Autotasked Performance of a NASA CFD Code
RND 90-003

Russell Carter

Computer Sciences Corporation
NASA Ames Research Center
Moffett Field, CA 94035, USA

1. Introduction

Current progress in the field of Computational Fluid Dynamics (CFD)
is often limited by the speed that existing computers and algorithms compute
solutions to various incarnations of the Navier-Stokes equations. One
approach to increasing the rate of computation is to exploit algorithmic
independence or parallelism in the calculation. Current generation
supercomputers such as the Cray Y-MP 832 located at NASA AMES
Numerical Aerodynamic Simulation Facility (NAS) provide several methods
of exploiting parallelism. These methods differ in the amount of user
sophistication required to achieve adequate results. In this report, the
performance of an automatically parallelized, or autotasked, NASA CFD code
is studied. Two aspects of the code's performance were assessed: unitasked
vectorized performance, and performance when autotasked in dedicated
time.

1.1 Code Description

The code chosen was SPARK, which is an implementation of a
numerical model for supersonic reacting mixing layers as detailed in [1].
SPARK has been applied to problems associated with the propulsion systems
of the National Aerospace Plane. The code used for this study solves the two-
dimensional Navier-Stokes equations coupled to a two-species chemical
reaction problem. The program was designed to consider the
multicomponent diffusion and convection of important species in the
chemical reactions, and the interactions between fluid mechanics, chemistry
and thermodynamics. Specifically, the kinetics of the chemical reactions are
incorporated into the simulation and in fact their computation constitutes
the bulk of the computational expense. The configuration of SPARK used in
this study solves a two-species model in the same fashion as the original code.

The governing equations are discretized using a temporally implicit
scheme solved by a modified MacCormack technique. The FORTRAN source
consists of approximately 5000 lines of code. Under UNICOS 5.0 the
executable size of the unitasked job was 6.6 MW and the executable size of the
autotasked job was 6.8 MW. Under UNICOS 5.0.12 the executable size of the
unitasked job was 6.6 MW and the executable size of the autotasked job was
7.5 MW. Normal unitasked execution requires approximately 300 CPU

seconds. Since the algorithm is time stepping in nature, for the purposes of
this study a shorter execution time of approximately 75 CPU seconds was
chosen to allow reasonable turnaround time with the available batch queues.

1.2 CRAY Y-MP Computer System Description

The CRAY Y-MP, serial number 1002, is an eight CPU, multiple
instruction multiple data stream (MIMD) computer system. The clock period
(CP) is 6.33 nanoseconds. The peak computation rate based on one addition
and one multiplication per clock cycle is 316 MFLOP/sec. The relatively fast 32
MW shared main memory is augmented by a slower 256 MW solid-state
storage device (SSD)[2].

The operating system (UNICOS) is UNIX System V based. Support
exists for multiprogramming, where different processors run different jobs,
and multitasking. Multitasking allows multiple processors to execute two or
more parts of a single program in parallel and is discussed in detail in Section
3.1. FORTRAN codes are by default run with full vectorization on a single
processor, or unitasked. A job is a single program that may or may not spawn
multiple processes. Jobs may be run in batch or dedicated mode. Batch mode
jobs run in a multiprogramming environment concurrently with other batch
jobs and interactive users. The performance of a code running in a
multiprogramming, multiprocessing environment strongly depends on the
availability of system resources such as processors, disks, or memory. Jobs
run in batch mode on the Y-MP under normal system workloads compete for
resources with other jobs and are subject to being swapped to disk which
adversely affects wall clock execution time performance compared to
programs run in dedicated time. Dedicated mode jobs run interactively with
minimum competition from system and user activity and hence obtain the
best performance possible on the CRAY Y-MP.

1.3 Performance Evaluation Tools.

Next, tools are discussed that may be used to facilitate the
parallelization and evaluate the performance of a FORTRAN program on the
Y-MP. Additional details may be found in [3].

The Y-MP hardware performance monitor (hpm) command hpm
summarizes the machine performance of a program by reporting various
hardware counter statistics. Statistics are arranged by groups. Each group
reports a set of related statistics on aspects of the program's performance.
Group 0 is an execution summary which reports such statistics as instructions
issued, I/O and CPU references, and floating point additions, multiplications,
and reciprocals. Group 1 reports on various hold issue conditions. Group 2
summarizes memory activity, while Group 3 reports vector events and an
instruction summary. Preparation involves normal compilation of the
program source which is then run with the hpm command on the command
line in the same manner as the UNIX time command. hpm works with
multitasked programs. A sample of hpm output is provided as Appendix 1.

