perform indirect addressing and array transpo-
sitions.

e Constructs that synchronize the action of different computational nodes.

e Constructs that initialize for a data communication or synchronization
operation that will be performed or completed later.

e Constructs that perform high-speed input or output operations between
main memory and the mass storage system.




e Constructs that perform any of the following array reduction opera-
tions on an array either residing within a single computational node or
distributed among multiple nodes: +, x, MAX, MIN, AND, OR, XOR.

e Constructs that combine communication between nodes with one of
the operations listed in the previous item.

e Constructs that perform any of the following computational opera-
tions on arrays either residing within a single computational node
or distributed among multiple nodes: dense matrix-matrix multipli-
cation, dense matrix-vector multiplication and one-dimensional, two-
dimensional or three-dimensional fast Fourier transforms. Such rou-
tines must be callable with general array dimensions.

1.3 Sample Codes

The intent of the NAS Parallel Benchmarks report is to completely specify
the computation to be carried out. Theoretically, a complete implementa-
tion, including the generation of the correct input data, could be produced
from the information in this paper. However, the developers of these bench-
marks are aware of the difficulty and time required to generate a correct
implementation from scratch in this manner. Furthermore, despite several
reviews, ambiguities in the technical paper may exist that could delay im-
plementations.

In order to reduce these difficulties and to aid the benchmarking specialist,
Fortran-77 computer programs implementing the benchmarks are available.
These codes are to be considered examples of how the problems could be
solved on a single processor system, rather than statements of how they
should be solved on an advanced parallel system. The sample codes actually
solve scaled down versions of the benchmarks that can be run on many
current generation workstations. Instructions are supplied in comments in
the source code on how to scale up the program parameters to the full size
benchmark specifications.

These programs, as well as the benchmark document itself, are available
from the following address: Systems Development Branch, NAS Systems Di-
vision, Mail Stop 258-5, NASA Ames Research Center, Moffett Field, CA
94035-1000, attn: NAS Parallel Benchmark Codes. The sample codes are

&




Table 1.1: NAS Parallel Benchmarks Sample Codes. (Times and
MFLOPS for one processor of the Cray Y-MP)

Benchmark code Problem | Memory | Time | MFLOPS
Size (Mw) | (sec)
Embarrassingly parallel (EP) g 0.1 11.6 120
Multigrid (MG) 323 01| 01 128
Conjugate gradient (CG) ~ 10° 0.6 1.2 63
3-D FFT PDE (FT) 64° 2.0 1.2 160
Integer sort (IS) 216 03| 0.2 NA
LU solver (LU) 12° 03| 3.5 28
Pentadiagonal solver (SP) 128 02| 7.2 24
Block tridiagonal solver (BT) 123 03| 7.2 34

provided on Macintosh floppy disks and contain the Fortran source codes,
“ReadMe” files, input data files, and reference output data files for correct
implementations of the benchmark problems. These codes have been vali-
dated on a number of computer systems ranging from conventional worksta-
tions to supercomputers.

Table 1.1 lists approximate run times and memory requirements of the
sample code problems, based one processor Cray Y-MP implementations.
Table 1.2 contains similar information for the full-sized benchmark problems.
The unit “Mw” in Tables 1.1 and 1.2 refers to one million 64-bit words.
Note that performance in MFLOPS is meaningless for the integer sort (IS)
benchmark and is therefore not given. An explanation of the entries in the
problem size column can be found in the corresponding sections describing
the benchmarks in Chapters 2 and 3.

1.4 Submission of Benchmark Results

It should be emphasized again that the sample codes described in Section
1.3 are not the benchmark codes, but only implementation aids. For the
actual benchmarks, the sample codes must be scaled to larger problem sizes.
The sizes of the current benchmarks were chosen so that implementations
are possible on currently available supercomputers. As parallel computer




Table 1.2: NAS Parallel Benchmarks Problem Sizes.
MFLOPS for one processor of the Cray Y-MP)

(Times and

Benchmark code Problem | Memory | Time | MFLOPS
Size (Mw) | (sec)
Embarrassingly parallel (EP) 228 1] 151 147
Multigrid (MG) 2563 57 54 154
Conjugate gradient (CG) ~ 2 * 10° 12 22 70
3.D FFT PDE (FT) 2567 x 128 59| 39 192
Integer sort (IS) 223 26 21 NA
LU solver (LU) 643 8| 344 189
Pentadiagonal solver (SP) 643 6| 806 175
Block tridiagonal solver (BT) 643 6| 923 192

technology progresses, future releases of these benchmarks will specify larger

problem sizes.

The authors and developers of these benchmarks encourage submission of
performance results for the problems listed in Table 1.2. Periodic publication
of the submitted results is planned. Benchmark results should be submitted
to the Applied Research Branch, NAS Systems Division, Mail Stop T045-1,
NASA Ames Research Center, Moffett Field, CA 94035, attn: NAS Parallel
Benchmark Results. A complete submission of results should include the

following:

e A detailed description of the hardware and software configuration used

for the benchmark runs.

e A description of the implementation and algorithmic techniques used.

e Source listings of the benchmark codes.

e Output listings from the benchmarks.




Chapter 2

THE KERNEL
BENCHMARKS

by D. Bailey?, E. Barszcz', L. Dagum?, P. Frederickson®, R. Schreiber?,
and H. Simon®

2.1 Overview

After an evaluation of a number of large scale CFD and computational aero-
sciences applications on the NAS supercomputers at NASA Ames, a number
of kernels were selected for the benchmark. These were supplemented by
some other kernels which are intended to test specific features of parallel
machines. The following benchmark set was then assembled:

EP: An “embarrassingly parallel” kernel. It provides an estimate of the
upper achievable limits for floating point performance, i.e. the perfor-
mance without significant interprocessor communication.

MG: A simplified multigrid kernel. It requires highly structured long dis-
tance communication and tests both short and long distance data com-
munication.

1The author is a member of the NAS Applied Research Branch

3The author is an employee of Computer Sciences Corporation. This work is supported
through NASA Contract NAS 2-12961.

4The author is with RIACS. This work is supported by NAS Systems Division through
Cooperative Agreement Number NCC 2-387.
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CG: A conjugate gradient method is used to compute an approximation to
the smallest eigenvalue of a large, sparse, symmetric positive definite
matrix. This kernel is typical of unstructured grid computations in that
it tests irregular long distance commurication, employing unstructured
matrix vector multiplication.

FT: A 3-D partial differential equation solution using FFTs. This kernel
performs the essence of many “spectral” codes. It is a rigorous test of
long-distance communication performance.

IS: A large integer sort. This kernel performs a sorting operation that is
important in “particle method” codes. It tests both integer computa-
tion speed and communication performance.

These kernels involve substantially larger computations than previous ker-
nel benchmarks, such as the Livermore Loops or Linpack, and therefore they
are more appropriate for the evaluation of paralle] machines. The Parallel
Kernels in particular are sufficiently simple that they can be implemented
on a new system without unreasonable effort and delay. Most importantly,
as emphasized earlier, this set of benchmarks incorporates a new concept in
performance evaluation, namely that only the computational task is speci-
fied, and that the actual implementation of the kernel can be tailored to the
specific architecture of the parallel machine.

In this chapter the Parallel Kernel benchmarks are presented, and the
particular rules for allowable changes are discussed. Future reports will de-
scribe implementations and benchmarking results on a number of parallel
supercomputers.

2.2 Description of the Kernels

2.2.1 Kernel EP: An Embarrassingly Parallel Bench-
mark

by D. Bailey and P. Frederickson

Brief Statement of Problem:
Generate pairs of Gaussian random deviates according to a specific scheme
described below and tabulate the number of pairs in successive square annuli.
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Details:

Set n = 2% a = 5! and s = 271828183. Generate the pseudorandom
floating point values r; in the interval (0, 1) for 1 < j < 2n using the
scheme described in section 2.3. Then for 1 < j < nset z; = 2ry;; — 1
and y; = 2ry; — 1. Thus z; and y; are uniformly distributed on the interval
(-1,1).

Next set k = 0. Then beginning with j = 1, test to see if t; = zZ+y7 < 1.
If not, reject this pair and proceed to the next j. If this inequality holds,
then set k «— k41, X; = z;,/(—2logt;)/t; and Vi = y;v/(—2logt;)/t;,
where log denotes the natural logarithm. Then X and Y; are independent
Gaussian deviates with mean zero and variance one. Approximately n/4
pairs will be constructed in this manner. See ([14], p. 117) for additional
discussion of this scheme for generating Gaussian deviates.

Finally, for 0 < I < 9 tabulate Q; as the count of the pairs (X, Y:) that
lie in the square annulus ! < max(|Xk|, |Y:|) < [+ 1, and output the ten @,
counts.

Verification Test:
Each of the ten Q; counts must agree exactly with reference values. For
this value of n, the reference counts are as follows:

Qi
98257395
93827014
17611549

1110028
26536
245

0

0

0

0

O 001U WO ~

Operations to be Timed:
All operations described above, including tabulation and output.

Computational Cost:
Approximately n(45 + 12r) floating point operations. For this value of
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n, this is 2.22 x 10*° floating point operations. This count is based on 19
floating point operations for each pseudorandom number, 12 for each square
root and 25 for each logarithm evaluation.

Memory Requirement:
Minimal — storage is required only for the uniform pseudorandom num-
bers generated in a single batch.

Other Features:

e This problem is typical of many Monte-Carlo simulation applications.

¢ The only requirement for communication is the combination of the 10
sums from various processors at the end.

e Separate sections of the uniform pseudorandom numbers can be inde-
pendently computed on separate processors. See section 2.3 for details.

e The smallest distance between a floating-point value and a nearby in-
teger among the r;, X; and Y values is 3.2 x 1071, which is well
above the achievable accuracy using 64 bit floating arithmetic on ex-
isting computer systems. Thus if a truncation discrepancy occurs, it
implies a problem with the system hardware or software.

2.2.2 Kernel MG: A Simple 3D Multigrid Benchmark
by E. Barszcz and P. Frederickson

Brief Statement of Problem:
Four iterations of the V-cycle multigrid algorithm described below are
used to obtain an approximate solution u to the discrete Poisson problem

Viu = v
on a 256 x 256 x 256 grid with periodic boundary conditions.

Details:

Set v = 0 except at the twenty points listed in table 2.1. where v = £1.
(These points were determined as the locations of the ten largest and ten
smallest pseudorandom numbers generated as in Kernel FT.)
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Table 2.1:

Vi,jk ' (1,,k)

-1.0 | 211,154, 98 102,138,112 101,156, 59 17,205, 32 92, 63,205
199, 7,203 250,170,157 82,184,255 154,162, 36 223, 42,240
+1.0 | 57,120,167 5,118,175 176,246,164 45,194,234 212, 7,248
115,123,207 202, 83,209 203, 18,198 243,172, 14 54,209, 40

Begin the iterative solution with u = 0. Each of the four iterations
consists of the following two steps, in which k = 8 = log,(256):

r=v— Au (evaluate residual)

u=u+ MFr  (apply correction)
Here M* denotes the V-cycle multigrid operator, defined in table 2.2. In this

Table 2.2:
2k = M k'l"k

ifk>1
Tk-1 = % (restrict residual)
Zy = M*'ri_; (recursive solve)
2k = @Q zk-1 (prolongate)
Tk = 1. — Az (evaluate residual)
2k = 2x + Srx (apply smoother)

else
F = S'ry. (apply smoother)

definition A denotes the trilinear finite element discretization of the Laplacian
V? normalized as indicated in table 2.3, where the coefficients of P, Q, and
S are also listed.

In this table ¢, denotes the central coefficient of the 27-point operator,
when these coeficients are arranged as a 3 x 3 x 3 cube. ‘Thus co is the
coefficient that multiplies the value at the gridpoint (i,j,k), while ¢, multiplies
the six values at grid points which differ by one in exactly one index, c;
multiplies the next closest twelve values, those that differ by one in exactly
two indices, and c; multiplies the eight values located at grid points that
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Table 2.3:

C o o Ca Ca
A|—80/30] 00 1.0/6.0 |1.0/12.0
P | 1.0/20 | 1.0/40 | 1.0/80 |1.0/16.0
Q 10 1.0/2.0 | 1.0/4.0 | 1.0/8.0
S [ —3.0/8.0 | +1.0/32.0 | —1.0/64.0 | 0.0

differ by one in all three indices. The restriction operator P given in this
table is the trilinear projection operator of finite element theory, normalized
so that the coefficients of all operators are independent of level, and is half the
transpose of the trilinear interpolation operator Q. The smoothing operator
S specified in this table is chosen to work well with A.

Verification Test:
Evaluate the residual after four iterations of the V-cycle multigrid algo-
rithm, and verify that its Lz norm

lIrllz = [ (3 risu )/256° 12
i3,k
agrees with the reference value

0.2433365309 x 107%

within an absolute tolerance of 1074,

Timing:

Start the clock before evaluating the residual for the first time, and after
initializing u and v. Stop the clock after evaluating the norm of the final
residual, but before displaying or printing its value.