The perftrace utility extends the hpm to individual program blocks
such as subroutines and functions. Preparation involves compilation with
the flowtrace option turned on and explicit linking in the perftrace libraries.
perftrace fails on multitasked programs.

opc is a local utility that provides both floating point operation (FLOP)
count and FLOP rate data at the program and subprogram level for serial Cray
FORTRAN codes. The program explicitly counts the FLOPs in each line of
source code and the number of times that line of source code would be
executed. Since opc counts by inserting a unique indexing statement before
each line of source, it works correctly only if the compiled code is executed as
the source code is written. Thus, it is less reliable on poorly written source
codes that can be significantly optimized by the cft77 compiler.

The ja command is a UNICOS utility that provides accounting
information on program runs. Useful statistics include elapsed time, user
CPU time, system CPU time, concurrent CPUs, and average concurrent CPUs.

2. Unitasked Performance

2.1 Vectorization Analysis

Output from hpm indicated that the SPARK code run with default
vectorization, i.e., with the command c¢f77 spark.f -o spark, attained a
sustained computation rate of 177 MFLOP /sec. This is about 56 percent of the
peak single processor rate (316 MFLOP/sec). The unitasked performance of a
CFD code on the Y-MP is strongly dependent on the amount of vectorizable
work in the program. Hence the source code was examined for characteristics
that enhance vectorization and thus performance. The version of SPARK
studied performs no file input and and relatively little file output, so I/O
effects were insignificant. Execution control flow consists of 200 time step
iterations for the 75 CPU second version. During each iteration, subprograms
are called between one and four times. No user subroutine is called more
than four times an iteration, hence total subroutine call overhead is relatively
low. The code's computational work consists of large numbers of iterations
of DO loops which have no data dependencies. There are a total of 491 DO
loops in the code. Of these, 216 are of the unnested form Type 1:

DOI =1, 1IXJ
wor k
CONTI NUE

where | XJ =1118
Of the remaining loops, 79 are of the nested form Type 2:

DO K =1, NCS

DOl =1, IXJd
wor k
CONTI NUE
CONTI NUE

where NCS =9

Inspection of the cft77 listing file showed that these loops compile
completely to long vector loops, indicating no dependency conflicts. perftrace,
flowtrace and opc each reported that approximately 72% of the cpu time is
concentrated in four code blocks, with none of the remaining blocks
consuming more than 3.5% each of the total cpu time. Execution times of
loops in the top four code blocks were timed by inserting calls to the real time
clock . The times show that six loops account for 56.5% of the execution time
of the code. These six loops were all of the forms listed above. Many of the
long vector loops in the four most cpu time intensive subroutines consist of a
reasonably balanced mix of vector multiplications and additions, which
enhances vector chaining [4][5].

Output from the hpm was used to quantify the unitasked performance
of the code. It is apparent from the output that SPARK is highly vectorized.
For example, the ratio of vector to total floating point operations was 0.9994.
The Group 1 hold issue summary indicates SPARK spent 38.84% of the clock
periods waiting on vector registers and 51.48% of all clock periods waiting on
vector functional units. The relatively high percentage of time waiting on
both vector registers and functional units is an indicator of simultaneous use
of functional units. The relatively low percentage of clock periods waiting on
block memory references (9.01%) indicates there was a relatively low number
of memory bank conflicts. The Group 2 memory activity summary shows a
ratio of scalar memory references to block memory references of 5.9E-3. All
these statistics indicate efficient, highly vectorized code.

2.2 Calculation of Percent Vectorization

Percent vectorization is defined as the percent of vector operations in
the total of operations generated over the course of a program execution.
Total operations is the sum of vector operations and scalar operations. The
estimation of percent vectorization from hpm data is strongly dependent on
the choice of what quantities to count as either vector or scalar operations.
Three groups of performance data recorded by the hpm that can be classified
as either vector or scalar are floating point operations (FLOPs), memory
references, and instructions. The proportion of vector to scalar data in each
group differs. For example, the proportion of vector FLOPs to scalar FLOPs
differs markedly from the proportion of vector instructions to scalar
instructions since vector instructions may result in as many as 64 times as
many operations as scalar instructions. FLOPs can be subdivided into floating
point additions, multiplications, and reciprocals.

Method 1 of estimating percent vectorization is to calculate the percent
of vector FLOPs in the total FLOPs, as was reported in the previous section.
Percent vectorization thus estimated neglects the memory and housekeeping
operations present in all codes. Method 1 produces a percent vectorization of
99.94 percent. Method 2 adds memory references plus integer and logical
operations to the total number of operations. Details are provided in
Appendix 2. The percent vectorization estimated by Method 2 is 97.0 percent.

3. Autotasked Performance in Dedicated Time

3.1 Parallelization Techniques on the Cray Y-MP

Three types of multitasking are implemented on the Y-MP:
macrotasking, microtasking, and autotasking [6][7]. Macrotasking is the
process of dividing a code or algorithm into sequential pieces (called tasks)
that can be performed in parallel. This division may involve a simple
partition of an existing serial algorithm's independent sequential
components or it may involve a complete implementation of a purely
parallel algorithm. Tasks are explicitly distributed among available
processors. Explicit calls to the macrotasking libraries provide task initiation,
synchronization, protection of critical code segments, and communication.
Tasks typically have relatively high complexity (large granularity) and are
usually structured as subroutines. FORTRAN code written to exploit
macrotasking on the CRAY Y-MP is not portable. Since the design and
implementation of the parallel solution to a problem is explicitly done by the
programmer, programmer overhead is high.

Microtasking permits multiple processors to operate on an existing
serial program without affecting portability. The level of parallelism may
vary from large tasks involving the simultaneous execution in large
subprograms to very small tasks executing single iterations of do loops. Task
initiation, synchronization, and protection of critical code segments are
provided for by compiler directives manually inserted into the FORTRAN
source code. These directives appear as FORTRAN comment lines and do
not affect the portability of the original code. However, the programmer
overhead issues raised with macrotasking still occur if the data dependency
analysis is complex. Subtle, difficult to trace errors can arise from the parallel
execution of blocks of code originally written to be executed serially if the
dependency analysis manually performed by the programmer is faulty. To
some extent the dependency analysis may be automated by processing the
modified source code with manually inserted microtasking directives
through the FORTRAN preprocessor and allowing it to do the dependency
analysis. This aspect was not examined in this report.

Very good performance has been obtained with macrotasked and
microtasked FORTRAN codes on the NAS Y-MP [8].

Autotasking is a specialized and automated adaptation of microtasking.
The basic idea is the automatic parallelization of independent DO loops.

FORTRAN source code is first processed through fpp, the FORTRAN
preprocessor. fpp performs a data-dependency analysis and looks for
parallelism within the code on a DO-loop level and inserts appropriate
autotasking compiler directives into the FORTRAN source code.
Autotasking compiler directives are similar in syntax and function to
microtasking directives. The output of fpp is then processed by fmp, the
FORTRAN mid processor, which uses the autotasking directives to
restructure the code for parallel execution. The output of fimp is FORTRAN
source code with machine-dependent library calls and compiler functions
imbedded in the source. This output is translated by the cft77 compiler to
machine code. Loading with segldr produces an autotasking executable.
Alternatively, the three step process may be automated by a single call to the
¢f77 command which takes the original FORTRAN source input and
produces an autotasking executable. Since the programmer potentially has
minimal contact with the parallel aspects of the code, programming overhead
is low. Versions 3.1 of fpp, fmp, and cft77 were used in this study.

An autotasked job is structured as a set of sequential and parallel
regions. Within sequential regions, a master task executes the sequential
work while slave tasks associated with the job are idle, or parked. Within
parallel regions, both master and slave tasks execute available work. The
number of processors actually allocated to a parallel region is determined
from the number of CPUs requested by the job initially, and the amount of
demand on the system. The number of processors requested may be specified
at runtime by setting the UNICOS shell variable NCPUS. The number of
processors allocated will not exceed the number requested by the parallel job.
On the other hand, normal demands on the system have the effect that the
number of processors actually obtained is significantly less than the number
requested. However, during dedicated time, system load is minimal, and
actual numbers of processors obtained is close to the number requested.

3.2 UNICOS statistics on Parallel Jobs

The UNICOS operating system reports a number of statistics that
summarize the runtime performance of the parallel code. The most
important of these are the time statistics produced by ja and hpm .