Computational Cost:

Approximately 6x 10° floating point operations and 60 Mwords of memory
are required in the most straightforward implementation. The operation
count can be reduced by a factor of two at the cost of greater memory usage.
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2.2.3 Kernel CG: Solving an Unstructured Sparse Lin-
ear System by the Conjugate Gradient Method

by R. Schreiber and H. Simon

Brief Statement of Problem:

In this benchmark, the power method is used to find an estimate of the
smallest eigenvalue of a symmetric positive definite sparse matrix with a
random pattern of nonzeros.

Details:

A is a symmetric, positive definite, sparse matrix generated by the pro-
gram described below. The matrix is of order 14,000 and has 1,853,104
nonzero elements. In the following, A is the sparse matrix, lower case Ro-
man letters are vectors, z; is the j* component of , and lower case Greek
letters are scalars. We denote by ||z|| the Euclidean norm of a vector z,

l|z|| = /E120° z2. All quantities are real.

The power method is to be implemented as follows:

T = [1,1,...,1];

=0

G =0;

¢ =0;

it = 0

outer iteration:

do 15 times
it—it+1
Solve the system Az = z;
(2 = (13
G =G

( = fraclmax; |z;|;

Apply Aitken extrapolation to the last three iterates ¢, G,
and (, to produce an improved approximation ¢’
with the following formula

' ((—51!2
¢=¢ (—201+C2
Print it, ¢, and ||r||, the Euclidean norm of the last CG
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residual vector;
T = (z;

od

The values of { and (' are increasingly accurate approximations to the recip-
rocal of largest eigenvalue of A~!, which is the smallest eigenvalue of A. By
using the formula of the above algorithm, Aitken extrapolation of a linearly
convergent sequence {(,} produces a more rapidly converging sequence {(,}.

The solution z to the linear system of equations Az = z is to be approx-
imated using the conjugate gradient (CG) method. This method is to be
implemented as follows:

z2=10;

¥ = 23

p=rTr;

p=r;

do 25 times
q = Ap;
a=p/(p"9);
z =z + ap,
Po = P
r=r-—ag
p=rTr;
B = p/po;
p=r+PBp
od

Verification Test:

The program should print, at every outer iteration of the the power
method, the iteration number it, the value of (', and the Euclidean norm
||Ir]| of the residual vector at the last CG iteration (the vector r in the dis-
cussion of CG above).

The final value of ¢’ printed by the program must agree with the ref-
erence value 0.101221137511 within a tolerance of 1.0 x 107%°, i.e. |{' —
0.101221137511 | < 1.0 x 1071°.

17




Timing;:

The reported time must be the time required to compute all 15 iterations
and print the results, after the matrix is generated and downloaded into the
parallel machine, and after the initializatior: of the starting vector z.

It is permissible initially to reorganize the sparse matrix data structure
(arow, acol, aelt) which is produced by the matrix generation routine, to
a data structure better suitable for the target machine. The original or the
reorganized sparse matrix data structure can then be subsequently used in
the conjugate gradient interation. Time spent in the initial reorganization of
the data structure will not be counted towards the benchmark time.

It is also permissible to use several different data structures for the matrix
A, keep multiple copies of the matrix A, or to write A to mass storage, and
read it back in. However, the time for any data movements, which take place
within the power method iterations (outer iteration) or within the conjugate
gradient iterations (inner iteration), must be included in the reported time.

Computational Cost:

Generating the matrix requires 6.2 seconds on one processor of a Cray
Y-MP, but as mentioned above this is not counted as part of the kernel
for timing purposes. Approximately 9.1 x 10° floating point operations are
required for the timed portion of the test.

Memory Requirement:

The storage requirement for the timed portion of this kernel is about 2
Mwords of 64 bit words of memory. The sparse matrix generation program
requires additional workspace for about 6 million integer words.

Other Features:

The input sparse matrix A is generated by a Fortran 77 subroutine called
makea, which is provided on the sample code disk described in section 1.3. In
this program, the random number generator is initialized with a = 513 and
s = 314159265. Then the subroutine makea is.called to generate the matrix
A. This program may not be changed.

In routine makea the matrix A is represented as follows:

N (INTEGER) — the number of rows and columns

NZ (INTEGER) — the number of nonzeros

18




A (REAL*8) — array of NZ nonzeros

IA (INTEGER) — array of NZ row indices. Element A(K) is in row IA(K)
for all 1 < K < NZ.

JA (INTEGER) — array of N+1 pointers to the beginnings of columns. Col-
umn J of the matrix is stored in positions JA(J) through JA(J+1)-1 of
A and TA. JA(N+1) contains NZ+1.

The code generates the matrix as the weighted sum of NV outer products
of random sparse vectors z:

N
A= zw,-x:cT,

=1

where the weights w; are a geometric sequence with w; = 1 and ratio chosen
so that wy = 0.1 . The vectors r are chosen to have a few randomly placed
nonzeros, each of which a sample from the uniform distribution on (0,1).
Furthermore, the i** element of z; is set to 1/2 to insure that A cannot be
structurally singular. Finally, 0.1 is added to the diagonal of A. This results
in a matrix whose condition number (the ratio of its largest eigenvalue to
its smallest) is roughly 10. The number of randomly chosen elements of z is
taken to be 11 ; the final number of nonzeros in A is 1,853,104 .

The data structures used are these. First, a list of triples (arow, acol,
aelt) is constructed. Each of these represents an element in row : = arow,
column j = acol with value a;; = aelt. When the arow and acol entries of
two of these triples coincide, then the values in their aelt fields are added
together in creating a;;. The process of assembling the matrix data structures
from the list of triples, including the process of adding coincident entries, is
done by the subroutine sparse, which is called by makea and also provided.
For examples and more details on this sparse data structure consult section
2.7 of the book by Duff, Erisman, and Reid [13].

2.2.4 Kernel FT: A 3-D FFT PDE Benchmark
by D. Bailey and P. Frederickson

Brief Statement of Problem:
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Numerically solve a certain partial differential equation (PDE) using for-
ward and inverse FFTs.

Detalils:
Consider the PDE

du(z,t)

. 2
5 = aViu(z,t)

where z is a position in 3-dimensional space. When a Fourier transform 1s
applied to each side, this equation becomes

dv(z,t)
ot

= —dan?|z|?v(z,1)

where v(z,t) is the Fourier transform of u(z,t). This has the solution
v(z,t) = e~tem =ty (2, 0)

Now consider the discrete version of the original PDE. Following the
above, it can be solved by computing the forward 3-D discrete Fourier trans-
form (DFT) of the original state array u(z,0), multiplying the results by
certain exponentials, and then performing an inverse 3-D DFT. The forward
DFT and inverse DFT of the n; X ny X n3 array u are defined respectively as

n3=1nz-1n;-1 5 . )
qur"(u) - Z z Z uj,k,’e—%ruqfn; e-‘kar/ng e—?mls,’na
=0 k=0 ;=0
1 n3—1nz—1n;-1
z: z u; e21rijq/ﬂ1 eZﬂikr/ngeiwila/ng
n n n J!k‘! E
11213 =0 k=0 ;=0

F! u) =

9,73

The specific problem to be solved in this benchmark is as follows. Set
ny = 256, ny = 256, and nz = 128. Generate 2n;n;n3 64-bit pseudorandom
floating point values using the pseudorandom number generator in section
2.3, starting with the initial seed 314159265. Then fill the complex array
Uik, 0 £ j <my, 02 k < ng, 0 <1 < n3, with this data, where the
first dimension varies most rapidly as in the ordering of a 3-D Fortran array.
A single complex number entry of U consists of two consecutive pseudoran-
domly generated results. Compute the forward 3-D DFT of U, using a 3-D
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fast Fourier transform (FFT) routine, and call the result V. Set a = 107°
and set t = 1. Then compute
Wikt = 3‘4“”2(32‘*"_‘2"’?)‘%*,;

where j is defined as j for 0 < j < n3/2 and j — n; for /2 < j < ny.
The indices k and [ are similarly defined with n, and n3. Then compute an
inverse 3-D DFT on W, using a 3-D FFT routine, and call the result the
array X. Finally, compute the complex checksum E;?__%S Xyrs Where ¢ = 3
(mod n;), r=3j (mod n;)and s =5; (mod nz). After the checksum for
this ¢t has been output, increment ¢t by one. Then repeat the above process,
from the computation of W through the incrementing of ¢, until the step
t = N has been completed. In this benchmark, N = 6. The V array and the
array of exponential terms for ¢ = 1 need only be computed once. Note that
the array of exponential terms for { > 1 can be obtained as the t-th power of
the array for t = 1.

Any algorithm may be used for the computation of the 3-D FFTs men-
tioned above. One algorithm is as follows. Assume that the data in the
input n; X ny X n3 complex array A is organized so that for each k and I, all
elements of the complex vector (A;jky, 0 < j < ny) are contained within a
single processing node. First perform an n;-point 1-D FFT on each of these
ngna complex vectors. Then transpose the resulting array into an ny X nz X n,
complex array B. Next, perform an np-point 1-D FFT on each of the nan,
first-dimension complex vectors of B. Again note that each of the 1-D FFTs
can be performed locally within a single node. Then transpose the resulting
array into an njz X n; X ny complex array C. Finally, perform an n3-point
1-D FFT on each of the nyn, first-dimension complex vectors of C. Then
transpose the resulting array into an n; X np X nz complex array D. This
array D is the final 3-D FFT result.

Algorithms for performing an individual 1-D complex-to-complex FFT
are well known and will not be presented here. Readers are referred to the
references [7, 8, 17, 20, 21] for details. It might be noted that some of these
FFTs are “unordered” FFTs, i.e. the results are not in the correct order
but instead are scrambled by a bit-reversal permutation. Such FFTs may
be employed if desired, but it should be noted that in this case the ordering
of the exponential factors in the definition of Wj s, above must be similarly
scrambled in order to obtain the correct results. Also, the final result array
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X may be scrambled, in which case the checksum calculation will have to be
changed accordingly.

It should be noted that individual 1-D FFTs, array transpositions, and
even entire 3-D FFT operations may be performed using vendor-supplied
library routines. See sections 1.2.2 and 1.2.3 for details.

Operations to be Timed:
All of the above operations, including the checksum calculations, must
be timed.

Verification Test:

The N complex checksums must agree with reference values to within one
part in 10'2. For the parameter sizes specified above, the reference values are
as follows:

t Real Part Imaginary Part
1 504.6735008193 511.4047905510
2 505.9412319734 509.8809666433
3 506.9376896287 509.8144042213
4 507.7892868474 510.1336130759
5 508.5233095391 510.4914655194
6 509.1487099959 510.7917842803

Computational Cost:

Approximately n[58 + 6N + 5(N + 1)log, n] floating point operations,
where n = nyngna. For the parameter sizes specified above, this is 7.54 X 10°
floating point operations. This count is based on 19 floating point operations
for each pseudorandom number, 5mlog, m for each m-point complex FFT
and 20 for each exponential function evaluation.

Memory Requirement: _

Approximately 7Tn words (64 bit), where n = ninans. This assumes that
a scratch array of the same size as the 3-D data array is required for the 3-D
FFTs. For the parameter sizes specified above, this is 5.87 x 107 words.

Other Features:

e 3-D FFTs are a key part of certain CFD applications, notably large
eddy turbulence simulations.
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e The 3-D FFT steps require considerable communication for
such as array transpositions.

2.2.5 Kernel IS: Parallel Sort Over Small Int
by L. Dagum

Brief Statement of Problem:

Sort N keys in parallel. The keys are generated by the seq
generation algorithm given below and initially must be uniformly
in memory. The initial distribution of the keys can have a great
the performance of this benchmark, and the required distribution
in detail below.

Definitions:

A sequence of keys, {K; | i=0,1,...,N—1}, will be said
if it is arranged in non-descending order, i.e. K; < K1 < Kiga s
of a particular key in a sequence is the index value : that the key w
the sequence of keys were sorted. Ranking, then, is the process of
a rank for all the keys in a sequence. Sorting is the process of pe
the keys in a sequence to produce a sorted sequence. If an initia
sequence, Ko, K1, ..., Kn-1 has ranks 7(0),7(1),... ,r(N=1),t
becomes sorted when it is rearranged in the order K, (o), K-(1),-
Sorting is said to be stable if equal keys retain their original rel
_ In other words, a sort is stable only if r(¢) < r(j) whenever K,
i < j. Stable sorting is not required for this benchmark.

Memory Mapping:

The benchmark requires ranking an unsorted sequence of 1
initial sequence of keys will be generated in an unambiguous seqn
ner described below. This sequence must be mapped into the
the parallel processor in one of the following ways depending
of memory system. In all cases, one key will map to one word
Word size must be no less than 32 bits. Once the keys are loa«
memory system, they are not to be moved or modified except as
the procedure described in the Procedure subsection.

Shared Global Memory All N keys initially must be stored
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ous address space. If A; is used to denote the address of the i*h word
of memory, then the address space must be [A;, Aiyn-1]. The sequence
of keys, Ko, K1, ..., Kn-1, initially must map to this address space as

Aiy; — MEM(K;) for j;=0,1,...,N—1 (2.1)
where MEM (K ;) refers to the address of K.