Several interrelated time quantities are reported by the system for each
UNICOS job . The following definitions have units of seconds. Connect time
to i concurrent processors T is the elapsed time i processors were
concurrently attached to the job (either executing or idle) and is obtained from
the ja summary report. Total connect time T (also denoted total CPU time)
is the sum of the T; weighted by the number of concurrent processors.
Assuming n processors were requested for the autotasked job, T is calculated
from

Tct =].*Tcl + 2*TC2 + “ee + n*Tcn

The average number of concurrent processors over the duration of the
job p, is then computed from

_ TctD
P = (Tq 0+ 0T 40 040 Ten)

Tp is the elapsed (wall clock) runtime for a job executing with p
concurrent processors. Wait semaphore time Ty is the total of all the
individual CPU execution times that all connected CPUs spent waiting for a
semaphore (waiting at a synchronization point). It is not simply related to
total execution time since concurrent processors waiting for a semaphore are
simultaneously accumulating wait semaphore time. Wait semaphore time is
obtained from the hpm group 1 output.

User CPU time Ty, is the difference between total connect time T and
the wait semaphore time Tyys.

Tusr = Tct - Tws

System CPU time Ty is essentially UNIX system kernel work
attributable to a job. System CPU time is obtained from the ja command and
summary reports. Since the kernel is shared by all processes, some work of
the kernel is not attributable to a particular process and relevant charges are
distributed among all active processes. Similarly, some system work
attributable to a job is not charged to the job's system CPU time. Usually, for
serial programs Tsys represents less than one percent of the total time.

3.3 Parallel Characteristics of the SPARK Code

Recall that the bulk of the SPARK code's computational expense
consists of large numbers of iterations of independent vector loops. At the
lowest (DO loop) level, parallelism can be introduced by simply computing
iterations in parallel (DO ALL). An important consideration is the conflict of
vectorization vs. parallelism. Highly vectorized code is typically ten to twenty
times faster than scalar code. On the other hand, under ideal conditions, the
speedup for a parallel code on an eight processor system such as the Y-MP is
less than or equal to eight. Therefore, on a vector computer system with a
small to moderate number of processors, overall vectorization should not
decrease as a result of introducing algorithmic parallelism [7].

For the simple model of parallelism given above, the implementation
of SPARK is ideal. Iterations of Type 1 DO loops can be divided into chunks
of not less than 64 (with one chunk of size less than 64). Similarly, each outer
loop of Type 2 loops can be considered a single task which executes a fully
vectorized inner loop. In both cases, vectorization of the code is not decreased
by the introduction of parallelism.

Parallelizing a code introduces system overheads that in total may
exceed the amount of elapsed run time saved by adding more processors to
the work, particularly if vectorization is decreased by the additional
parallelism. In this case, the execution time for the code will increase. fpp by
default analyzes the amount of computational work contained in a loop and
performs a threshold analysis based on the number of loop iterations on
whether or not to autotask a loop. Often, loop iteration bounds are
determined dynamically at runtime. In this case fpp inserts runtime
threshold tests of the loop iteration bounds so that a loop is autotasked for
sets of iteration bounds that meet the criteria.

Loops in the four most computationally expensive subroutines were
examined for failure of the threshold tests inserted by fpp. All of the loops
passed the imposed test.

3.4 Dedicated Time Results

The SPARK code was first run with default autotasking (cf77 -Zp).
Results were disappointing; the code ran at 199.3 MFLOPS with a speedup of
1.13. Speedup is defined to be the elapsed run time on one processor Tj
divided by the elapsed run time on p processors Tp, where p is slightly less
than eight on the eight processor Y-MP. The preprocessors fpp and fimp have
options that allow various modes and levels of optimization to be applied to
the source code. Inspection of the listing file produced by fpp revealed that all
of the Type 1 loops defined above were not multitasked and were computed
solely as unitasked vector loops. fpp by default examines only nested
sequences of loops. Outer loops are microtasked; inner loops are vectorized.
Single loops are considered to be inner loops. After specification of the
command line option to enable inner loop autotasking (cf77 -Zp -Wd,-ei),
examination of the fpp output file showed that all Type 1 and Type 2 loops
were correctly autotasked. fpp implements automatic inline expansion of
called subroutines. Preprocessor options control the level of inlining of code.
Level 6 is claimed to be always safe, level 7 is "rarely unsafe". Level 6 was
used to test the code. The code was then run in dedicated time with fpp
options to enable inner loop autotasking and level 6 subroutine inlining (cf77
-Zp -Wid,-ei6). With these options the code ran at 832.7 MFLOPS, a speedup of
5.0. These options were used to generate the remainder of the data presented
in this report.

3.5 Theoretical Speedup Calculation

The relatively simple approach which Cray autotasking takes to the
parallelization of FORTRAN codes, i.e., parallelization of DO loops, suggests
that information about the level of vectorization of the original unitasked
code may be used to predict the dedicated time performance of the autotasked
code. Of interest is the calculation of the best theoretical speedup S;,. The
speedup calculation uses a variant of Amdahl's law. The key assumptions
are that all DO loops in the original source vectorize completely and fpp

transforms all vector loops to parallel vector loops. Manual inspection of the
listing file produced by fpp from the SPARK FORTRAN source showed this
was a reasonable approximation. Finally, it is assumed that no scalar code is
executed in parallel, and that vector code executes Ry times faster than scalar
code. Vector operations on a Cray are performed at the highest rate when the
vector length is greater than about 64. Vectorized code is not executed 64
times faster than sequential code, however, due to various factors such as

memory contention and vector startup overheads. Observed R,'s range from
about 10 to 20 for the Y-MP.

The execution time for FORTRAN code run on a single processor that
is to be run in parallel on multiple processors can be described as the amount
of time spent in the serial portion plus the amount of time spent in the
parallelizable portion of the code. Then the fraction f of the overall
sequentially executed program CPU time (Tysy) spent in the parallelizable
section (also sequentially executed) is given by:

(P
~ (UPU+1ISL) (1)
where
P = CPU time spent executing sequentially in the parallelizable
section
of the code,
S = CPU time spent executing in the serial section of the code.

Note that £, thus defined, is the fraction of parallelizable code in the program.
The assumption is made that P and S are computed from

S = St*Tsop
P = Vr=*Tyop
where
St = total number of scalar operations
V1 = total number of vector operations
Tsop = average time for one scalar operation
Tyop = average time for one vector operation.

The relationship between Tsop and Typ is expressed as
Tsop = Tvop *Ry

Substitution into equation (1) gives

f Vr
~ (ORU+0STO+0VH) 2)

Let n be the fraction of the total operations in the code that are vectorized,
that is, n is the percent vectorization, described in Section 2.2, divided by 100:

Vr
N = (St +0V)

Then (2) can be written equivalently as

n
f = (T10-0n) ORI+0In 1) (3)

Equation (3) directly relates the fraction of vectorized operations to the
fraction of time in the parallelizable section of the code.

Both approximations, Method 1 and Method 2 (see Section 2.2) for percent
vectorization assume operations are not overlapped. In practice, operations
can be overlapped between functional units. For example, chaining a vector
through the vector add, vector shift, and vector logical functional units
results in simultaneous execution within the three functional units. The
ratio of vector operation execution speed to scalar operation execution speed
Ry varies widely, but is most often between 10 and 20 [9]. Ry is taken to be 10
in this calculation. Approximating percent vectorization by Method 1
produces an f of 0.994. Similarly, approximating with Method 2 yields an f of
0.76.

A variant of Amdahl's Law [7] is used to calculate the theoretical speedup:

1

= ¢ (4)
(mm-ﬂgm)m

Sp

Where

theoretical speedup,

= number of concurrently executing processors,
and f is defined in (2).

o FOCD
Il

3.6 Comparison to Experimental Data

The validity of this model for parallelism was investigated by
comparison of the results from dedicated time runs with the theoretical
speedup. The theoretical speedup uses the fraction of parallelizable code f
calculated using the percent vectorization approximated by Methods 1 and 2.

10

The number of concurrently executing processors p is taken to be the average
number of concurrent CPUs as reported by ja. The dedicated time runs used
the NCPUS variable to vary the number of processors requested from 2 to 8.
The observed speedup Seps was computed relative to a unitasked job run in
dedicated time, i.e.,

Ty
Sobs = T7p

where

T1 = elapsed time on one processor
Tp = elapsed time on p processors.

Results from the fastest individual runs in dedicated time are given
below in Table 1. Data from ja and hpm for these runs may be obtained upon
request from the author. The performance for a constant number of
requested processors was observed to vary about five percent from run to run.
The NCPUS column lists the number of concurrent CPUs requested for each
run. The p column lists the number of concurrent CPUs actually obtained for
each run. Sp(l) and Sp(2) correspond to the theoretical speedup calculated
using the value of f obtained when the percent vectorization is approximated
by Method 1 or 2, respectively. A plot of the speedups Sops, Sp(1) and S,(2)
follows as Figure 1.