Distributed Memory In a distributed memory system with p distinct mem-
ory units, each memory unit initially must store N, keys in a contiguous
address space, where

N, = N/p. (2.2)

If A; is used to denote the address of the i** word in a memory unit,
and if P; is used to denote the j** memory unit, then P; N A; will de-
note the address of the i** word in the j*» memory unit. Some initial
addressing (or “ordering”) of memory units must be assumed and ad-
hered to throughout the benchmark. Note that the addressing of the
memory units is left completely arbitrary. If N is not evenly divisible
by p, then memory units {P; | j=0,1,...,p—2} will store N, keys,
and memory unit P,_; will store N,, keys, where now

N, = |N/p+0.5) (2.3)
Np = N=(p=1)N, (24)

In some cases (in particular if p is large) this mapping may result in
a poor initial load balance with Ny >> N,. In such cases it may
be desirable to use p’ memory units to store the keys, where p' < p.
This is allowed, however the storage of the keys still must follow either
equation 2.2 or equations 2.3-2.4 with p’ replacing p. In the following
we will assume N is evenly divisible by p. The address space in an
individual memory unit must be [A;, Aiyn,-1]. If memory units are
individually hierarchical, then N}, keys must be stored in a contiguous
address space belonging to a single memory hierarchy and A; then
denotes the address of the i** word in that hierarchy. The keys cannot
be distributed amongst different memory hierarchies until after timing
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begins. The sequence of keys, Kp, K1,..., Kny_1 , Initially must map
to this distributed memory as

PrNAiy; — MEM(.B’;:NP+J') for §=0,1,...;N;-1
and E=0,1;..-5p =1 {2.5)

where MEM (Kyn,+;) refers to the address of Kyn,4;. If NV is not
evenly divisible by p, then the mapping given above must be modified
for the case where k = p — 1 as

Po1NAiyj — MEM(Kp_y)n,4;) for j=0,1,...,Npp—1. (2.6)

Hlerarchlcal Memory All N keys initially must be stored in an address
space belonging to a single memory hierarchy which will here be referred
to as the main memory. Note that any memory in the hierarchy which
can store all N keys may be used for the initial storage of the keys,
and the use of the term “main memory” in the description of this
benchmark should not be confused with the more general definition of
this term in section 1.2.1. The keys cannot be distributed amongst
different memory hierarchies until after timing begins. The mapping
of the keys to the main memory must follow one of either the shared
global memory or the distributed memory mappings described above.

The benchmark requires computing the rank of each key in the sequence.
The mappings described above define the initial ordering of the keys. For
shared global and hierarchical memory systems, the same mapping must be
applied to determine the correct ranking. For the case of a distributed mem-
ory system, it is permissible for the mapping of keys to memory at the end of
the ranking to differ from the initial mapping only in the following manner:
the number of keys mapped to a memory unit at the end of the ranking may
differ from the initial value, N,. It is expected, in a distributed memory
machine, that good load balancing of the problem will require changing the
initial mapping of the keys and for this reason a different mapping may be
used at the end of the ranking. If N, is the number of keys in memory
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unit P at the end of the ranking, then the mapping which must be used to
determine the correct ranking is given by

PiN Aiy; — MEM(r(kN,, +37)) for  j=0,1,...,N, —1
and  k=0,1,....,p—1 (2.7)

where r(kN,, + j) refers to the rank of key Kin,, +;- Note, however, this
does not imply that the keys, once loaded into memory, may be moved.
Copies of the keys may be made and moved, but the original sequence must
remain intact such that each time the ranking process is repeated (Step 4
of the Procedure) the original sequence of keys exists (except for the two
modifications of Step 4a) and the same algorithm for ranking is applied.
Specifically, knowledge obtainable from the communications pattern carried
out in the first ranking cannot be used to speed up subsequent rankings and
each iteration of Step 4 should be completely independent of the previous
iteration.

Key Generation Algorithm:

The algorithm for generating the keys makes use of the pseudorandom
number generator described in section 2.3. The keys will be in the range
[0, Bpnaz). Let ry be a random fraction uniformly distributed in the range
[0,1], and let K; be the i** key. The value of K; is determined as

K; — [Bma,(r4;+0+r4,-+1 +1'4,'+2+T4,'+3)/4J for :=0,1,...,N-1. (28)

Note that K; must be an integer and |-| indicates truncation. Four consecu-
tive pseudorandom numbers from pseudorandom number generator must be
used for generating each key. All operations before the truncation must be
performed in 64-bit double precision. The random number generator must
be initialized with s = 314159265 as a starting seed.

Partial Verification Test:

Partial verification is conducted for each ranking performed. Partial ver-
ification consists of comparing a particular subset of ranks with the reference
values. The subset of ranks and the reference values are given in table 2.5 of
the Specifications subsection. Note that the subset of ranks is selected to be
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invariant to the ranking algorithm (recall that stability is not required in the
benchmark). This is accomplished by selecting for verification only the ranks
of unique keys. If a key is unique in the sequence (i.e. there is no other equal
key), then it will have a unique rank despite an unstable ranking algorithm.
The memory mapping described in the Memory Mapping subsection must
be applied.

Full Verification Test:
Full verification is conducted after the last ranking is performed. Full
verification requires the following:

1. Rearrange the sequence of keys, {K; | ¢=0,1,...,N — 1}, in the
order {K; | j=r7(0),7(1),...,7(N-1)}, wherer(0),r(1),...,7(N—
1) is the last computed sequence of ranks.

2. For every K; from ¢ =0... N — 2 test that K; < K,;,.

- If the result of this test is true, then the keys are in sorted order. The memory
mapping described in the Memory Mapping subsection must be applied.

Procedure:

1. In a scalar sequential manner and using the key generation algorithm
described above, generate the sequence of NV keys.

2. Using the appropriate memory mapping described above, load the N
keys into the memory system.

3. Begin timing.
4. Do, for i =1 to I s

(a) Modify the sequence of keys by making the followihg two changes:

If.' — 1 (2'9)
K'.‘l‘-rmaz — (Bmﬂ5 - i) (2'10)

(b) Compute the rank of each key.

(c) Perform the partial verification test described above.
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5. End timing.

6. Perform full verification test described above.

Computational Cost:

On a sequential machine, integer sorting has a time complexity of O(V).
For each ranking, the sequential algorithm has 2N 4+ By, arithmetic oper-
ations (integer add or subtract), and TN + 4Bms; memory references. No
floating point operations are required.

Specifications:

The specifications given in table 2.4 shall be used in the benchmark. Two
sets of values are given. The Full Scale values are the values to be used in
the actual benchmark as described in section 1.4. However, for development
purposes, the Sample Code values as described in section 1.3 may be used.

[ Parameter | Full Scale | Sample Code |

N 223 2]6
B,o: 21§ o1l
seed 314159265 | 314159265
Imar 10 10

Table 2.4: Parameter values to be used for benchmark.

For partial verification, the reference values given in table 2.5 are to be
used. In this table, r(j) refers to the rank of K; and i is the iteration
of Step 4 of the Procedure. Again two sets of values are given, the Full
Scale set being for the actual benchmark and the Sample Code set being
for development purposes. It should be emphasized that the benchmark
measures the performance based on use of the Full Scale values, and the
Sample Code values are given only as a convenience to the implementor.
Also to be supplied to the implementor is Fortran 77 source code for the
sequential implementation of the benchmark using the Sample Code values
and with partial and full verification tests.
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[ Rank (Full) [ Full Scale | Rank (Sample) | Sample Code |

r(2112377) | 104 +i | r(48427) 0+
r(662041) | 17523 +: | r(17148) 18 +3
7(5336171) | 123928 +: | r(23627) 346 + ¢
r(3642833) | 8288932 — : | r(62548) 64917 — i
r(4250760) | 8388264 — i | r(4431) 65463 — ¢

Table 2.5: Values to be used for partial verification.

2.3 A Pseudorandom Number Generator for
the Parallel NAS Kernels

by D. Bailey

Suppose that n uniform pseudorandom numbers are to be generated. Set
a = 5! and let 2o = s be a specified initial “seed”, i.e. an integer in the
range 0 < s < 2%. Generate the integers z; for 1 < k < n using the linear
congruential recursion

Try1 = azk (mod 2%)

and return 7 = 274z, as the results. Thus 0 < rx < 1, and the r; are very
" nearly uniformly distributed on the unit interval. See ([14], beginning on p.
9) for further discussion of this type of pseudorandom number generator.

Note that any particular value z; of the sequence can be computed di-
rectly from the initial seed s by using the binary algorithm for exponentiation,
taking remainders modulo 2¢ after each multiplication. To be specific, let m
be the smallest integer such that 2™ > k, set b = s and ¢ = a. Then repeat
the following for i from 1 to m:

k/2

bt (mod 2%°) if 254k
t* (mod 2*¢)

J

LI

29




The final value of bis zx = a*s (mod 2¢). See ([14], p. 442) for further
discussion of the binary algorithm for exponentiation.

The operation of multiplying two large integers modulo 2*¢ can be imple-
mented using 64 bit floating point arithmetic by splitting the arguments into
two words with 23 bits each. To be specific, suppose one wishes to compute
¢=ab (mod 2%). Then perform the following steps, where int denotes the
greatest integer:

a; « int(27%q)

ay = a2

by, « int (27%%)
by — b—20h

ty «— ajby +azby
t, « int (27%%;)
ta — 1;— 2234,
ty — 2%34 azb,

ts « int (27%¢,)
¢ — ty—2%ts

An implementation of the complete pseudorandom number generator al-
gorithm using this scheme produces the same sequence of results on any
system that satisfies the following requirements:

o The input multiplier a and the initial seed s, as well as the constants
223 9-23 996 and 276 can be represented exactly as 64 bit floating
point constants.

e The truncation of a nonegative 64 bit floating point value less than 2%
is exact.

e The addition, subtraction and multiplication of 64 bit floating point
values, where the arguments and results are nonnegative whole numbers
less than 2%, produce exact results.

o The multiplication of a 64 bit floating point value, which is a nonneg-
ative whole number less than 2%7, by the 64 bit floating point value
2-™ (0 < m < 46, produces an exact result.
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These requirements are met by virtually all scientific computers in use today.
Any system based on the IEEE-754 floating point arithmetic standard [4]
easily meets these requirements using double precision. However, it should
be noted that obtaining an exact power of two constant on some systems
requires a loop rather than merely an assignment statement with *x*.

Other Features:

e The period of this pseudorandom number generator is 2% = 1.76 x 103,
and it passes all reasonable statistical tests.

e This calculation can be vectorized on vector computers by generating
results in batches of size equal to the hardware vector length.

e By using the scheme described above for computing z, directly, the
starting seed of a particular segment of the sequence can be quickly
and independently determined. Thus numerous separate segments can
be generated on separate processors of a multiprocessor system.

e Once the IEEE-754 floating point arithmetic standard gains universal
acceptance among scientific computers, the radix 2% can be safely in-
creased to 2°2, although the scheme described above for multiplying
two such numbers must be correspondingly changed. This will increase
the period of the pseudorandom sequence by a factor of 64, to approx-
imately 1.13 x 10%5.
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Chapter 3

A METHODOLOGY FOR BENCHMARKING SOME CFD KERNELS
ON HIGHLY PARALLEL PROCESSORS
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Moffett Field, CA 94035

Abstract
A collection of iterative PDE solvers embedded in a pseudo application program is proposed for
the performance evaluation of CFD codes on highly parallel processors. The pseudo application
program is stripped of complexities associated with real CFD application programs, thereby en-
abling a simpler description of the algorithms. However, it is capable of reproducing the essential
computation and data motion characteristics of large scale, state of the art CFD codes. In this
chapter, we present a detailed description of the pseudo application program concept. Preceding
chapters address our basic approach towards the performance evaluation of parallel supercomputers

targeted for use in numerical aerodynamic simulation.

Keywords: supercomputers, parallel computers, computational fluid dynamics, benchmark-

ing, performance evaluation.
1. INTRODUCTION

Computational Fluid Dynamics (CFD) is one of the fields in the area of scientific computing
that has driven the development of modern vector supercomputers. Availability of these high
performance computers has led to impressive advancements in the state of the art of CFD, both in
terms of the physical complexity of the simulated problems and the development of computational
algorithms capable of extracting high levels of sustained performance. However, to carry out the
computational simulations of future importance to the aerospace community, CFD must be able
and ready to exploit potential performance and cost/performance gains possible through the use
of highly parallel processing technologies. Use of parallel supercomputers appears to be one of
the most promising avenues for realizing large complex physical simulations within realistic time
and cost constraints. Although many of the current CFD application programs are amenable to
a high degree of parallel computation, performance data on such codes for the current generation
of parallel computers often has been less than remarkable. This is especially true for the class of
CFD algorithms involving global data dependencies, commonly referred to as the implicit methods.
Often the bottleneck is data motion, due to high latencies and inadequate bandwidth.