Table 1

Autotasked Speedups of the SPARK Code

NCPUS p Sobs Sp(1) Spy(2)
2 200 188 199 161
3 300 266 296 203
4 399 331 393 232
5 496 382 483 254
6 592 433 58 271
7 687 464 676 285
8 780 500 768 296

11

Figure 1

Speedup vs. Average Concurrent CPUs

8
—+—— Observed /"A
----A--- Method 1 A
69 ----O--- Method 2 A
o
>
? 4 -
3]
Q.
7
2 -
0 I I I I I I
1 2 3 4 5 6 7 8

Average Concurrent CPUs

3.7 Discussion

The experimental data approximately bisects the region defined by the
curves produced for the theoretical speedups. Both methods fail to predict
the observed speedup accurately. Method 1 overestimates the speedup while
Method 2 underestimates the speedup by a similar amount. Method 1 uses
only FLOPs to determine the potential parallel fraction in the code, and so
entirely neglects the effects of parallelization on the housekeeping functions
required in any code. Hence Method 1 is likely to be a strong upper bound on
the amount of speedup that can be obtained in a FORTRAN code by
autotasking. The relatively large amount of difference between Method 1's
speedup prediction and the speedup obtained suggests that more parallelism
might be exploitable in the SPARK code.

Method 2 assigns the hpm scalar functional unit counts to the
sequential fraction of the code. The scalar functional unit produces 78 times
as many operations as scalar floating point for the SPARK code. These
operations dominate the sequential fraction of the code. However, the scalar
functional unit processes many of the integer and logical operations
generated by housekeeping functions associated with the parallelizable
fraction of the code, i.e., the DO loops. Hence many of the scalar functional
unit counts, though not vectorizable, are incorrectly assigned to the

12

sequential fraction of the code. This implies that the predicted speedup
should underestimate the observed speedup (as is observed).

Equation (4) may be used to compute an "observed {" fy;s for each p and
Sobs- The average value of fops obtained from the seven data points in Table 1
was fops=0.927. This compares with f=0.994 from Method 1 and f=0.76 from
Method 2.

3.8 Overhead

An autotasked code incurs unavoidable overheads that are manifested
as increases to both user CPU time, Ty, and system CPU time, Tsys- These
overheads increase as the number of concurrent CPUs is increased. Table 2
lists the overheads measured for the SPARK code at differing numbers of
concurrent CPUs. (The last entry in Table 2 differs from the last entry in Table
1 because the hpm group specified for the entry in Table 1 did not subtract
wait semaphore time from the total execution time. The entries in Table 2
were run with hpm group 1 so that wait semaphore time is correctly deducted
from Tyg;.)

Table 2

Autotasking Overheads Relative to NCPUS=1
(Dedicated Time)

Ousr Osys Ousr+sys
p (percent) (percent) (percent)
1.00 0.00 0.00 0.00
2.00 1.21 56.71 1.27
3.00 1.97 122.60 2.10
3.99 2.53 217.12 2.75
4.96 3.13 1000.55 4.13
5.92 4.00 1323.01 5.32
6.87 4.74 1633.97 6.37
7.68 5.75 3129.59 8.87

The column headed by p is the average number of concurrent
processors for the run as reported by ja. Oy, is the percent overhead of Ty, at
the given number of concurrent CPUs, relative to the elapsed time for a run
with one CPU. That is,

Tusr(P)'Tusr(l)
Tusi(1)

Ousr = *100

where

13

Tusr(p) = Tusr with p concurrent CPUs
Tusr(1) = Tysr with one CPU.

Similarly, Ogys is the percent overhead of Tgys at the given number of
concurrent CPUs, relative to the elapsed time for a run with one CPU, i.e.,

Tsys (P) U 'Tsys(1)*
Tsys(l)

Ogys = 100

where
Tsys(p) = Tsys with p concurrent CPUs.
Teys(1) = Teys with 1 CPU.

The final column lists the total percent overhead of user and system time
relative to the run with one CPU:

O _ Tusr(p)"'Tsys(p)'Tusr(l)'Tsys(l)
usrrsys = Tuse(1)+Ts,ys(1)

*100.

Ousr and Oygr+sys were plotted versus the average number of concurrent
CPUs in the following graph.

Figure 2.

Dedicated Time Percent Overhead
vs. Average Concurrent CPUs

10

8 - —&— user

—&—— user + system

Percent Overhead

Average Concurrent CPUs

14

System CPU time increases at a much greater rate than user CPU time.
Although system CPU time is initially negligible (0.1%) when p=1, it
comprises 3% of the total CPU time when p=7.68.

4 Summary

The performance of the single tasked, vectorized code was 177 MFLOPs,
or about 56% of the Y-MP peak computation rate of 316 MFLOPs. The code
was autotasked using the inner loop and obtained a maximum computation
rate of 832.7 MFLOPs. The amount of data parallelism present in the code was
expressed as a function of percent vectorization. Two methods of estimating
the percent vectorization were used; each is an approximation which relies
on different specific assumptions about the distribution of operations counted
by the hardware performance monitor. The two methods produced percent
vectorizations of 99.4 and 97.0 percent.

The percent vectorization was used to estimate the fraction of
parallelizable code. The average fraction of parallelizable code observed was
0.927, which compares with 0.994 and 0.76 obtained from the two methods of
percent vectorization estimation. These estimates coupled with a variant of
Amdahl's law were used to predict the speedup. The predicted speedup was
compared to actual speedups observed in dedicated time on the Cray Y-MP.
Neither method adequately predicts the observed speedup, but it is important
to note that the two methods predict speedups which bracket the observed
speedups.

Overheads for running the code in parallel were measured and found
to range from as little as 1.3% of the total work when running in parallel on
two processors, to 8.9% when running on eight processors. Operating system
overhead, insignificant at low numbers of processors, was found to increase at
a very high rate as the number of processors increased. This suggests that for
numbers of processors greater than ten, system overhead would become the
dominant overhead, at least in a system configured like the Cray Y-MP.

5 Acknowledgment

The author wishes to thank Duane Carbon, Douglas Pase and Robert
Bergeron for their constructive comments on this work.

15

[1]

2]
3]
[4]
[5

[6]

7]
[8]

El

References

J.Philip Drummond, R.Clayton Rogers, and M. Yousuff Hussaini, "A
Numerical Model For Supersonic Reacting Mixing Layers.", Computer
Methods in Applied Mechanics and Engineering, 64 1987.

Cray Research Inc,, CRAY Y-MP Computer Systems Functional
Description Manual, Pub No. HR-4001, 1988.

Cray Research, Inc.,, UNICOS Performance Utilities Reference Manual,
Pub. No. SR-2040 B, 1989.

Hui Cheng, "Vector Pipelining, Chaining, and Speed on the IBM 3090
and Cray X-MP." IEEE COMPUTER, September, 1989, pp. 31-46.

R. A. Fatoohi, "Vector Performance Analysis of Three Supercomputers:
CRAY-2, CRAY Y-MP, and ETA10Q.", NASA Internal Report.

Cray Research, Inc., CRAY-YMP and CRAY-XMP Multitasking
Programmer’s Manual, Pub. No. SR-022E, Cray Research, Inc.1988, pp.
2-15 - 2-17.

Cray Research, Inc., Autotasking Users Guide, Pub. No. SN-2088, Cray
Research, Inc.1988, pp. 2-15 - 2-17.

R. A. Fatoohi, "Multitasking on the Cray Y-MP: An Experiment with A
2-D Navier Stokes Code.", NASA Internal Report.

Cray Research, Inc., Autotasking Users Guide, Pub. No. SN-2088, Cray
Research, Inc.1988, pp. 2-22.

16

Appendix 1
Hardware Performance Monitor Output

The following is the hpm groups 0, 1, 2, and 3 output for the unitasked
SPARK code. The additional vector logical unit was turned off via the
Jetc/special -avloff command so that the correct vector floating point
operation counts were obtained.

Group 0: CPU seconds : 72.20 CP executing : 11408382236
Million inst/sec (MIPS) : 16.22 Instructions : 1171291071
Avg. clock periods/inst : 9.74
% CP holding issue : 85.95 CP holding issue : 9805871212
Inst.buffer fetches/sec : 0.01M Inst.buf. fetches : 700748
Floating adds/sec : 64.80M F.P. adds : 4678931278
Floating multiplies/sec : 98.38M F.P. multiplies : 7103157910
Floating reciprocal/sec : 13.38M F.P. reciprocals : 965757209
CPU mem. references/sec : 107.76M CPU references 7780825360
I/lO0 mem. references/sec : 0.24M /0 references : 17648903
Floating ops/CPU second : 176.55M
Floating ops/wall second : 114.68M CPU/wallclock time ratio: 0.65