It is a common practice among computer hardware designers to use the dense linear equation

solution subroutine in the LINPACK to represent the scientific computing workload. Unfortunately,
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the computational structures in most CFD algorithms bear little resemblance to this LINPACK rou-
tine, both in terms of its parallelization strategy as well as floating point and memory reference
features. Most CFD application codes are characterized by their use of either regular or irregular
sparse data structures and associated algorithms. One of the reasons for this state of affairs is the
near absence of communication between computer scientists engaged in the design of high perfor-
mance parallel computers and the computational scientists involved in the development of CFD
applications. In order to have a beneficial effect on the end product, such exchange of information
should occur during the early stages of the design process. It appears that one of the contributing
factors for this lack of effective communication is the complexity and confidentiality associated with
the state-of-the-art CFD application codes. One way to help the design process is to provide the
computer scientists with synthetic CFD application programs, which lack the complexity of a real
application, but at the same time retain all the essential computational structures. Such synthetic
application codes can be accompanied by detailed and simpler descriptions of the algorithms in-
volved. In return, the performance data on such synthetic application codes can be used to evaluate

different parallel supercomputer systems at the procurement stage by the CFD community.

Computational Fluid Dynamics involves the numerical solution of a system of nonlinear partial
differential equations in two or three spatial dimensions, with or without time dependence. The
governing partial differential equations, referred to as the Navier-Stokes equations, represent the
laws of conservation of mass, momentum and energy applied to a fluid medium in motion. These
equations, when supplemented by appropriate boundary and initial conditions describe a particular
physical problem. To obtain a system of equations amenable to solution on a computer requires the
discretization of the differential equations through the use of finite difference, finite volume, finite
element or spectral methods. The inherent nonlinearities of the governing equations necessitate the
use of iterative solution techniques. Over the past years, a variety of efficient numerical algorithms
have been developed, all requiring many floating point operations and large amounts of computer

memory to achieve a solution with a desired level of accuracy.

In current CFD applications, there are two types of computational meshes used for the spa-
tial discretization process: structured and unstructured. Structured meshes are characterized by
a consistent, logical ordering of mesh points, whose connectivity is associated with a rectilinear
coordinate system. Computationally, structured meshws give rise to regularly strided memory ref-
erence characteristics. In contrast, unstructured meshes offer greater freedom in terms of mesh point
distribution, but require the generation and storage of random connectivity information. Computa-
tionally, this results in indirect memory addressing with random strides, with its attendant increase
in memory bandwidth requirements. The synthetic application codes currently under consideration

are restricted to the case of structured meshes.

The numerical solution algorithms used in CFD codes can be broadly categorized as either
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explicit or implicit, based on the procedure used for the time domain integration. Among the
advantages of the explicit schemes are the high degree of easily exploitable parallelism and the
localized spatial data dependencies. These properties have resulted in highly efficient implemen-
tations of explicit CFD algorithms on a variety of current generation highly parallel processors.
However, the explicit schemes suffer from stringent numerical stability bounds and as a result are
not optimal for problems that require fine mesh spacing for numerical resolution. In contrast, im-
plicit schemes have less stringent stability bounds and are suitable for problems involving highly
stretched meshes. However, their parallel implementation is more difficult and involve local as well
as global spatial data dependencies. In addition, some of the implicit algorithms possess limited
degrees of exploitable parallelism. At present, we restrict our synthetic applications to three differ-
ent representative implicit schemes found in a wide spectrum of production CFD codes in use at
the NASA Ames Research center.

In the remaining sections of this chapter, we describe the development of a collection of synthetic
application programs. First we discuss the rationale behind this approach followed by a complete
description of three such synthetic applications. We also outline the problem setup along with the

associated verification tests, when they are used to benchmark highly parallel systems.

2. RATIONALE

In the past, vector supercomputer performance was evaluated through the use of suites of
kernels chosen to characterize generic computational structures present at a site’s workload. For
example, NAS Kernels ([1]) were selected to characterize the computational workloads inherent in a
majority of algorithms used by the CFD community at the NASA Ames Research Center. However,

for highly parallel computer systems, this approach is inadequate, for reasons outlined below.

The first stage of the pseudo application development process was the analysis of a variety of
implicit CFD codes and the identification of a set of generic computational structures that repre-
sented a range of computational tasks embedded in them. As a result, the following computational

kernels were selected:

a) Solution of multiple, independent systems of non diagonally-dominant, block tridiagonal equa-
tions with a (5 x 5) block size.

b) Solution of multiple, independent systems of non diagonally-dominant, scalar pentadiagonal

equations.
c) Regular-sparse, block (5 x 5) matrix-vector multiplication.
d) Regular-sparse, block (5 x 5) lower and upper triangular system solution.

These kernels constitute a majority of the computationally-intensive, main building blocks of

the CFD programs designed for the numerical solution of three-dimensional (3D), Euler/Navier-
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Stokes equations using finite-volume/finite-difference discretization on structured grids. Kernels (a)
and (b) are representative of the computations associated with the implicit operator in versions
of the ARC3D code ([2]). These kernels involve global data dependencies. Although they are
similar in many respects, there is a fundamental difference with regard to the communication-to-
computation ratio. Kernel (c) typifies the computation of the explicit part of almost all CFD
algorithms for structured grids. Here all data dependencies are local, with either nearest neighbor
or at most next-to-nearest neighbor type dependencies. Kernel (d) represents the computations
associated with the implicit operator of a newer class of implicit CFD algorithms, typified by the
code INS3D-LU ([3]). This kernel may contain only a limited degree of parallelism, relative to the

other kernels.

In terms of their parallel implementation, these kernels represent varying characteristics with

regard to the following aspects, which are often related:

1) Available degree of parallelism.

2) Level of parallelism and granularity.

3) Data space partitioning strategies.

4) Global vs. local data dependencies.

5) Inter-processor and in-processor data motion requirements.

6) Ratio of communication-to-computation.

Previous research efforts in adapting algorithms in a variety of flow solvers to current generation
of highly parallel processors have indicated that the overall performance of many CFD codes is
critically dependent on the latency and bandwidth of both the in-processor and inter-processor
data motion. Therefore, it is important for the integrity of the benchmarking process to faithfully
reproduce a majority of the data motions encountered during the execution of applications in which
these kernels are embedded. Also, the nature and amount of data motion is dependent on the
kernel algorithms along with the associated data structures and the interaction of these kernels

among themselves as well as with the remainder of the application that is outside their scope.

To obtain realistic performance data, specification of both the incoming and outgoing data
structures of the kernels should mimic those occuring in an application program. The incoming data
structure is dependent on the section of the code where the data is generated, not on the kernel.
The optimum data structure for the kernel may turn out to be sub-optimal for the code segments
where the data is generated and vice-versa. Similar considerations also apply to the outgoing data
structure. Allowing the freedom to choose optimal incoming and outgoing data structures for the
kernel as a basis for evaluating its performance is liable to produce results that are not applicable
to a complete application code. The overall performance needs to reflect the cost of data motion

that occur between kernels.
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In order to reproduce most of the data motions encountered in the execution of these kernels
in a typical CFD application, we propose embedding them in a pseudo application code. It is
designed for the numerical solution of a synthetic system of non-linear Partial Differential Equations
(PDE’s), using iterative techniques similar to those found in CFD applications of interest to the
NASA Ames Research Center. However, it contains none of the pre- and post-processing required
by the full CFD applications, or the interactions of the processors and the I/O subsystem. This can
be regarded as a stripped-down version of a CFD application. It retains the basic kernels that are
the principal building blocks of the application and admits a majority of the interactions required
between these basic routines. Also, the stripped-down version does not represent a fully configured
CFD application in terms of system memory requirements. This fact has the potential for creating
data partitioning strategies during the parallel implementation of the synthetic problem that may
be inappopriate for the full application.

;From a functionality point of view, the stripped-down version does not contain the algorithms
used to apply boundary conditions as in a real application. It is well known that often, the boundary
algorithms gives rise to load imbalances and idling of processors in highly parallel systems. Due
to relaxing of this requirement, it is likely that the overall system performance and efficiency data
obtained using the stripped-down version may be higher than that of an actual application. This
effect is somewhat mitigated by the fact that for most realistic problems, only a relatively small
time is spent dealing with boundary algorithms when compared to the time spent in dealing with

the internal mesh points. Also, most boundary algorithms involve only local data dependencies.

Among the other advantages of the stripped-down application vs. full application approach

are:
1) Allows benchmarking where real application codes are confidential.
2) Easier to manipulate and port from one system to another.

3) Since only the abstract algorithm is specified, it facilitates new implementations that are tied
closely to the architecture under consideration.

4) Allows easy addition of other existing and emerging CFD algorithms to the benchmarking
process.

5) Easily scalable to larger problem sizes.

It should be noted that this synthetic problem differs from a real CFD problem in the following

important aspects:

1) In full CFD application codes, a non-orthogonal coordinate transformation ([2]) is used to
map the complex physical domains to the regular computational domains, thereby introducing

metric coefficients of the transformation into the governing PDE’s and boundary conditions.
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Such transformations are absent in the synthetic problem, and as a result may have a reduced

arithmetic complexity and storage requirements.

2) A blend of nonlinear, second- and fourth-difference artificial dissipation terms ([4]) is used in
most of the actual CFD codes, whose coefficients are determined based on the local changes in
pressure. In the stripped-down version, only a linear, fourth difference term is used. This re-
duces the arithmetic and communication complexity needed to compute the added higher-order
dissipation terms. However, it should be noted that computation of these artificial dissipation

terms involve only local data dependencies, similar to the matrix-vector multiplication kernel.

3) In codes where artificial dissipation is not used, upwind differencing based on either flux-vector
splitting ([5],[6]) or flux-difference splitting ([7]) or Total Variation Diminishing (TVD) schemes
([8]) is used. The absence of such differencing schemes in the stripped-down version induces

effects similar to (2) on the performance data.

4) Absence of turbulence models. Computation of terms representing some turbulence models
involve a combination of local and some long-range data dependencies. Arithmetic and com-

munication complexity associated with turbulence models are absent.

In addition, it also needs to be emphasized that the stripped-down problem is neither designed
nor is suitable for the purposes of evaluating the convergence rates and /or the applicability of various
iterative linear system solvers used in computational fluid dynamics applications. As mentioned

before, the synthetic problem differs from the real CFD applications in following important ways:
1) Absence of realistic boundary algorithms.
2) Higher than normal dissipative effects.
3) Lack of upwind differencing effects, based on either flux-vector splitting or TVD schemes.

4) Absence of geometric stiffness introduced through boundary conforming coordinate transfor-

mations and highly stretched meshes.

5) Lack of evolution of weak (i.e.,C°—) solutions found in real CFD applications, during the

iterative process.
6) Absence of turbulence modelling effects.
Some of these effects tend to suppress the predominantly hyperbolic nature exhibited by the
Navier-Stokes -quations, when describing compressible flows at high Reynolds numbers.
3. MATHEMATICAL PROBLEM DEFINITION

We consider the numerical solution of the following synthetic system of five nonlinear partial
differential equations (PDE’s):
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U _ 9E(U) | 9F(U) . 0G(U)

or 13 on a¢
OT(U,Ug) | 8V(U,U,) , dW(U, U
9 o a¢

+H(U,Ug,U,,Uy), (1,600 €D, xD

with the boundary conditions:
B(U?Uf?U"hUC) = UB(T,& ThC): (T,tf, T],C)E Df x dD

and initial conditions:

U= UO(E’ s C)y (6, 7, ‘;) €D for =0,

where D € R is a bounded domain, 8D is its boundary and D, = {0 < 7 < T} .

Also, the solution to the system of PDE’s:

(7

Ne)

U= | «®

NO)

\ 4 /

(3.1a)

(3.1b)

(3.1¢)

(3.2)

defined in ( DUAD ) x D,, is a vector function of temporal variable 7 and spatial variables (£,7,()

that form the orthogonal coordinate system in ®2, i.e.;

u(M) = u(m)(TEEJ ﬂ’ C)'

The vector functions UP and U? are given and B is the boundary operator. E, F, G, T, V,

W and H are vector functions with five components each of the form:

(eu) \

(2)
E=| 3
el

\J”}

and e(™ = ¢(™)(U) etc. are prescribed functions.
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The system given by Eq.(3.1a)is in the ‘normal-form’,i.e., it gives explicitly the time derivatives
of all the dependent variables u® 4@ . 4. Consequently, the Cauchy data at 7 = 0, given by
Eq.(3.1c) permits the calculation of solution U(r,§,7, ¢) for 7 > 0.

In the current implementation of the synthetic PDE system solver, we seek a steady-state
solution of Eq.(3.1) of the form:

(7
f(2)
U = f(6,7,0) = | @ (3.4)

f(4)

k ey

where f(™) = f(m)(£ 5,() are prescribed functions of the following form:

(f(l)(Ean,C)\

f(2)(§,q,() 01,1 Ci2 --- 01,13

fOEn) [ =] Ca Gz - Caas e, n,0) (3.5)
91,0 c;J c;‘z Cs 1

FOE,n,€)/

Here, the vector e is given by:
eT=(1 €9 ¢&&n &7 ¢ &t ),
and Cppn,m=1,2,...,6,n=12,...,13 are specified constants.

The vector forcing function H = [A(}), R h(3 h®) RNT where h(™) = h(™)(€, 7, () is chosen
such that the system of PDE’s, along with its boundary and initial conditions, satisfies the prescribed

exact solutién, U~. This implies:

H*(&,7,¢)= _[aE‘g?-) + 35:;}:‘) % BGigZJ-)

9T(U*,U;) 8V(U*,U;)  dW(U,U)
+ 5 + o + o

(3.6)

]‘ for (EaThC) €eDxD,

The bounded spatial domain D is specified to be the interior of the unit cube [(0,1) x (0,1) x

(0,1)], i.e.:
D={(&n¢):0<€<1,0<n<1,0<(<1}
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and its boundary 8D, is the surface of the unit cube given by:

aD = {(£,m¢):E=00r YU{(&m,0):n=00r 1}U{(&n():(=0o0r1)

The vector functions E,F,G, T,V and W of the synthetic problem are specified to be the

following:
@) _af®
/ u 2 \ ( 3 \
—[u®)? fu®) - ¢ —[u®u3)] /L)
E = _[u(z)u(a)]/um ; F= —[u(3)]2/u(1) gl
—[u® @] /u) —[u®u®] /a0
\_[um/um][u(s) +4¢]/ \ —[u® /uO][u® + ¢]/
( —u®) \
—[u® @]/
G-= —[u® @] /u)
—[u WP/ — ¢
\ —[a® /a0][u® + ]/
where,
¢ = ko {ul® - 0.5[([1'(2)]2 L [u((a:)]z ! [u(4}]2)1}.
u
Also,
( d(9u/8¢) )
4 (BuD/0€) + (4./3. )k (Olu™ [uM]/06)
T=|  dPBu®/0) + kaks(0lu®/uM)/06) |,
d) (0u®) /9€) + kska (B[t /uM)/26)
\ )
where,
() = g5 94
1) = dt 5
9 (212 o [ (3)]2 N [u(4)]2 1. 8 bl
+0.5(1. — klks)-az([u ] [:m}? ) + (E‘-)a—e[u(z)/um]z + klkséz[u(s)/u“)].
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( dy(9u)/8n) )
d7(8u® (1) + kaka(8[u® [uD)/on)
V = | d®(8u®/8n) + (4./3.)kake(8[u® [uM]/8m) | »
diP(0u®)/0n) + kaka(9[u® uM)/8n)

\ o8 ]

where,

oul®)
1)(5) — dsf) an
+0.5(1. - k1k5)£([u(2}]2+ [u®]? + [u)]? N L.
i =

[u(l)]g ) (6_)

7] a
S0 VP + ks ()

( dP (9uM /8¢) \
dP(8u® [8¢) + kaky(B[u [uM])/5C)
W = dP(8u® [8¢) + kaky(8[u® /ulM]}/8¢) ,
d(0u® [8C) + (4./3.)kska(B[u®) /uM]/()

\ wl® /

where,

(5)
5) _ 5)3“
w' )—d(( ac

o [u®] + W] + W)
ol op

1., @ a
+ 0.5(1. - klks) ) + (_6_-)3_([,“(4)/“(1)]2 & klkSB_C[u(S)/u(l)]v

and kq, ko, ka, kg, ks, dgm), ds,m), dgm) (m=1,2,...,5) are given constatnts.

3.1 THE BOUNDARY CONDITIONS
The boundary conditions for the system of PDE’s is prescribed to be of the uncoupled Dirichlet
type, and is specified to be compatible with U*, such that:

u™ = fm(g,n,0), for (7,€,7m,() € Dr x 8D (3.7)

and m=1,2,...,5.
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3.2. THE INITIAL CONDITIONS

The initial values U° in D are set to those obtained by a transfinite, tri-linear interpolation
([9]), of the boundary data given by Eq.(3.7). Let:

Pém) = (1 - 6) u(m)(ﬂs 7]1C)+6 u(m)(l’n’C)’
Pi™ = (1.— ) u™(£,0,0)+ 1 w!™(1,0), (38)
P™ = (1. = ¢) (™ (£,,0)+ ¢ !™(&,n, 1)

Then,
™) (r = 0,6,,() = P{™ + Py + P

— P P — pem pLm) — pimpe (3.9)
+ PMPMPM, o (€,1,)€D
4. THE NUMERICAL SCHEME

Starting from the initial values prescribed by Eq.(3.9), we seek some discrete approximation
U3 € D to the steady-state solution U of Eq.(3.1), through the numerical solution of the nonlinear
system of PDE’s using a pseudo-time marching scheme and a spatial discretization procedure based

on finite difference approximations.
4.1. IMPLICIT TIME DIFFERENCING

The independent temporal variable 7 is discretized to produce the set:
D, ={m:n€[0,N]}
where the discrete time increment A7 is given by:
Tn = Tn—1 + AT = nAT. (4.1)
Also the discrete approximation of U on Dy is denoted by:
U(r) = UT(nAT) = U™ | (4.2)

A generalized single-step temporal differencing scheme for advancing the solution of Eq.(3.1)
is given by ([10]): '

BAT aAU" Ar 8U" 6 i 1 A2 %
L -=- Ar®). .
AU 1+0) or + a+0) or + (1+0)AU + O[(B 5 YAT? + AT (4.3)

where the forward difference operator A is defined as:
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AU™ = U™ U™, (4.4)

With the appropriate choice for the parameters 5 and 0, Eq.(4.3) reproduces many of the well
known two- and three-level, explicit and implicit schemes. In this particular case, we are interested

only in the two-level, first-order accurate, Euler implicit scheme given by f =1 and 6 = 0, i.e.:

n _ A 0AU" oun "
AU" = Ar 3y + AT o + 0o[Aar®]. (4.5)

Substituting for (JAU™/d7) and (U /d7) in Eq.(4.5), using Eq.(3.1a), we get;

B(AE"+AT")  H(AF"+AV")  H(AG"+AW™),

AU" = A
. o¢ * &y ¥ (4.6)
A AT[B(E;&T) N 3(F;-nV) . B(G;CW) |+ ArH"

where AE® = E*t! — E® and E**! = E(U™!) etc.

Eq.(4.6) is nonlinear in AU" as a consequence of the fact that the increments AE™, AF", AG™,
AT"™, AV™ and AW™ are nonlinear functions of the dependent variables U and its derivatives Ug,
U, and U¢. A linear equation with the same temporal accuracy as Eq.(4.6) can be obtained by a

linearization procedure using a local Taylor series expansion in time about Ur, ([11],[12]);

Et =E"+ (g—f)”ar +0(Ar?)

(4.7)
— 'n _QE n ou n 2
=E +(BU) (B'r) AT+ O(AT?).
Also,
n+1 n BU n 2
U =U"+ (_6_1'-) At + O(AT*). (4.8)
Then, by combining Eq.(4.7) and (4.8), we get;
n+1 n BE n n+1 n 2
E*t! =E" + (E—ﬁ) (U™ —U") +0(ATY). (4.9)
or,
AE"™ = A™(U)AU" + O(ATY). (4.10)

where A(U) is the Jacobian matrix (9E/8U).

It should be noted that the above non-iterative, time-linearization formulation does not lower

the formal order of accuracy of temporal discretization in Eq.(4.6). However, if the steady-state
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solution is the only objective, the quadratic convergence of the Newton-Raphson method (for suffi-

ciently good inital approximations) is recovered only as A7 — oo.

Similarly, the linearization of remaining terms gives;

= (— "AU™ + 0(AT?)
= B"AU" +0(Ar?).

( )“AU"‘ + 0(AT?)

= C"AU“ +0(AT?Y).
— (= \n n n n 2
=(35)"avu ( ) AUE + 0(Ar?)
=M"AU" + N“AU£ +0(Ar?)
O(NAU)"

=(M = N" n
( )"AU™ + o€

+0(AT?).
(— "AU™ + (— "AU? + O(A7?)

AU)"
= (P -Q,)"AU" + _a(qan )

+0(AT?).

( )"AU“+( )“AU +0(ATY)

IR I
where, .
¥
B(U) = 30
0G
¢ =55
8T aT oN
M(U,U¢) = 70 N(U) = 30 N¢(U,Ug) = P
ov av o
PUU)=T  QU=gT QU=
A% oW as
R(U,UC) = 73—[?; S(U) = (T,'U-—(; S((U Uc) = C

(4.11a)

(4.11b)

(4.11¢)

(4.11d)

(4.11¢)

(4.12a)

(4.12b)

(4.12¢)

(4.12d)

(4.12¢)

When the approximations given by Eq.(4.11) are introduced into Eq.(4.6), we obtain the fol-

lowing linear equation for AU";
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HA+M-NI* N 8B+P- o 9iQ)"
{I—AT[ ( 5 E) 4 ;62) i ( an QTJ) + ;nz)
8(C+R-S"  9%S)" n_
o + AU = (4.13)
HE+T) BF+V) HG+W)!
Ar| 2% + o + 3¢ + H").

It should be noted that the notation of the form:

QA+ M- No)"
o€

is used to represent the expressions as such:

jAU"

O[(A +M — N)"AU"]
¢ ’
The left hand side (i.e.,LHS) of Eq.(4.13) is referred to as the implicit part and the right hand
side (i.e.,RHS) as the explicit part.

etc.

The solution at the advanced time, 7 = (n + 1)A7 is given by:

U™ = U™ 4+ AU™, (4.14)

The Jacobian matrices for the problem under consideration are given by:

( 0 -1 0 0 0 \
WP uOP =g (ke = 2@ /D] kol /u)] kp[u® fulV)] ~ky
A= [u“)u(a)]/[uu)]z —[u(”)/u(‘)] —[u(’)/u(‘)] 0 0
[u(’)u(‘)]/[u(l)]’ _[um/u(x)] 0 —[u® [u)] 0
kWU kD u O] k[ fu]/
where,

k 2?4 (w2 4 [u0]?
q=(§2’)[ ]+[[u(1)]]2+[ ] 3

(5) /(1) u®
451={k1[“ Ju ]-QQ}I‘J(I—)L

a5z = (? [uu)]g —k W]'
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(
B =

\
where,

(
C=
where,

0
(W] /[
[uB®) /D] — g
[0 u @] /[ V]2

bSl

0
[u@u®]/[uD]?
[u(S)u(4)]/[u(1)]2

[u® /a2 ~ g

Cs51

bss = (’;—2){[

0
—[u® [uV)
kz[u(z)/u(l)]

0

ko [u{z)u(?‘)]/[u(l)]z

(8) /,(1) u®
b5y = {kl[u /u ]— 2‘1}[@],

2] 4 3[u®)? + [u@))?

=1
_[u(2)/u(1)]

(k2 = 2)[u®/uM)]
[ )]

bsa

0
—[® /)]
0

ka[u® [u)]

ks [eu®]) /WO ky[u® @)/ [

[

0
0
_[u(4)/u(1)]

ko [u(a) JuV)]

u® 2@
51 = {kl[;ﬁj] - 2q}[m],

(WO + 3[ulP?

k u)? +
csq = (_23) [ ]

P

(M - N¢) = [0].
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0
0
ka[u®) /u(V)]
[u® [u)]

ko [u(3}u(4)]/[u(1)]2

u®

-1
— [ /u )]
[® /)]

(k2 = 2)[u®/uV]

Cs54

u(®)

= kil-ml

—ky

0

iy [H(S)/u(l)]

—ky

—kl[u(‘*)/u“)]}




( dM 0 0 0 0\

| —[4./3.)kskq (u'® /[uV]2) dP+ 0 0 0
[4/3.]k3k4(1/u(1))
N = —k3k4(u(3)/[u(1)]2) 0 dga)+ 0 0
k3k4(1./u(1))
—kaky(u®/[uD]2) 0 0 d’+ 0
k3k4(1./u(1))
\ ns51 ns2 n53 M54 M55 )
where,
Ns1 = — [(4/3)k3k4 — k;k3k4k5]([u(2)]2/[u(”13)
— [kskq — kykakaks)([u®]? /[u™])
— [kaky — kykskaks)([W ] /[uV]?)
— kikskgks(u® /[uM]?),
M52 "—"([4/3]’623’64 - k1k3k4k5)(u(2)/[u(1)]2),
nsa =(kaky — krkakaks)(u® /[uM]?),
M54 =(k3k4 - k1k3k4k5)(u(4)/[u(l}]z),
Nss5 =d(£5) + (k1k3k4k5)(1/u{1))
(P-Qy,)=[0]
( M 0 0 0 0 \
—kaks(u® [[uD]?) di+ 0 0 0
k3k4(1./u“))
Q= | —(4/3 kska(@®/[w V) 0 dn)+ 0 0
| (4./3.)kakq(1./uM)
—kakg(u® [[M]?) 0 0 a4 0
kakg(l./ﬂ(l))
\ gs1 qs2 gs3 g54 qss )
where,
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where,

gs1 = — [kaks — kikakeks]([uP]? /[uV]?)
— [(4./3.Ykaks — kykakaks)([u™]?/[uM]?)
— [kaks — kykskqks]([u™D]?/[uVP)
— kykakgks(u® /[w{1]?),

gs2 =(kaks — kakakaks)(u® /[uM]?),

gsa =([4./3.Jkskq — kykskqks)(u® /[uV]?),

gsa =(ksks — kakskeks)(u®) /[uM]7),

gss =d' + (ki kakqks)(L./u™).