Group 1: CPU seconds : 72.27937 CP executing: 11420345986

Hold issue condition % of all CPs actual # of CPs
Waiting on semaphores : 0.00 475
Waiting on shared registers : 0.00 0
Waiting on A-registers/funct. units 2.54 290135225
Waiting on S-registers/funct. units 2.25 256954420
Waiting on V-registers : 38.84 4435353185
Waiting on vector functional units : 51.48 5879202927
Waiting on scalar memory references : 0.27 30621091
Waiting on block memory references 9.01 1028567088

Group 2: CPU seconds: 72.23268 CP executing: 11412969521
Inst. buffer fetches/sec : 0.01M total fetches : 702585

fetch conflicts : 2384992
I/O memory refs/sec : 1.42M actual refs : 102895681
% having conflicts 49.87 actual conflicts 51314578
Scalar memory refs/sec : 0.64M actual refs : 45872184
Block memory refs/sec : 107.08M actual refs : 7734953176
CPU memory refs/sec : 107.72M actual refs : 7780825360
% having conflicts 6.56 actual conflicts 510748658
CPU memory writes/sec 35.33M actual refs : 2552186714
CPU memory reads/sec : 72.39M actual refs : 5228638646

17

Group 3: CPU seconds
(octal) type of instruction
(000-017)jump/special

(020-077)scalar functional unit
(100-137)scalar memory

(140-157,175)vector integer/log :

(160-174)vector floating point
(176-177)vector load and store

type of operation
Vector integer&logical
Vector floating point

Vector integer&logical :
Vector floating point:

72.18967 CP executing: 11406172771

inst./CPUsec

1.42M
8.75M
0.64M
0.97M
2.77TM
1.68M

ops/CPUsec

62.11M
: 176.48M

ops/wallsec

actual inst.

102271667
631462036
45872184
70335483
199796989
121552567

actual ops

4483931095
12739787062

46.68M CPU/wallclock

132.63M

18

time ratio:

% of all inst

8.73
53.91
3.92
6.00
17.06
10.38

avg. VL

63.75
63.76

0.75

Appendix 2
Percent Vectorization Calculation
Method 2

Percent vectorization was estimated from hpm groups 0,2, and 3 by two
methods. The additional vector logical unit (AVL) was disabled by means of
the /etc/cpu command so that the hpm would report the correct number of
vector floating point operations. The methods differ by the calculation of the
number of vector memory references. Method 2a calculates vector memory
references directly from the number of vector load and store operations,
while Method 2b equates block memory references to vector memory
references. Both methods yield identical results.

1. Method 2a

The percent vectorization of operations Py(2a) is given by

Vi
Py(2a) = VtD+mSt100
where
Vit = Total vector operations
St = Total scalar operations.

The total vector operations Vt are given by the equation
Vi = Vip + Vit + Vinr

where

Vfip = Vector floating point operations (Group 3, line 11)
Vector integer and logical operations (Group 3, line 10)
= Vector memory references.

==
8 =
I

Vector memory references are the product of the number of vector load and
store instructions and the average vector length

er = Vls * Avt

where

Vis = Vector load and store instructions (Group 3, line 8)
Ayt = Average vector length (total).

The average vector length is calculated by:

19

VﬂD*[AVﬂD+DprD*DApr

Avt = Viil+0Vyp
where
Ayii = Average vector length for integer
and logical instructions (Group 3, line 10)
Avgp = Average vector length for floating
point instructions (Group 3, line 11)

The total scalar operations S; are calculated from the equation

St = Smr + Sfu +Js

where
Smr = Scalar memory references (Group 3, line 5)
S¢y = Scalar functional unit (Group 3, line 4)
Ts = Jump/special instructions (Group 3, line 3)

Scalar integer and logical instructions are performed in the scalar functional
unit.

2. Method 2b

The second method uses block memory references to determine the number
of vector memory references. The percent vectorization Py(2b) is given by:

\Y
P,(2b) = o 100

VtD-l-HSt
where
Vi = Total vector operations
St = Total scalar operations.

The total scalar operations are calculated as in the previous method. The
total vector operations V; are given by the equation:

Vt = pr + Vil + mer

where
V¢, = Vector floating point operations (Group 3, line 11)
Vi1 = Vector integer and logical operations (Group 3, line 10)
Vbmr = Block memory references (Group 2, line 7)

20