(R —S¢) = [0].
M 0 0 0 0 )
—kaky(u(® /[uM]2) dP+ 0 0 0
k3k‘4(1./u(1))
—kakq(u® J[uM]?) 0 d®+ 0 0
k3k4(1./u(1)) ’
—(4./3.)kakg(u'® /[D]?) 0 0 d+ 0
(4./3)k3k4(1/u(1))
851 352 353 854 355 }

s51 = — [kakys — kikskaks])([uP]? /[uV)P)
— [kaks — k1k3k4ks}([u(a)]g/[“(l)]?)
— [(4./3.Yksky — kykskyks]([u®]? /[u™]?)
— kykakgks(u® /[2M]?),

35y =(kaka — kxkakeks)(u® /[uM]?),

ss3 =(kakq — kykakeks)(u® /[2M]?),

ssa =([4./3.)kaks — kykkaks)(u™® /[u(M]?),

sss =d) + (kykakeks)(1./u™).
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4.2. SPATIAL DISCRETIZATION

The independent spatial variables (£,7,() are discretized by covering D, ( the closure of D),
with a mesh of uniform increments ( h¢,hn, he ) in each of the coordinate directions. The mesh
points in the region will be identified by the index-triple (i,,k), where the indices i € [1, N¢],
j €[1,N,] and k € [1, N¢] correspond to the discretization of £, n and { coordinates respectively.

DpUBDy = {(£i,mj,Ck): 1 <1< Ng, 1 <5< Ny, 1< k< N}
where,
E,‘ = ('l 1 1)h5; T)j = (_’] = 1)h,7; Ck = (k = l)hc (415)

and the mesh widths are given by:
he=1/(Ng—1)  hy=1/(Ny=1)%  he=1/(N¢=1) (4.16)

with (Ng, Ny, N¢) € N being the number of mesh points in £—,n— and (—directions respectively.

Then, the set of interior mesh points is given by:
D= {(£ism5sCx) 12 < i < (Ne—1),2€ 5 < (Np—1),2< k< (N - 1)}
and the boundary mesh points by:

aDh — {(givnjaCk) 11 € {11 NE}} U {(fisqjvck) .7 € {LN!?}} U {(Eis "ia(k) 1k € {lsNC}}

Also, the discrete approximation of U in (D x D) is denoted by:

U(T#£1 7 C) = U}:(HAT, ("" - l)hfa (] = 1)hm (k - l)hC) = U::J',k' (417)

4.3. SPATIAL DIFFERENCING

The spatial derivatives in Eq.(4.13) are approximated by the appropriate finite-difference quo-
tients, based on the values of U] at mesh points in Dy U 8D,. We use three-point, second-order

accurate central difference approximations in each of the three coordinate directions.

In the computation of the finite-difference approximation to the RHS, the following two general

forms of spatial derivatives are encountered, i.e.:

del™ (V)
3
and
o™ (U, Uy)
ot '
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The first form is differenced as (using m-th component vector function E as an example):

ae(m)(U)|

e ik = (1/2he)[e™ (Uit k) — €™ Uiy j,0)] + O(hY). (4.18)

The second form is approximated as (using m-th component of vector function T as an example):

atm™ (U, U Uit1;6+ U; U; Ui ;
o8 i = (1/m (et ¥ Dk (Dettih Dk
E U;;x+ U; -U; % (4.19)
_t(m)[( i,k 5 i-1,5,k ) ( i,4,k T i—-1,5.k )]}+O(h )

for 2 <1 < (N¢ — 1). Similar formulas are used in the 7— and (— directions as well.

During the finite-difference approximation of the spatial derivatives in the implicit part, fol-

lowing three general forms are encountered:

Afal™N(U)Au]
o¢ ’
Am™N(U,U)AuD]
/3 '
and
5[ (U) Aul)]
o '
The first form is approximated by the following;:
HlamD(U)Aul) " -
T T R T C ) | RS R CY T T L RN ESH LA
(4.20)
The second form is differenced in the following compact three-point form:
Am™ (U, U)AuM Uit1,j6 + Ui j Uig1,jx — Uy,
L D B e N e ) | [CA
£
Uiy1,ix+ Ui j Uit1,i6— Ui
+[(1/2hg)fmtmO[( LT DN “"-;E )
- m("‘")[( ij.k + Ul =13, k) ( iik = Uiz1,jk )]}]A (!1‘)7 .
+ Ui | U| g
— [(1/2he)fam 0|tk E itk (Dhik ) L
(4.21)
Finally, the third form is differenced as follows:
™D (U)AuD -
P s = /WD (Vs sl
4.22
- (/R (™D (U080, (422)

[(llh ){n(m ‘)(Ul l.J,k)}]Au:—l Jik
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4.4. ADDED HIGHER ORDER DISSIPATION

When central difference type schemes are applied to the solution of the Euler and Navier-Stokes
equations, a numerical dissipation model is included, and it plays an important role in determining
their success. The form of the dissipation model is quite often a blending of second-difference and
fourth-difference dissipation terms ([4]). The second-difference dissipation is nonlinear and is used
to prevent oscillations in the neighborhood of discontinous (i.e.,C?) solutions, and is negligible where
the solution is smooth. The fourth-difference dissipation term is basically linear and is included to
suppress high-frequency modes and allow the numerical scheme to converge to a steady state. Near
solution discontinuities, it is reduced to zero. It is this term that affects the linear stability of the

numerical scheme.

In the current implementation of the synthetic problem, a linear fourth- difference dissipation
term of the following form:
a‘ur a‘un atun
4 4 4
£ oes + hy, ot + ke aCi b
is added to the right hand side of Eq.(3.12). Here, ¢ is a specified constant. A similar term with

—Arelh

U™ replaced by AU™ will appear in the implicit operator, if it is desirable to treat the dissipation

term implicitly as well.
In the interior of the computational domain, fourth-difference term is computed using the
following five-point approximation:

‘a4un

e a¢t ek & Uz e — 40N+ 60T = 4010+ Ul e (4.24a)

for 4 < i < (N¢ - 3).

At the first two interior mesh points belonging to either end of the computational domain, the
standard five point difference stencil used for the fourth-difference dissipation term is replaced by
one-sided or one-sided biased stencils. These modifications are implemented so as to maintain a

non-positive definite dissipation matrix for the system of difference equations ([16]).

Then, at i = 2:
484Uﬂ n n n
he Bed bk = Ulpg ik — 4U0a 5k + 500 ks (4.24b)
and at 1 = 3:
4 84Uﬂ ~ TT" ur ur 40" 24
he oE li,jk = Ul jp —4Uip 50+ 66U jx — 4V k- (4.24¢)
Also at i = Ng — 2:
h‘gq—q’ii- o —4UN 66U —4Ur L+ UL, (4.24d)
3 864 i,k ~ i+1,5,k 1,7,k i-1,j,k 1—2,j,k? .
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and ati=N¢—1:
h484Un

£ 354 I‘ ik = 5Us ik T 4U?—1,j,k + U?—!,j,k- (4.246)

Similar difference formulas are also used in the n— and (— directions.

Also, for vector functions T, V and W used here:
(M-N)=0, (P-Q)=0, (R-S)=0.

Then, for the cases where added higher order dissipation terms are treated only explicitly, Eq.(4.13)

reduces to:

oAy | P ABY L BHQN O, B
+ 9 an p + ac + a2 1}AU" =
AE+T) B8F+V)" HG+W)"
A=+t T8y T a1 (425)
a8*ur atun atur
2 aEd +h; ant +h2 a¢t ]

{I-A7]

- Arelh
+ ATH®

When the implicit treatment is extended to the added higher order dissipation terms as well,
Eq.(4.13), takes the following form:

a(A M) 84 ()
{I-AT| 9€ + 9 ehg Ty
LB Q0
an on? ha ant
d(C) , 3%S)" _ ;4@ My \yyn =
T T o < act Al (4.25b)
HE+T)" OF+V)" 8G+W)
Mt T et e
8tun atun atur
'_zATE[hE aEs +h’$l ant +h’2 8¢t ]
+ ATH"
The modified vector forcing function is given by:
. _ (OE(U")  dF(U")  38G(U")
aT(U*,U;) av(Ur,1U3) oW (U~,Uy) 49
.26
T A T L (4.26)
ou o'ur a'u
+ elht—5 o6 +h} o + h¢ I l, for(&m,()eD xD,
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4.5. COMPUTATION OF THE EXPLICIT PART (i.e.,RHS)

The discretized form of the explicit part of Eq.(4.25) is given by:

[RHS]"|:jk = AT[De(E + T)" + Dy(F + V)" + Dc(G + W) ]i ik
— Arte [thgUn + h:D:Un + héDgUn”i,j'k (4.27)
+ Ar[H)|i ;5

where D¢ , D,, and D are second-order accurate, central spatial differencing operators, defined in
D). At each point in the mesh, [RHS]?'_,’-,,,c is a colunm vector with 5 components. Discretization
of added higher order dissipation terms was already discussed in Sec.(4.4). Here we consider the

computation of the first term in Eq.(4.27), using formulas given in Eq.(4.18) and Eq.(4.19):

[D¢(E + T)" + Dy(F + V)" + De(G + W) lij ke = 1/2he)[E(U,+1,J, ) — E(ULy ;)]
U-+1,J.k — U?,j.k )
4

u?
+ (1 /bt T iy

SUL e Ula— Ul
'.‘hk : 13") ( JJ‘ h{ 1.?5:)]}
+ (1/2hn)[F(U J+1 k) — F(U?,j—l,k)]

U? + UZ. i - UL,
b (R V(T Tk (—iLh T —uiky)

- T[(

2 hy
+ U;- Utk — Ulj-ik
Fo v[( ,J,k 2 1,j—1,k ),( 1] h j—1, )]}
n

+ (1/2h)[G(UT j kg1) — G(Un,],k 1)]

U! = UY
+ (mgqwi Dkt Disky Zharn = ey

k+U

ur., —-U?r,
l|k svk f.lk-
Dhikor (Zhak—Zhikmtyy,

- w( "

(4.28)
for {(i,j,k) € Dp}. Also, [RHS]; ; , =0fori=1or Ng, j=1or N, and k =1 or N.

This right hand side computation is equivalent in terms of both arithmetic and communication -
complexity to a regular sparse block (5 x 5) matrix-vector multiplication, which is the kernel (c).
However, its efficient implementation, in this case, does not necessarily require the explicit formation

and/or storage of the regular sparse matrix.

4.6. COMPUTATION OF THE FORCING VECTOR FUNCTION

Given the analytical form of U”, the forcing vector function H* can simply be evaluated
analytically as a function of £, 1, and (, using Eq.(4.26). This function, along with Eq.(4.15), can

then be used to evaluate [H"]; j k, which is also a colunm vector with 5 components.

57




Here, we opt for a numerical evaluation of [H*); ;, using [U*]; jx and the finite-difference

approximations of Eq.(4.18) and (4.19), as in the case of Eq.(4.28).
(H]|i 5,k = (1/2hf)[E(U:+1,J,k) E( i-1,7, K]

+ (1/he){TI( Ui,k U?,j,k) (U;+1.j,k - "

2 ’ he
+UL L NS ; ,
- T[( ,J,k 2 llJ k)’( 1.?vk h£ loJrk )]}

+ (1/2hy)[F (U7 iJ+1 ) F(U fimtk))
# oyt Uiy Diswrk = Zigy

h'fJ
. (4.29)
z ,k+U: - 1,7, Ui.'-— .
-V iy, Ikt
n

+ (1/2R)[G(U} ; 441) = G(U 5 x-1))]

U+ U U, —Uj;
+ (1/A{W[(REEET R, (i)

+ U? -Uj.
- W[( VJvk 5 i,d,k=1 %l -J-k - k=1 N},
¢

+ € [th;U- + h;;.:’.):".',U"= + hEDEU-“i,j.ks

for {(i,5,k) € Dy}. The fourth difference dissipation terms are evaluated using Eq.(4.24). Also,
[H];;x=0fori=1or Ng,j=1o0r Ny and k=1 or N¢.

4.7. SOLUTION OF THE SYSTEM OF LINEAR EQUATIONS

Replacing the spatial derivatives appearing in Eq.(4.25) by their equivalent difference approx-
imations results in a system of linear equations for [AU"); ;s for i € [2,N¢ — 1], j € [2, N, — 1]
and k € [2, N¢ — 1]. Direct solution of this system of linear equations requires a formidable matrix
inversion effort, in terms of both the processing time and storage requirements. Therefore, AU
is obtained through the use of an iterative method. Here we consider three such iterative meth- -
ods, involving the kernels (a), (b) and (d). All methods involve some form of approximation to
the implicit operator or the LHS of Eq.(4.25). For pseudo-time marching schemes, it is generally

sufficient to perform only one iteration per time step.

4.7.1. APPROXIMATE FACTORIZATION (BEAM-WARMING) ALGORITHM

In this method, the implicit operator in Eq.(4.25a) is approximately factored in the following
manner, ([1],[9]):

N e R

(4.30)
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The Beam-Warming algorithm is to be implemented as shown below:

INITIALIZATION:
Set the boundary values of Uj j x for (i,7, k) € 8Dy in accordance with Eq.(3.7).
Set the initial values of U} ; , for (4,7, k) € Dj in accordance with Eq.(3.8).
Compute the forcing function vector, Hf ; ; for (i,7,k) € Dy, using Eq.(4.29).

STEP 1: EXPLICIT PART.
Compute the [RHS]? ., for (i,J,k) € Da.
STEP 2: ¢£-SWEEP OF THE IMPLICIT PART.

Form and solve the following system of linear equations for [AU,J; j « for (3,7, k) € Dy:

{I— Ar[D¢(A)" + D}(N)"]}AU, = RHS.

STEP 3: n-SWEEP OF THE IMPLICIT PART.

Form and solve the following system of linear equations for [AUy]; jx for (1,7,k) € Dp:

{1- A7[D,(B)* + D3(Q)"]}AU: = AU,

STEP 4: (-SWEEP OF THE IMPLICIT PART.

Form and solve the following system of linear equations for [AU"]; j,x for (i,3,k) € Dn:

{I- A7[D(C)" + DY(S)"}AU" = AU,

STEP 5: UPDATE THE SOLUTION.

(U™ = [U"lijk + [AU ik, for (i,3,k) € Dn

Steps (1) - (5) consists of one time-stepping iteration of the Approximate Factorization scheme.
The solution of systems of linear equations in each of the steps (2) - (4) is equivalent to the solution
of multiple, independent systems of block tridiagonal equations, with each block being a (5 x 5)
matrix, in the three coordinate directions § ,1,C respectively. For example, the system of equations
in the £-sweep has the following block tridiagonal structure:

By, JIAU ik + [C1,56l[AUsL ik = [RESj ks

(A llAU iz, + [Bijkl[A Uik + [Cigl[AU i,k = [RHS]ije; 2<1< Ne— L

[AN,;.k[AUL)N 1,5,k + [BN, G E[AULN ik = [RHS]N jik- wsl)
4.31
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where, (j € [2, N,—1]) and (k € [2, N¢—1]). Also, [A],[B] and [C] are (5 x 5) matrices and [AU}; ;

is a (5 x 1) column vector.
Here, for 2 < 1 < (N¢ - 1), using Eq.(4.20) and (4.22):
[Ai k] = —AT{(=1/2k)[A(UL, ; )] + (1/AD)IN(UL, ; 01},
[Bi k] = I+ AT(2/h})N(UE; ol (4.32)
[Cis k) = —AT{(1/2he)[A(ULy ;)] + (1/hg)IN(Ulyy 5,01}
Also, [By,j k] = (1}, [C1,,4] = [0], [AN,,j,k] = [0], and [BN, j.k] = [1].

4.7.2. DIAGONAL FORM OF THE APPROXIMATE FACTORIZATION ALGO-
RITHM

Here the approximate factorization algorithm of Sec.(4.7.1) is modified so as to transform the
coupled systems given by the left hand side of Eq.(4.25b), into an uncoupled diagonal form. This
involves further approximations in the treatment of the implicit operator. This diagonalization
process targets only the matrices A, B, and C in the implicit operator. Effects of other matrices
present in the implicit operator are either ignored or approximated to conform to the resulting

diagonal structure.

The diagonalization process is based on the observation that matrices A, B and C, each have
a set of real eigenvalues and a complete set of eigenvectors. Therefore, they can be diagonalized

through similarity transformations ([13]):

A= TfAszl;
B="Tyhy T3 % (4.33)
C =TT}

with,
A¢ = Diag [-(u® [u®), ~@®/uD), - /u®), ~@®/uM +a), (@D /u® —a)];
A, = Diag [_(u(a)/u(l)), _(u(a)/u(l)), _(u(3)/u(1)), _(utﬂ)/u(l) +a), -(u(a)/u(l) —a)];

A¢ = Diag [<(u®/uV), ~@®/u), ~@®@/u), ~@® 4D +a), (/) ~a)),
(4.34)

a= \/;2{% it tﬁ::}i L, (43

and T¢(U), T,(U) and T¢(U) are the matrices whose columns are the eigenvectors of A, B and

where,

C respectively. When all other matrices except A, B and C are ignored, the implicit operator is

give by: dA™ oB" oct
. e W &

3¢ I - AT an Il T@C]

LHS = [[ - Ar (4.36)
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Substituting for A,B and C, using Eq.(4.33) in Eq. (4.36), we get:

HTeAT7)®
LHS =[(T¢T;')" - Ar_(_ﬁ_ﬁ_l_]
66@ T,A, T HTAT )" (437)
x [(T,T;")" - AT_(—’L#’-)—] x [(T(T7H)" - AT——C—(,;T(——]AU“

A modified form of Eq.(4.37) is obtained by moving the eigenvector matrices T¢, Ty and T¢ outside
the spatial differential operators 8/9¢, 8/8n and 8/8¢ respectively, ([13]):

d(Ay)"
an

s = 731 - e 20y (m - ST (T ar 2By A
This can be written as:

a(Ag)"
¢

_ iy _ TIT B(Aﬂ)n DIT _ 3(A()n =1y\n n
LHS = TI[1- Ar INQ - Ar 2R IR - Ar =5 )T AU

where,
N=T;'T,; N7'= T T (3.38)
P=T;'T; P'=TT,

The eigenvector matrices are functions of £,m and { and therefore this modification introduces

further errors of O(AT) into the factorization process.

During the factorization process, presence of the matrices N,Q and S in the implicit part were
ignored. This is because, in general, the similarity transformations used for diagonalizing A do not
simultaneously diagonalize N. The same is true for the n and ¢ factors as well. This necessitates
some ad-hoc approximate treatment of the ignored terms, which at the same time preserves the
diagonal structure of the implicit operators. Whatever is the approach used, additional approxima-
tion errors are introduced in the treatment of the implicit operators. We chose to approximate N, Q
and S by diagonal matrices in the implicit operators, whose values are given by the the spectral
radii p(N), p(Q) and p(S) respectively ([17]). In addition, we also treat the added fourth-difference

dissipation terms implicitly.

(A" | F*[p(N)"I (I
LHS = T¢[I- Ar{ (a;) + [nggzz) ]-shgTéa—)}]
- (A" & "1 (1
x N[I- Ar{ (a;) + [pé()an) ] -sh;‘,T'(]r)}] (4.39)
" A" | B*[p(S)"T P cain vre
x P[I- Ar{ (aé) - [F;C’) ]~5h2—5£7)}]TC‘AU :
The matrices T;_'] ,T¢,N~! and P! are given by:
(1= lg/a’]) Q@ /uW)/a?  eul®/uD]/a? eful®[uV]/a® ~[ea/a’]
—(u! /[ut?) 0 0 (1/u) 0
T = (u/[u)?) 0 ~(1/«M) 0

g afu®[uV])  o(a- au®/uD)  —eafu®/aV] —oau® /] oe
o(g+ au®/uV)) —o(a+esu®/u®]) —oeru®/uV] —oau® /D] o
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0 0 1 @ a
0 —u® [u(2)/u(1)] afu(2)/u(1)] afu(2)/u(1)]
Tc= |« 0 [u(3)/u(1)] efu(3)/u(1)] afu(3)/u(1)]
0 0 [u(4)/u(D)] a([u(4)/u(1)] + a) o([u(4)/u(1)] - a)
u® —u®  gfes]  el(g+a?)/ez+ a(u®/uM)] al(g+a?)/er — a(ul®) [ulD)]
0 -1 0 0 0
1 0 0 0 0
N'=|0 0 0 1/vV2 -1/v2 |,
0 0 -1/v2 1/2 1/2
0o 0 1/vV2 1/2 - 1/2
0 0 0 1/v/2 -1/v2
0 0 -1 0 0
P!l= 0 1 0 0 0 ,
-1/v2 0 0 1/2 1/2
1/v/2 0 0 1/2  1/2

where o0 = 1/(v2uVa) and o = [«{P/(vV24a)).

In addition, the spectral radii of the matrices N, Q and S are given by:

p(N) = maz(dy,
dP 4 [4./3 Jkaka[1./uM),
4 + kaky[1./uD),
d 4 kakg[1./uM),
d® + kikakeks[1./u™]),

p(Q) = maz(d),
dP + kakq[1./uM],
d® + [4./3 Jkaks[1./uM],
d 4 kky[L./u®],
d® + kykakks[1./uM]),

p(S) = maz(d,
d? + kaky[1./u),
d®) + kaka[1./u D],
d® + [4./3Jkaks[1./uM),
d¥) + kykskgks[1./uM]).
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The explicit part of the diagonal algorithm is exactly the same as in Eq.(4.26b ) and all
the approximations are restricted to the implicit operator. Therefore, if the diagonal algorithm
converges, the steady-state solution will be identical to the one obtained without diagonalization.

However, the convergence behavior of the diagonalized algorithm would be different.

The Diagonalized Approximate Factorization algorithm is to be implemented in the following order:

INITIALIZATION:

Set the boundary values of U; j x for (4,5,k) € 3D; in accordance with Eq.(3.7).
Set the initial values of U?'j‘k for (1,7, k) € Dy in accordance with Eq.(3.8).
Compute the forcing function vector, H ; , for (3,7,k) € Dy, using Eq.(4.29).

STEP 1: EXPLICIT PART.
Compute [RHS]}; , for (4,5,k) € Da.
STEP 2:

Perform the matrix-vector multiplication:

[AUy] = (T7!)"[RHS).

STEP 3: ¢-SWEEP OF THE IMPLICIT PART.

Form and solve the following system of linear equations for AU;:

(I = Ar[Dg(Ag)"] - AT[DH(p(N)"D)] + Arle it DE(D]HAU] = [AU1):

STEP 4:

Perform the matrix-vector multiplication:

[AUs) = N1 [AU,).

STEP 5: 7-SWEEP OF THE IMPLICIT PART.

Form and solve the following system of linear equations for AUy:

(I = Ar{Dy(Ay)") = AT[DA(p(Q)"D)] + Atle Ay Dy (DHAU] = [AUs).

STEP 6:
Perform the matrix-vector multiplication:
[AU5] - P—l [AU.I].
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STEP 7: ¢-SWEEP OF THE IMPLICIT PART.

Form and solve the following system of linear equations for AUsg:

{I = Ar[D((A¢)"] = AT[DE(p(S)"D)) + Arle ke D (D)]}[AUe] = [AUs).

STEP 8:

Perform the matrix-vector multiplication:

[AU"] = T([AUs).

STEP 9: UPDATE THE SOLUTION.

Ut = U™ + AU

Steps (1) - (9) constitute of one iteration of the Diagonal Form of the Approximate Factorization
algorithm. The new implicit operators are block pentadiagonal. However, the blocks are diagonal in
form, so that the operators simplify into five independent scalar pentadiagonal systems. Therefore,
each of the steps (3), (5) and (7) involve the solution of multiple, independent systems of scalar
pentadiagonal equations in the three coordinate directions £, 7 and ( respectively. For example, each

of the five independent scalar pentadiagonal systems in the {-sweep has the following structure:
€1,jk [AUzlg";)k ¥ dl.j'k[AUZ]g”;)k + o1, AULET, = [AUL T,
by, AU, + e kAU, + dg (AU, + 02,5, dau), = AU,
ai ik [AU)T) ;4 + bi s [AULLT + ciiklAULT) + di (AU
+ei; AU ;4 = [AULT), for 3<i<(Ne—-2)
aNe- 1kl AUEY s o+ et sl AUAG g 54 + ene-1isl VIG5
+dN£—],J,k[AU2]N¢ Gk T [AUI]NE—I,J ks

aNE W k[AUz]Nc 2.7,k + bN{ Wik [AU2]N(—1,j k + cN{ WJs k[AUz]Nf Jik T [AU]\]SI\":{J,k'

(4.40)
where, (§ € [2, Ny—1]), (k € [2, N¢—1]) and (m € [1, 5]). The elements of the pentadiagonal matrix

are given by the following:
C1ik = 14 dy ik =03 e,k =0. (3.41a)
ba,jk = AT(1/2h[(A)" T = A(/BIPN)"hs

ca ik = 1.+ AT(2/hY)[p(N)"]2,5x + Ate(5),

dy sk = —AT(1/2h) (A5 — AT(1/AY[P(N) s 54 + AT e (=4),

(4.41b)

©2,j,k = AT E.
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a3 jk = 0.0,

ba ik = Ar(1/2h)[(A)" 1) = Ar(1/h)[p(N) 2,5k + ATe (=4),

1. + Ar(2/h2)[p(N)"a 5.k + AT e (6), (4.41c)
—AT(1/2hg)[(A)" I — AT(1/h)[p(N) "4,k + ATE(=4),

aa,j,k = ATE'

I

C3,j,k

da,j k

ai;r = AQre,
bijk = AT(1/2he)[(A) ™™™y — AT(1/A)[p(N) iz1,5k + AT (=4),
cijk = 1.+ Ar(2/hD)[p(N)"]: ik + AT e (6), (4.41d)
dijk = —AT(1/2he)[(Ae)" 1Tk — AT(1/D[P(N)is15k + AT e (=),
eijk = ATE.
AN, -2,4,k = ATe,
by, 2k = AT(1/2Re)[(A)" TN TSk = AT(L/RDP(N)"INe 3,56 + AT e (=4),
eNe-2,4k = L.+ AT(2/hE)[p(N)"IN 2,5,k + ATE(6), (4.41e)
dngongk = —AT(1/2he)[(A)™IN Tk — ATA/ADPN)"INe-1.5.4 + ATE (=4),
en -2,k = 0.0.
ang-1,jk = ATE,

b1,k = AT(1/20)[(A) 1Tk — AT(L/RD[P(N) "IN 2,56 + AT (=4);

4.41f
CNe-1.5k = 1.+ :A'r(2/hg)[,.‘.t(l*l)“]z\;‘_1,1-,;c + ATt e (5), ( )
dng-1,ik = —AT(1/2he)[(A)"INTL = Ar(1/h)P(N) "IN juk-
aN, ik = 0.; bN(,j.k =0 CNe. ik = 1. (4.419)

4.3.5. SYMMETRIC SUCCESSIVE OVER-RELAXATION ALGORITHM

In this method, the system of linear equations obtained after replacing the spatial derivatives
appearing in the implicit operator in Eq.(4.25a) by second-order accurate, central finite difference
operators, is solved using the symmetric, successive over-relaxation scheme. Let the linear system
be given by:

[K")[AU"] = [RHS"] (4.42)

where,
K" = {I- Ar[D¢A" + D!N" + D,B" + D;Q" + DC" + D?S™|}AU", for (i,j,k) € Dh.

It is specified that the unknowns be ordered corresponding to the gridpoints, lexicographically,
such that the index in £-direction runs fastest, followed by the index in 7-direction and finally in
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(-direction. The finite-difference discretization matrix K, resulting from such an ordering has a
very regular, banded structure. There are altogether seven block diagonals, each with a (5% 5)

block size.

The matrix K can be written as the sum of the matrices D, Y and Z:
K'=D"+Y"+2Z", (4.43)
where,
D" = Main block — diagonal of K™;
Y™ = Three sub — block — diagonals of K";
Z™ = Three super — block — diagonals of K".

Therefore, D is a block-diagonal matrix, while Y and Z are strictly lower and upper triangular,

respectively. Then the point-SSOR iteration scheme can be written as ([14],(15]):
[X")[AU"] = [RHS] (4.44)

where,
X" = w(2. - @)D" + 0 Y*)(D") (D" 4+ wZ™),
= w(2. - @)D" + wY")(1+ w(D")"'Z")
and w € (0.,2.) is the over-relaxation factor (a specified constant). The SSOR algorithm is to be

(4.45)

implemented in following manner:
INITIALIZATION:

Set the boundary values of U, j x in accordance with Eq.(3.7).
Set the initial values of UY ;, in accordance with Eq.(3.8).
Compute the forcing function vector, H} ; ;. for (1, j, k) € Di, using Eq.(4.29).

STEP 1: THE EXPLICIT PART.
Compute [RHS]?; . for (4, j, k) € Ds.
STEP 2: LOWER TRIANGULAR SYSTEM SOLUTION.

Form and solve the following regular, sparse, block lower triangular system to get [AU,]:

(D" + wY")[AU,] = [RHS].

STEP 3: UPPER TRIANGULAR SYSTEM SOLUTION.
Form and solve the following regular, sparse, block upper triangular system to get [AU"]:
(I+w(D")"1Z")[AU"] = [AU;).
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STEP 4:

Update the solution:
U™t = U™ + [1/w(2. — w)]AU™.

Steps (1)-(4) constitute one complete iteration of the SSOR scheme. The I-th block row of the

matrix K has the following structure:

[AJAU ) i—(N, )N, -2) + BIIAU (v -2 + [C[AV™]i-1 + [D] [AT"];

4.46
+ [E)[AU i1 + [FNAU s (Ne-2) + [GIAU ir(Ne-2) Ny =2) = [RHS]; (4.46)

where, [ = i + (N¢ — 2)(j — 1) + (Ng = 2)(Ny — 2)(k = 1) and (i,5,k) € Dy The (5 x 5) matrices
are given by:

[Al] = —~Ar(—1/2hQ)[C(UL; 1)) — AT(1/A)IS(UFj k1))

[Bi] = —Ar(=1/2hg)[B(UF;_1,6)] — Ar(1/h3)[Q(UTj1,6)s

€] = —AT(—1/2he)[A(UL, ;)] — AT(1/ADIN(UT150);

[D)] = 1+ Ar(2/hg)IN(UT;, k)]+ Ar(2/h2)[Q(UR; )] + At(2/hD)[S(UT ;1)) (4.47)

[£1] = —AT(1/2he)[A(Ul,j0)) — AT(1/RE HIN(UL,50),

[Fi] = =Ar(1/2hy)[B(ULj41,6)] = AT(1/R7)[Q(UT 4, )

G1] = —AT(1/2h)[C(Uj41)] = AT(1/AQ[S(US miwr)l:

Also, A, B and C are the elements in the I-th block row of the matrix Y, whereas E,F and G are

the elements in the [-the block row of the matrix Z.

5. BENCHMARKS

There are three benchmarks associated with the three numerical schemes described in Sec.(4),
for the solution of system of linear equations given by Eq.(4. 25). Each benchmark consists of

running one of the three numerical schemes for N, time steps with given values for N¢, Ny, N¢ and
AT :

5.1. VERIFICATION TEST
For each of the benchmarks, at the completion of N, time steps, compute the following:

1) Root Mean Square norms RM SR(m), of the residual vectors [RHS("‘)]}"j‘k, form=12,...,5
where n = N,, and (,7,k) € Da.

T S S RES P
RMSR(m) = J (Ng — 2)(Np = 2)(N¢ - 2) | .
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2) Root Mean Square norms RMSE(m) of the error vectors {[U-]E.?,)k - [U"]E—?‘)k}, for m =
1,2,...,5 where n = N,, and (¢,3,k) € Dj.

(N¢-1) (Np-1) (N¢=1) «(m i
RMSE(m) = k=2 Ej:z Ti=z {[U ]zi.i)'k) - [I']N’]%i,j),.lc)}2
(Ne = 2)(Np — 2)(N¢ - 2) :

3) The numerically evaluated surface integral given by:

J2=1liz—1
I=025{ > D heholgijh + Pit1,ik + Pigerh + Pid1it1h
j=i1 =4
+ ik + Pikl,ika T Piri+1ks T Pid1,i+1,k0)
ko—1i2—1
+ 0 D hehelpigk + Pitrnk F Piuktr T Pit1LG k4 .
k=ky i=i - (33)
=K] =11
+ Pijak + Pitljak T Pisjak+1 T Pit1 iz k1]
ko—1 ja—1
+ Z Z hohcl@in,ik + @i i+1,k T Pir k1 T Pi,i+1,k+1

k=k; j=i

+ Pig,ik + Pigi+1,k T Pig ikt1 + Pigir1,k+1}

where, 11, 13, J1,J2, k1 and k; are specified constants, such that 1 <14; <13 < Ng, 1< Nn<n<
N, and 1 < k; < k3 < N¢, and:

w112 w2 4 [4(3))2
SRR L 2L L

(5.4)

The validity of each these quantities is measured according to:

Xe—Xo|
| X |

where X, and X, are the computed and reference values, respectively, and ¢ is the maximum
allowable relative error. The value of ¢ is specified to be 10~8. The values of X, are dependent on

the numerical scheme under consideration and the values specified for N¢, Ny, N¢, A7 and N,.
5.2. BENCHMARK 1

Perform N, = 200 iterations of the Approximate Factorization Algorithm, with the following
parameter values:
Ne = 64; N, = 64; N¢ = 64,

and

AT = 0.0008.
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Timing for this benchmark should begin just before the STEP 1 of the first iteration is started and
end just after the STEP 5 of the N,-th iteration is complete.

5.3. BENCHMARK 2

Perform N, = 400 iterations of the Diagonal Form of the Approximate Factorization Algorithm,

with the following parameter values:
Ne = 64; N, = 64; N¢ = 64,
and
Ar = 0.0015.

Timing for this benchmark should begin just before the STEP 1 of the first iteration is started and
end just after the STEP 9 of the N,-th iteration is complete.

5.4. BENCHMARK 3

Perform N, = 250 iterations of the Symmetric Successive Over-Relaxation Algorithm with the

following parameter values:
N¢ = 64; N, = 64; N, =64,
and
Ar =20 w=1.2.

Timing for this benchmark should begin just before the STEP 1 of the first iteration is started and
end just after the STEP 4 of the N,-th iteration is complete.

For all benchmarks, values of the remaining constants are specified as:
k, = 1.40; ky = 0.40; k3 = 0.10; ky = 1.00; ks = 1.40

Cya =20 Cy1 =105 C3y =2.0; Cy1 =205 Cs1=5.0
Cy,2 = 0.0 Cz2=0.0; Csz = 2.0; Cia=20; Cs2 =40
Ci153=0.0; C23 = 0.0; C33 =00 Cs3 =0.0; Cs3=3.0
Crqa=4.0; Cy,4 = 0.0; C3.4 =0.0; Csa =0.0; Csa=20
C15 =5.0; Cy5 = 1.0 C35 =0.0; Cy5 = 0.0 Css=0.1
Ci6 = 3.0 Cap = 2.0; Cap = 2.0; Cip =205 Cse =04
Ci,7 =0.5; Cy7 =30 Caqr=3.0; Cy7=3.0; Cs7=03
Cirs = 0.02; Ca25 = 0.01; Cis = 0.04; Cyp =0.03; Css = 0.05
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Ci = 0.01;
C1,0 = 0.03;

01,11 = 0.5;

Ciaz =04

01'13 = 03,

Cy,0 = 0.03;
C2,10 = 0.02;
Cy 11 = 0.4
Cz,u =0.3;

02'13 = 05,

Cs 9 = 0.03;
C3,0 = 0.05;
Cs11 = 0.3;
03,12 = 0.5;

03,13 = 0.4;

Cy = 0.05;
Ca,0 = 0.04;
C4,11 =0.2;
C4,12 =0.1;

Cya3 = 0.3;

05‘9 =0.04
05,10 = 003
Csn1 =0.1

05,12 =0.3

Csaa = 0.2
dV =dP =d® = ¢ = d¥ = 0.75
dM) = dP = d¥) = &V = d¥¥) = 0.75
d) =d) =dM =dl) = ) = 1.00

e = [maz(d),dD,d\")]/4.0

REFERENCES

1.

Bailey, D. H., and Barton, J.T.,The NAS Kernel Benchmark Program, NASA Technical Mem-
orandum 86711, NASA/Ames, Aug. 1985.

. Pulliam, T.H.,Efficient Solution Methods for the Navier-Stokes Equations, Lecture Notes for

the Von Karman Institute for Fluid Dynamics Lecture Series: Numerical Techniques for Viscous

Flow Computation in Turbomachinery Bladings, Jan. 20-24, 1986, Brussels, Belgium.

. Yoon. S., Kwak, D. and Chang, L.,LU-SGS implicit algorithm for three-dimensional incom-

pressible Navier-Stokes equations with source term, AIAA Paper 89-1964-CP, 1989.

. Jameson, A., Schmidt, W. and Turkel, E.,Numerical solution of the Euler Equations by Finite

Volume Methods using Runge-Kutta Time-stepping Schemes, AIAA Paper, 81-1259, June 1981.

. Steger, J.L. and Warming, R.F.,Flux Vector Splitting of the Inviscid Gas Dynamics Equations

with Applications to Finite Difference Methods, Journal of Computational Physics, Vol. 40,
(1981), p. 263. '

. van Leer, B.,Flux Vector Splitting for the Euler Equations, Eigth International Conference on

Numerical Methods in Fluid Dynamics, Lecture Notes in Physics, Vol. 170, Ed. E. Krause,
1982, pp. 507-512.

. Roe, P.L.,Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes, Journal

of Computational Physics, Vol. 43, 1981, pp. 357-372.

. Harten, A. High Resolution Schemes for Hyperbolic Conservation Laws, Journal of Computa-

tional Physiscs, Vol. 49, 1983, pp. 357-393.

70




10.

11.

12,

13.

14.

15.

16.

17.

. Gordon, W.J.,Blending function methods for bivariate and multivariate interpolation, SIAM

J. Num. Analysis, 8(1971), pp. 158.

Warming, R.F. and Beam, R.M.,On the construction and application of implicit factored
schemes for conservation Laws, Symposium on Computational Fluid Dynamics, SIAM-AMS
Proceedings, Vol. 11, 1978.

Lapidus, L. and Seinfeld, J.H.,Numerical Solution of Ordinary Differential Equations, Academic
Press, New York, 1971.

Lomax, H.,Stable implicit and explicit numerical methods for integrating quasi-linear differen-

tial equations with parasitic-stiff and parasitic-saddle eigenvalues, NASA TN D-4703, 1968.

Pulliam, T.H. and Chaussee, D.S.,A Diagonal Form of an Implicit Approximate Factorization
Algorithm, Journal of Computational Physics, Vol. 39, (1981), p. 347.

Chan, T.F. and Jackson, K.R.,Nonlinearly Preconditioned Krylov Subspace Methods for Dis-
crete Newton Algorithms, SIAM J. Sci. Stat. Compt. Vol. 5, (1984), pp. 533-542.

Axelsson, O.,A generalized SSOR method, BIT, Vol.13, (1972), pp. 443-467.

Olsson, P. and Johnson, S.L.,Boundary Modifications of the Dissipation Operators for the
Three-Dimensional Euler Equations, Journal of Scientific Computing, Vol. 4, (1989), pp. 159-
195.

Coakley, T.J.,Numerical Methods for Gas Dynamics Combining Characteristics and Conserva-
tion Concepts, AIAA Paper 81-1257 (1981).

71






